JPH1087811A - Production of copolyether polyol - Google Patents

Production of copolyether polyol

Info

Publication number
JPH1087811A
JPH1087811A JP25021896A JP25021896A JPH1087811A JP H1087811 A JPH1087811 A JP H1087811A JP 25021896 A JP25021896 A JP 25021896A JP 25021896 A JP25021896 A JP 25021896A JP H1087811 A JPH1087811 A JP H1087811A
Authority
JP
Japan
Prior art keywords
reaction
thf
water
returned
diol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25021896A
Other languages
Japanese (ja)
Other versions
JP3932145B2 (en
Inventor
Kazuyoshi Imamura
和義 今村
Koichi Tano
康一 田野
Satoshi Furubetsupu
聡 古別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP25021896A priority Critical patent/JP3932145B2/en
Publication of JPH1087811A publication Critical patent/JPH1087811A/en
Application granted granted Critical
Publication of JP3932145B2 publication Critical patent/JP3932145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a copolymer PTMG by the copolymerization of tetrahydrofuran with a 2-10C diol in such a manner that it is reduced in the fluctuation of the content of a specified comonomer. SOLUTION: In producing a copolyester polyol from tetrahydrofuran and a 2-10C diol in the presence of a catalyst comprising a heteropoly acid, part of the contents is continuously withdrawn from a reaction tank 1 and is divided into two layers. The lower layer is returned to the tank 1, while the upper layer is returned to the tank 1 after the water contained therein is distilled out of the system by vaporization together with tetrahydrofuran, and the distillate is returned to the tank 1 after water is removed therefrom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はテトラヒドロフラン
(以下、THFと略す)と炭素原子数2〜10のジオー
ル(以下、ジオールと略す)とを共重合して得られるポ
リエーテルポリオール(以下、共重合PTMGと略す)
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyether polyol (hereinafter referred to as copolymer) obtained by copolymerizing tetrahydrofuran (hereinafter abbreviated as THF) and a diol having 2 to 10 carbon atoms (hereinafter abbreviated as diol). (Abbreviated as PTMG)
And a method for producing the same.

【0002】[0002]

【従来の技術】ポリオキシテトラメチレングリコール
(以下、PTMGと略す)はポリウレタン等からなる弾
性体、弾性繊維、弾性構造体の主要原料として多方面に
使用されている工業的に有用なポリマーである。近年、
THFと炭素原子数2〜10のジオール(ジオール)、
例えばネオペンチルグリコール(以下、NPGと略す)
とを共重合したポリエーテルポリオール(共重合PTM
G)が注目を集めている。該共重合PTMGはPTMG
に比べてガラス転移温度が低く、これを原料とする弾性
製品はPTMGを使用したものと比べ、伸度、ヒステリ
シスロス、低温特性等が著しく改善される。例えば、ポ
リウレタン弾性繊維の場合、PTMGを使用した従来品
は、氷点下では瞬間回復性が著しく低下するが、該共重
合PTMGを使用した弾性繊維は−10℃の低温下でも
常温とほとんど変わらない瞬間回復性を示す。
2. Description of the Related Art Polyoxytetramethylene glycol (hereinafter abbreviated as PTMG) is an industrially useful polymer widely used as a main raw material for elastic bodies, elastic fibers and elastic structures made of polyurethane or the like. . recent years,
THF and a diol having 2 to 10 carbon atoms (diol),
For example, neopentyl glycol (hereinafter abbreviated as NPG)
And polyether polyol (copolymerized PTM)
G) is attracting attention. The copolymerized PTMG is PTMG
As compared with those using PTMG, elongation, hysteresis loss, low-temperature properties, etc. are remarkably improved as compared with those using PTMG. For example, in the case of a polyurethane elastic fiber, the conventional product using PTMG has an extremely low instantaneous recovery property at a temperature below the freezing point, but the elastic fiber using the copolymerized PTMG has an instantaneous temperature which is almost the same as normal temperature even at a low temperature of -10 ° C. Shows resilience.

【0003】これら特性改善は使用する共重合PTMG
のジオール成分の共重合率で決まり、その工業的利用に
対応した最適な共重合率、一般的にはジオール成分の共
重合率(以下、共重合率と略す)が5.0〜50.0モ
ル%を有する共重合PTMGの中から選択され、使用さ
れる。
[0003] These properties are improved by using the copolymerized PTMG.
Is determined by the copolymerization ratio of the diol component, and the optimum copolymerization ratio corresponding to the industrial use thereof, generally, the copolymerization ratio of the diol component (hereinafter abbreviated as copolymerization ratio) is 5.0 to 50.0. It is selected and used from copolymerized PTMG having mol%.

【0004】THFとジオールの共重合反応の触媒とし
てヘテロポリ酸が利用できることは特開昭60−203
633号公報、特開昭61−120830号公報及び特
開昭61−123630号公報に開示されている。これ
ら公報には、ヘテロポリ酸及びヘテロポリ酸塩の触媒活
性について記載しているが、得られる共重合ポリエーテ
ルポリオールの共重合率の設定及び制御については全く
言及していない。種々の用途に対応した最適の共重合率
を有する共重合PTMGを再現性よく、安定に得る方法
の基本は反応条件をいつも一定に設定し、運転管理する
ことである。
Japanese Patent Application Laid-Open No. Sho 60-203 discloses that a heteropolyacid can be used as a catalyst for the copolymerization reaction between THF and a diol.
633, JP-A-61-120830 and JP-A-61-123630. These publications describe the catalytic activity of the heteropolyacid and the heteropolyacid salt, but do not mention at all the setting and control of the copolymerization ratio of the obtained copolymerized polyether polyol. The basis of a method for obtaining a copolymerized PTMG having an optimum copolymerization rate with a high reproducibility and stably in accordance with various applications is to always set the reaction conditions constant and control the operation.

【0005】ジオールがポリマー鎖にエーテル結合で組
み込まれる反応では水が生成するが、ポリマー末端とし
て消費される量以上の水は反応系外に取り除く必要があ
る。また、ヘテロポリ酸の触媒活性はヘテロポリ酸1分
子に対して15分子以下の水を含有する範囲が好まし
く、この点からも反応系内の過剰の水は系外に取り除く
必要がある。
[0005] In the reaction in which the diol is incorporated into the polymer chain via an ether bond, water is generated, but it is necessary to remove more water than the amount consumed as the polymer terminal from the reaction system. Further, the catalytic activity of the heteropolyacid is preferably in a range containing not more than 15 molecules of water per 1 molecule of the heteropolyacid, and from this point too, it is necessary to remove excess water in the reaction system outside the system.

【0006】例えば特開平5−32775号公報はNP
GとTHFをアルコール性水酸基の存在下で活性を示す
触媒下で、反応することからなる共重合ポリエーテルポ
リオールの製造方法を開示し、ヘテロポリ酸が有効な触
媒の一つであることを提案しており、また、NPGの反
応によって生成する水は反応系の気相水分として取り除
き、同時に取り除かれるTHFは新しいTHFをその分
多く補給することを提案している。即ち、同公報は反応
温度を反応液の沸騰温度に設定し、その温度を維持する
ようにTHFの補給速度をコントロールすることを提案
している。しかし、同公報の方法では所定の共重合率を
有するポリマーを安定に得ることは、実際上、困難であ
る。一般に反応の進行に伴い反応系内のポリマー濃度が
増加し、反応系の沸騰温度は上昇する。従って、沸騰温
度を所定温度に維持するためには反応の進行とともにT
HFの補給量を多くし、沸点上昇を抑制しなければなら
ない。そのため反応液組成が変化し、また、系内の反応
液量も増加する。即ち、この反応では反応初期に比べて
反応終期の液面レベルは高くなり、触媒層とTHF層の
二層からなる反応液中の両層の比率も大きく変化する。
反応挙動、或いは運転管理上の少しの変動が反応条件に
大きく影響し、得られる共重合ポリエーテルポリオール
の共重合率が変動することになる。
For example, Japanese Patent Application Laid-Open No. 5-32775 discloses NP
Disclosed is a method for producing a copolymerized polyether polyol comprising reacting G and THF in the presence of an alcoholic hydroxyl group under a catalyst exhibiting activity, and proposes that heteropolyacid is one of effective catalysts. In addition, it is proposed that water generated by the reaction of NPG be removed as gaseous phase moisture in the reaction system, and the THF removed at the same time be replenished with fresh THF. That is, the publication proposes setting the reaction temperature to the boiling temperature of the reaction solution and controlling the THF replenishment rate so as to maintain the temperature. However, it is practically difficult to stably obtain a polymer having a predetermined copolymerization ratio by the method disclosed in the publication. Generally, as the reaction proceeds, the polymer concentration in the reaction system increases, and the boiling temperature of the reaction system rises. Therefore, in order to maintain the boiling temperature at a predetermined temperature, T
It is necessary to increase the supply amount of HF and suppress the rise in boiling point. Therefore, the composition of the reaction solution changes, and the amount of the reaction solution in the system also increases. That is, in this reaction, the liquid level at the end of the reaction is higher than that at the beginning of the reaction, and the ratio of the two layers in the reaction solution comprising the catalyst layer and the THF layer also changes greatly.
A slight change in the reaction behavior or operation management greatly affects the reaction conditions, and the copolymerization rate of the obtained copolymerized polyether polyol fluctuates.

【0007】また、反応系の気相水分は通常、0.4〜
2.0wt.%であり、残り成分はTHFであるため、
反応系外に取り除く留出液はTHFを主成分とするもの
である。留出液量は通常、初期THF仕込み量の2.0
〜15.0wt.倍であり、それ以上のTHFを補給す
る必要があり、留出液の保管及び補給THFの準備のた
めに過剰の設備が必要となる。この留出液量は共重合率
が大きくなり、生成水量が多くなるにともない増加し、
共重合率の大きい共重合PTMGの製造では大きな貯槽
設備を必要とする。同公報提案の方法では所定の共重合
率を有する共重合PTMGを工業的に安定に、安価に製
造するのは困難である。
The gas phase moisture of the reaction system is usually 0.4 to
2.0 wt. % And the remaining component is THF,
The distillate removed outside the reaction system is mainly composed of THF. The distillate amount is usually 2.0% of the initial THF charge amount.
1515.0 wt. Twice as much, and more THF must be replenished, requiring excess equipment for distillate storage and preparation of replenished THF. This distillate amount increases as the copolymerization rate increases and the amount of generated water increases,
Production of a copolymerized PTMG having a high copolymerization rate requires a large storage tank facility. According to the method proposed in this publication, it is difficult to produce a copolymerized PTMG having a predetermined copolymerization rate in an industrially stable and inexpensive manner.

【0008】[0008]

【本発明が解決しようとする課題】本発明は、ヘテロポ
リ酸を触媒とし、THFとジオールとの反応で共重合P
TMGを製造するに際して、所定の共重合率を有する共
重合PTMGを製造する方法の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention relates to a process for preparing a copolymer P by reacting a THF with a diol using a heteropolyacid as a catalyst.
An object of the present invention is to provide a method for producing a copolymerized PTMG having a predetermined copolymerization ratio when producing TMG.

【0009】[0009]

【課題を解決するための手段】本発明は、ヘテロポリ酸
を触媒として、THFとジオールとから共重合PTMG
を製造するに際し、反応槽から内容物の一部を連続的に
抜き取り2層に分離した後、下層液は反応槽に戻し、上
層液は含有水分をTHFとともに気化させて系外に留去
した後反応槽に戻し、かつ系外に留去した留出液は水を
除去した後反応槽に戻すことを特徴とする共重合PTM
Gの製造方法である。
DISCLOSURE OF THE INVENTION The present invention relates to a PTMG copolymer from THF and a diol using a heteropolyacid as a catalyst.
In the production of, a part of the content was continuously withdrawn from the reaction tank and separated into two layers. Then, the lower layer liquid was returned to the reaction tank, and the upper layer liquid was vaporized together with THF to evaporate the contained water and distilled out of the system. A copolymerized PTM, wherein the distillate is returned to the reaction tank after the reaction, and the distillate distilled out of the system is returned to the reaction tank after removing water.
G is a manufacturing method.

【0010】ヘテロポリ酸を触媒としたTHFとジオー
ルの共重合において、反応を均一にするため反応液は撹
拌される。この時、反応系はポリマーを含んだTHF層
と触媒層との2つの層がエマルジョン状に分散した溶液
を形成している。ヘテロポリ酸を触媒としたPTMGの
重合では、重合反応は触媒層で進行し、生成ポリマーの
うち分子量の大きいものはTHF層により分配しやすく
なり、そこで成長がとまるとされている(触媒、vo
l.30,No.1,34(1991))。本発明の共
重合も反応は触媒層で進行すると考えられる。ジオール
の反応で生成する水も一部はポリマー末端に消費され、
残りはTHF層と触媒層に分配される。
In the copolymerization of THF and a diol using a heteropolyacid as a catalyst, the reaction solution is stirred to make the reaction uniform. At this time, the reaction system forms a solution in which two layers, a THF layer containing a polymer and a catalyst layer, are dispersed in an emulsion state. In the polymerization of PTMG using a heteropolyacid as a catalyst, the polymerization reaction proceeds in the catalyst layer, and a polymer having a high molecular weight among the produced polymers is more easily distributed to the THF layer, and the growth is stopped there (catalyst, vo).
l. 30, no. 1, 34 (1991)). It is considered that the reaction also proceeds in the catalyst layer in the copolymerization of the present invention. Some of the water generated by the diol reaction is also consumed at the polymer terminals,
The remainder is distributed to the THF layer and the catalyst layer.

【0011】反応槽から抜き出す量は、槽内反応液の1
/20〜1/2が常時入れ替わっているようにすればよ
い。抜き出し量が1/20未満では、NPG反応による
生成水の系外除去が遅れ、重合反応に時間がかかる。1
/2を越すと反応槽中の触媒層の入れ換えが大きすぎ
て、重合反応に時間がかかる。
[0011] The amount withdrawn from the reaction tank is 1% of the reaction liquid in the tank.
It is sufficient that / 20 to 1/2 are always replaced. If the withdrawal amount is less than 1/20, removal of the water produced by the NPG reaction outside the system is delayed, and the polymerization reaction takes time. 1
If the ratio exceeds / 2, the replacement of the catalyst layer in the reaction tank is too large, and the polymerization reaction takes time.

【0012】反応槽から抜き取った反応液はデカンター
などの層分離器に移送することにより、下層に比重の大
きい触媒層が、また上層に比重の小さいTHF層が分離
される。本発明では下層液を反応槽に戻し、また上層液
は蒸発器または蒸留器に送液し、液中の含有水分をTH
Fとともに気化させて留出し、その残液を反応槽に戻
し、かつ留出液も該液中の水を除去した後、反応槽に戻
す。反応液は反応槽から常時、抜き出すので、層分離器
および気相水分とTHFの留出除去器は連続式を必須と
する。留出は常圧下または減圧下、いずれでもよい。
The reaction liquid extracted from the reaction tank is transferred to a layer separator such as a decanter, whereby a lower catalyst layer having a higher specific gravity and a lower THF layer having a lower specific gravity are separated. In the present invention, the lower layer solution is returned to the reaction tank, the upper layer solution is sent to an evaporator or a still, and the water content in the solution is reduced to TH.
The remaining liquid is returned to the reaction tank by vaporization together with F, and the distillate is returned to the reaction tank after removing water in the liquid. Since the reaction solution is constantly withdrawn from the reaction tank, a continuous system is indispensable for the layer separator and the distillate remover for vapor-phase moisture and THF. Distillation may be performed under normal pressure or reduced pressure.

【0013】本発明では、反応槽から抜き取った反応液
はTHF層の気相水分を除去した状態で反応槽に戻すこ
とになる。従って、反応系の触媒組成は変化なく、ま
た、反応系のTHF及びジオール組成もポリマー鎖中の
THF、ジオールユニットを含めて反応中、一定に保持
される。
In the present invention, the reaction liquid extracted from the reaction tank is returned to the reaction tank in a state where the gas phase water in the THF layer has been removed. Therefore, the catalyst composition of the reaction system does not change, and the THF and diol compositions of the reaction system including the THF and diol units in the polymer chain are kept constant during the reaction.

【0014】また、本発明では反応を進める場と気相水
分を留出する場を分離するので、反応温度は留出温度と
は無関係に、任意に選択することができる。即ち、反応
温度を単独で一定に維持管理することができる。
In the present invention, since a place where the reaction proceeds and a place where the gas phase moisture is distilled off are separated, the reaction temperature can be arbitrarily selected irrespective of the distillation temperature. That is, the reaction temperature can be independently maintained at a constant level.

【0015】本発明は反応系のTHF、ジオール組成比
を一定に維持し、かつ、反応温度も一定に維持できるた
め、共重合率は各組成のポリマーへの転化率から決める
ことができる。即ち、目的とする共重合率に対応する各
原料の仕込み量を設定することで共重合率一定の共重合
PTMGを常に製造することができる。
In the present invention, the composition ratio of THF and diol in the reaction system can be kept constant, and the reaction temperature can be kept constant. Therefore, the copolymerization ratio can be determined from the conversion ratio of each composition into a polymer. That is, by setting the charged amount of each raw material corresponding to the target copolymerization rate, it is possible to always produce a copolymerized PTMG having a constant copolymerization rate.

【0016】更に、本発明は反応系から取り除いたTH
Fを全量反応系に戻すため、新しいTHFの準備は全く
不要である。水とTHFの混合液から水を除去するため
の設備は必要であるが、留出液を連続的に処理していく
ので比較的小さな設備で十分目的を達成することがで
き、設備投資金額的にも、管理運営金額的にも極めて有
利である。
Further, the present invention provides a method for removing TH from a reaction system.
Since all the F is returned to the reaction system, there is no need to prepare new THF at all. Equipment for removing water from a mixture of water and THF is required, but the distillate is continuously treated, so that the purpose can be sufficiently achieved with relatively small equipment, and the capital investment is reduced. In addition, it is extremely advantageous in terms of management and operation amount.

【0017】本発明に適用できる水とTHFの混合液か
ら水を除去する方法としては、例えばモレキュラシーブ
ス、活性アルミナ等の吸着剤を利用する方法、THFと
水の共沸組成よりも低沸点の水との共沸組成をつくるエ
ントレーナーを添加して共沸蒸留で水を除去する方法、
THFと水の共沸組成物が圧力により変化することを利
用した高圧蒸留と低圧蒸留の組合せ法、適当な溶剤を添
加してTHFと水の共沸を消失させることを利用した抽
出蒸留法、水のみあるいはTHFのみを選択的に透過す
る膜を利用する膜分離法等が考えられるが、特に上記の
モレキュラシーブス、活性アルミナ等の吸着剤を利用す
る方法およびTHFと水の共沸組成よりも低沸点の水と
の共沸組成をつくるエントレーナーを添加して共沸蒸留
で水を除去する方法が好都合である。
As a method of removing water from a mixture of water and THF applicable to the present invention, for example, a method using an adsorbent such as molecular sieves or activated alumina, a method having a boiling point lower than the azeotropic composition of THF and water, and the like. A method of removing water by azeotropic distillation by adding an entrainer that creates an azeotropic composition with water,
A combination method of high-pressure distillation and low-pressure distillation utilizing the fact that the azeotropic composition of THF and water changes with pressure, an extractive distillation method utilizing addition of an appropriate solvent to eliminate the azeotrope of THF and water, A membrane separation method using a membrane selectively permeating only water or only THF can be considered. In particular, the above-mentioned method using an adsorbent such as molecular sieves, activated alumina and the azeotropic composition of THF and water are considered. It is convenient to add an entrainer to form an azeotropic composition with water having a low boiling point and remove water by azeotropic distillation.

【0018】モレキュラシーブス、または活性アルミナ
等の吸着剤を用いた吸着法は留出液をこれら吸着剤と接
触させるだけで水を吸着除去できるので小型の簡単な設
備の付加のみで対応できる。特にモレキュラシーブスは
水に対する吸着能が高く、また、再生が容易にできるの
で本発明の実施に有利である。
In the adsorption method using an adsorbent such as molecular sieves or activated alumina, water can be adsorbed and removed only by bringing the distillate into contact with these adsorbents, so that it can be dealt with only by adding small and simple equipment. In particular, molecular sieves are advantageous in the practice of the present invention because they have high water adsorption capacity and can be easily regenerated.

【0019】上記吸着剤の形態は紛、粒状、塊状あるい
は成形体のいずれでもよい。通常吸着に要する表面積が
大きくなることから、比較的粒径の小さいものを用いる
方が好ましい。ただし、ハンドリングの簡便さやカラ
ム、塔、槽等の吸着器へ充填して使用する際の圧損を考
慮した場合、直径1〜10mm程度の粒状物が実用的で
ある。
The form of the above-mentioned adsorbent may be any of powder, granular, lump, and molded. Since the surface area required for normal adsorption becomes large, it is preferable to use one having a relatively small particle size. However, in consideration of the simplicity of handling and the pressure loss at the time of filling and using an adsorber such as a column, a tower or a tank, a granular material having a diameter of about 1 to 10 mm is practical.

【0020】吸着処理方法としては反応系から連続的に
留出されてくる水とTHFの混合液をモレキュラシーブ
スを充填した吸着器に送液する連続式の通常の方法が適
用される。吸着処理温度は、特に制限はなく、留出液を
その温度で直接吸着器に導入すればよい。
As the adsorption treatment method, there is applied a continuous ordinary method in which a mixture of water and THF continuously distilled from the reaction system is sent to an adsorber filled with molecular sieves. The adsorption treatment temperature is not particularly limited, and the distillate may be directly introduced into the adsorber at that temperature.

【0021】吸着能力の無くなくなった吸着剤は100
〜300℃に加熱した不活性ガス、例えば窒素ガス、二
酸化炭素ガス等を環流させることで吸着能力を回復で
き、再び吸着剤として使用できる。
The adsorbent which has lost its adsorption capacity is 100
By recirculating an inert gas, for example, a nitrogen gas, a carbon dioxide gas, or the like, heated to 300 ° C., the adsorption capacity can be recovered, and the gas can be used again as an adsorbent.

【0022】また、本発明者らは低沸点で水との共沸組
成をつくるエントレーナーについて種々検討した結果、
ノルマルペンタン、シクロペンタン、メチル−t−ブチ
ルエーテル等が常圧下で、THFと水の共沸点より10
℃以上低い共沸組成をつくることがわかった。これらエ
ントレーナーを添加して多段蒸留塔に送液すると低沸点
側に水とエントレーナーの共沸成分、高沸点側にTHF
が回収でき、回収したTHFを反応系に戻すことができ
る。低沸点側の共沸組成液は2層分離させてエントレー
ナーは再使用し、水は抜き取り、廃棄処分等すればよ
い。ノルマルペンタン、シクロペンタンは水との相溶性
が低く、層分離性が極めて良好であり、本方法のエント
レーナーとしては好都合に利用できる。
The present inventors have conducted various studies on an entrainer that forms an azeotropic composition with water at a low boiling point.
Normal pentane, cyclopentane, methyl-t-butyl ether, etc., under normal pressure, are 10 points higher than the azeotropic point of THF and water.
It was found that an azeotropic composition lower than ℃ was formed. When these entrainers are added and sent to a multi-stage distillation column, azeotropic components of water and the entrainer are added to the low boiling point, and THF is added to the high boiling point.
Can be recovered, and the recovered THF can be returned to the reaction system. The azeotropic composition liquid on the low boiling point side may be separated into two layers, and the entrainer may be reused, and water may be removed and disposed. Normal pentane and cyclopentane have low compatibility with water and very good layer separation, and can be conveniently used as an entrainer in the present method.

【0023】本発明における炭素原子数2〜10のジオ
ールの具体例としては、エチレングリコール、プロピレ
ングリコール、1,3−プロパンジオール、1,3−ブ
タンジオール、1,5−ペンタンジオール、1,6−ヘ
キサンジオール、ネオペンチルグリコール、3−メチル
−1,5−ペンタンジオール、1,8−オクタンジオー
ル、1,10−デカンジオール、ジエチレングリコー
ル、トリエチレングリコール、ジプロピレングリコール
等が挙げられる。共重合PTMGをソフトセグメントと
して用いた弾性体、具体的にはポリウレタン繊維の低温
特性、ヒステリシスロス、瞬間回復性等から特にネオペ
ンチルグリコールが好ましい。
Specific examples of the diol having 2 to 10 carbon atoms in the present invention include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentanediol, 1,6 -Hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 1,8-octanediol, 1,10-decanediol, diethylene glycol, triethylene glycol, dipropylene glycol and the like. Neopentyl glycol is particularly preferable from the viewpoint of low-temperature characteristics, hysteresis loss, instant recovery, etc. of an elastic body using copolymerized PTMG as a soft segment, specifically, polyurethane fibers.

【0024】本発明におけるヘテロポリ酸は、Mo、
W、Vのうち、少なくとも一種の酸化物と、他の元素、
例えば、P、Si、As、Ge、B、Ti、Ce、Co
等のオキシ酸が縮合して生ずるオキシ酸の総称で、後者
に対する前者の原子比は2.5〜12であり、特に、1
2又は9のものが好ましい。
The heteropolyacid in the present invention is Mo,
At least one oxide of W and V, and other elements;
For example, P, Si, As, Ge, B, Ti, Ce, Co
And the like. The atomic ratio of the former to the latter is 2.5 to 12, especially 1
Two or nine are preferred.

【0025】これらヘテロポリ酸の具体例としては、リ
ンモリブデン酸、リンタングステン酸、リンモリブドタ
ングステン酸、リンモリブドバナジン酸、リンモリブド
タングストバナジン酸、リンタングストバナジン酸、リ
ンモリブドニオブ酸、ケイタングステン酸、ケイモリブ
デン酸、ケイモリブドタングステン酸、ケイモリブドタ
ングストバナジン酸、ゲルマニウムタングステン酸、ホ
ウタングステン酸、ホウモリブデン酸、ホウモリブドタ
ングステン酸、ホウモリブドバナジン酸、ホウモリブド
タングストバナジン酸、コバルトモリブデン酸、コバル
トタングステン酸、砒素モリブデン酸、砒素タングステ
ン酸、チタンモリブデン酸、セリウムモリブデン酸等が
挙げられる。またヘテロポリ酸の塩の種類は特に限定さ
れないが例えば、Li、Na、K、Rb、Cs、Cu、
Ag、Au等の周期律表I族、Mg、Ca、Sr、B
a、Zn、Cd、Hg等のII族、Sc、La、Ce、A
l、Ga、In等のIII族、及びFe、Co、Ni、R
u、Pd、Pt等のVIII族、Sn、Pb、Mn、Bi等
の金属塩、またはアンモニウム塩、アミン塩等である。
Specific examples of these heteropoly acids include phosphomolybdic acid, phosphotungstic acid, phosphomolybdotungstic acid, phosphomolybdovanadic acid, phosphomolybdung tungstovanadic acid, phosphorus tungstovanadic acid, phosphomolybdniobate, Silicotungstic acid, Silicomolybdic acid, Silicomolybdotungstic acid, Silicomolybdo tungstovanadic acid, Germanium tungstate, Bortungstic acid, Borolybdate acid, Borolybdotungstic acid, Borolybdovanadic acid, Borolybdotangustovanadine Acid, cobalt molybdate, cobalt tungstate, arsenic molybdate, arsenate tungstate, titanium molybdate, cerium molybdate, and the like. The type of the salt of the heteropolyacid is not particularly limited, but may be, for example, Li, Na, K, Rb, Cs, Cu,
Group I of the periodic table such as Ag and Au, Mg, Ca, Sr, B
a, Zn, Cd, Group II such as Hg, Sc, La, Ce, A
III, Group III such as Ga, In, and Fe, Co, Ni, R
u, Pd, Pt, and other Group VIII metals; Sn, Pb, Mn, Bi, and other metal salts; or ammonium salts, amine salts, and the like.

【0026】使用されるヘテロポリ酸量は、特に限定さ
れないが、ヘテロポリ酸が少ないと重合速度が小さく、
THFおよびジオールの合計量に対して0.1〜20倍
重量が好ましい。
The amount of the heteropolyacid to be used is not particularly limited.
The weight is preferably 0.1 to 20 times the weight of the total amount of THF and diol.

【0027】重合温度は30〜90℃でよく、また反応
に要する時間は共重合率や触媒量、反応温度、反応系か
らの水分の除去速度によっても異なるが、一般的に0.
5〜50時間くらいである。反応系内圧は特に制限な
く、常圧、減圧、加圧のいずれでも実施できる。
The polymerization temperature may be 30 to 90 ° C., and the time required for the reaction may vary depending on the copolymerization rate, the amount of catalyst, the reaction temperature and the rate of removing water from the reaction system.
It takes about 5 to 50 hours. The internal pressure of the reaction system is not particularly limited, and it can be carried out at any of normal pressure, reduced pressure, and increased pressure.

【0028】重合反応はTHFとジオールおよびヘテロ
ポリ酸とを撹拌しながら、触媒層で進め、層分離したT
HF層から反応によって生成する水の過剰分を取り除き
つつ実施できるので、特に溶媒を必要としないが、場合
により、反応に不活性な溶剤を加えてもよい。
The polymerization reaction proceeds in a catalyst layer while stirring THF, a diol and a heteropolyacid, and the separated T
Since it can be carried out while removing excess water generated by the reaction from the HF layer, a solvent is not particularly required, but a solvent inert to the reaction may be added in some cases.

【0029】重合反応はバッチ式、連続式のいずれでも
実施できる。
The polymerization reaction can be carried out either in a batch system or a continuous system.

【0030】[0030]

【発明の実施の形態】以下、実施例を挙げて本発明を更
に詳細に説明する。ただし、本発明は以下の実施例に限
定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the following examples.

【0031】(実施例1)図1に示す重合反応装置を用
いて重合した。攪拌装置、環流冷却器および温水ジャッ
ケトを設けた反応器(1)にTHF20.0kgとNP
G1.7kgを仕込み、ついで12−タングスト−1−
リン酸2水和物(H3PW1240/2H2O)13.0k
gを加えた。温水ジャッケトを70℃に設定し、反応液
温度を65℃に管理して常圧下、撹拌しながら反応を開
始した。撹拌開始、1時間後から反応器の底部より、反
応液の一部を連続的に抜き取り(20L/時)、デカン
ター(2)に送り2層に分離した。下層液は反応器に戻
し、上層液は液面計を備えた蒸発器(3)に送り、44
0mmHg、63℃で気相水分をTHFとともに留出し
た。蒸発器にはデカンターから上層液が連続的に送られ
てくるので蒸発器の液面を一定に保持し、過剰液は蒸発
残液として抜き出し、反応器に戻した。蒸発器からの留
出液はタイプ3Aのモレキュラシーブス、10kgを充
填した吸着塔(4)(直径135mm、高さ950m
m)の塔下部に送り、塔上部から抜き出し、反応器に戻
した。なお、該吸着塔は予め純THFで満たしておいた
ものを使用した。吸着塔入りのTHF中の水分は3,0
00〜5,000ppmであり、吸着塔出のそれは10
0〜200ppmであった。また反応槽内の反応液温度
は65±1℃で推移した。12時間後に反応を終了し、
温水ジャッケトを45℃に下げ、静置し、2層に分離
後、上層液を抜き取った。上層液から約200mlを取
り、水酸化カルシウムを加えて微量の含有触媒を沈殿さ
せ、ろ過した。ついで濾液中のTHFを蒸発除去し、透
明で粘性のあるポリマーを得た。得られたポリマーは、
1H−NMR(400MHz)測定の結果、共重合率、
12.5モル%を有する共重合PTMGであった。
Example 1 Polymerization was carried out using a polymerization reactor shown in FIG. A reactor (1) equipped with a stirrer, a reflux condenser and a hot water jacket was charged with 20.0 kg of THF and NP.
Charge 1.7kg of G, then 12-Tangst-1-
Phosphate dihydrate (H 3 PW 12 O 40 / 2H 2 O) 13.0k
g was added. The hot water jacket was set at 70 ° C., the reaction solution temperature was controlled at 65 ° C., and the reaction was started with stirring under normal pressure. One hour after the start of stirring, a part of the reaction solution was continuously withdrawn from the bottom of the reactor (20 L / hour), sent to a decanter (2), and separated into two layers. The lower layer liquid was returned to the reactor, and the upper layer liquid was sent to an evaporator (3) equipped with a liquid level gauge.
Vapor-phase moisture was distilled together with THF at 0 mmHg and 63 ° C. Since the upper layer liquid was continuously sent from the decanter to the evaporator, the liquid level of the evaporator was kept constant, and the excess liquid was withdrawn as residual evaporation liquid and returned to the reactor. The distillate from the evaporator is a type 3A molecular sieve, an adsorption tower (4) packed with 10 kg (diameter 135 mm, height 950 m)
m), sent to the lower part of the column, withdrawn from the upper part of the column, and returned to the reactor. The adsorption tower used was previously filled with pure THF. The water in THF in the adsorption tower is 3,0
00 to 5,000 ppm, and that of the adsorption tower is 10
It was 0 to 200 ppm. In addition, the temperature of the reaction solution in the reaction vessel changed at 65 ± 1 ° C. After 12 hours, the reaction was terminated,
The hot water jacket was lowered to 45 ° C., allowed to stand, separated into two layers, and the upper layer liquid was removed. About 200 ml was taken from the upper layer solution, and calcium hydroxide was added to precipitate a small amount of the contained catalyst, followed by filtration. Subsequently, THF in the filtrate was removed by evaporation to obtain a transparent and viscous polymer. The resulting polymer is
As a result of 1 H-NMR (400 MHz) measurement,
It was a copolymerized PTMG having 12.5 mol%.

【0032】本装置を用い、更に4回の繰返し重合を行
なった。得られたポリマーの共重合率は各々、12.
5、12.3、12.6、12.4であり、1H−NM
Rの測定精度内で同一の共重合率を有する共重合PTM
Gであった。
Using this apparatus, polymerization was further repeated four times. The copolymerization rates of the obtained polymers were respectively 12.
5, 12.3, 12.6, 12.4 and 1 H-NM
Copolymerized PTM having the same copolymerization ratio within the measurement accuracy of R
G.

【0033】(比較例)本例は、反応器から気相水分を
THFとともに留出させ、トラップし、また、留出した
THF量に応じて新しいTHFを反応器に補給し、反応
温度を維持した。撹拌装置、留出器およびTHF供給器
を付けた反応容器にTHF、460gとNPG、40g
を仕込み、ついで12−タングスト−1−リン酸2水和
物(H3PW1240/2H2O)、300gを加えた。反
応液温度が70℃になるように加熱浴温度を調整し、撹
拌を開始した。反応器から気相水分を含むTHFを留出
させるとともに、新しいTHFを反応器に供給して反応
液温度を70℃に維持し、12時間反応を行なった。反
応終了時の反応量は反応開始時より、約200ml増加
していた。
(Comparative Example) In this example, vapor-phase moisture was distilled out of the reactor together with THF, trapped, and fresh THF was supplied to the reactor according to the amount of the distilled-out THF, and the reaction temperature was maintained. did. In a reaction vessel equipped with a stirrer, a distiller and a THF feeder, 460 g of THF and 40 g of NPG were added.
Charge, followed 12 tungstosilicic 1-phosphate dihydrate (H 3 PW 12 O 40 / 2H 2 O), was added 300 g. The heating bath temperature was adjusted so that the reaction solution temperature became 70 ° C., and stirring was started. While distilling THF containing water vapor from the reactor, fresh THF was supplied to the reactor to maintain the temperature of the reaction solution at 70 ° C., and the reaction was carried out for 12 hours. The reaction volume at the end of the reaction was about 200 ml larger than at the start of the reaction.

【0034】実施例1と同様に、1H−NMR測定を行
なった結果、ポリマーの共重合率は10.1モル%であ
った。更に、4回の繰返し重合を行った。得られたポリ
マーの共重合率は各々、12.0、7.6、9.7、
8.9であり、反応毎の共重合率のばらつきは大きく、
再現性に問題を残した
As a result of 1 H-NMR measurement in the same manner as in Example 1, the copolymerization ratio of the polymer was 10.1 mol%. Further, polymerization was repeated four times. The copolymerization rates of the obtained polymers were 12.0, 7.6, 9.7, respectively.
8.9, and the copolymerization rate varies greatly from reaction to reaction.
Problems with reproducibility

【0035】[0035]

【発明の効果】本発明を適用すれば、反応を進める場と
気相水分を留出する場を分離でき、かつ、反応中の触
媒、原料組成および反応温度を一定に維持することがで
きるので、共重合率の変動の少ない共重合ポリエーテル
ポリオールを安定に製造でき、用途に対応した共重合率
を有する共重合ポリエーテルポリオールを効率よく製造
することができる。
According to the present invention, the place where the reaction proceeds and the place where the vapor-phase moisture is distilled off can be separated, and the catalyst, raw material composition and reaction temperature during the reaction can be kept constant. In addition, it is possible to stably produce a copolymerized polyether polyol having a small variation in the copolymerization rate, and efficiently produce a copolymerized polyether polyol having a copolymerization rate corresponding to the intended use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例1で用いた反応装置の概略図であ
る。
FIG. 1 is a schematic diagram of a reaction apparatus used in Example 1.

【符号の説明】[Explanation of symbols]

1 反応器 2 デカンター 3 蒸発器 4 吸着塔 DESCRIPTION OF SYMBOLS 1 Reactor 2 Decanter 3 Evaporator 4 Adsorption tower

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ヘテロポリ酸を触媒として、テトラヒド
ロフランと炭素原子数2〜10のジオールとから共重合
ポリエーテルポリオールを製造するに際し、反応槽から
内容物の一部を連続的に抜き取り、2層に分離した後、
下層液は反応槽に戻し、上層液は含有水分をテトラヒド
ロフランとともに気化させて系外に留去した後反応槽に
戻し、かつ系外に留去した留出液は水を除去した後反応
槽に戻すことを特徴とする共重合ポリエーテルポリオー
ルの製造方法。
In producing a copolymerized polyether polyol from tetrahydrofuran and a diol having 2 to 10 carbon atoms using a heteropolyacid as a catalyst, a part of the content is continuously withdrawn from a reaction tank and separated into two layers. After separation
The lower layer liquid was returned to the reaction tank, the upper layer liquid was vaporized together with tetrahydrofuran to evaporate out of the system and then returned to the reaction tank, and the distillate distilled out of the system was removed to remove water and then returned to the reaction tank. A method for producing a copolymerized polyether polyol.
JP25021896A 1996-09-20 1996-09-20 Method for producing copolymer polyether polyol Expired - Lifetime JP3932145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25021896A JP3932145B2 (en) 1996-09-20 1996-09-20 Method for producing copolymer polyether polyol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25021896A JP3932145B2 (en) 1996-09-20 1996-09-20 Method for producing copolymer polyether polyol

Publications (2)

Publication Number Publication Date
JPH1087811A true JPH1087811A (en) 1998-04-07
JP3932145B2 JP3932145B2 (en) 2007-06-20

Family

ID=17204597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25021896A Expired - Lifetime JP3932145B2 (en) 1996-09-20 1996-09-20 Method for producing copolymer polyether polyol

Country Status (1)

Country Link
JP (1) JP3932145B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055586A1 (en) * 2001-01-11 2002-07-18 Asahi Kasei Kabushiki Kaisha Oxytetramethylene glycol copolymer and process for producing the same
US7586011B2 (en) 2002-12-18 2009-09-08 Basf Se Method for the production of tetrahydrofuran copolymers
JP2009227978A (en) * 2008-02-28 2009-10-08 Sanyo Chem Ind Ltd Method for producing polyoxyalkylene alcohol
JP2009286963A (en) * 2008-05-30 2009-12-10 Sanyo Chem Ind Ltd Method for manufacturing polyoxyalkylene alcohol
JP2010077417A (en) * 2008-08-26 2010-04-08 Sanyo Chem Ind Ltd Method for producing polyoxyalkylene alcohol

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055586A1 (en) * 2001-01-11 2002-07-18 Asahi Kasei Kabushiki Kaisha Oxytetramethylene glycol copolymer and process for producing the same
US7217783B2 (en) 2001-01-11 2007-05-15 Asahi Kasei Kabushiki Kaisha Oxytetramethylene glycol copolymer and process for producing the same
US7485696B2 (en) 2001-01-11 2009-02-03 Asahi Kasei Kabushiki Kaisha Oxytetramethylene glycol copolymer and method for producing the same
JP4901061B2 (en) * 2001-01-11 2012-03-21 旭化成せんい株式会社 Oxytetramethylene glycol copolymer and process for producing the same
US7586011B2 (en) 2002-12-18 2009-09-08 Basf Se Method for the production of tetrahydrofuran copolymers
JP2009227978A (en) * 2008-02-28 2009-10-08 Sanyo Chem Ind Ltd Method for producing polyoxyalkylene alcohol
JP2009286963A (en) * 2008-05-30 2009-12-10 Sanyo Chem Ind Ltd Method for manufacturing polyoxyalkylene alcohol
JP2010077417A (en) * 2008-08-26 2010-04-08 Sanyo Chem Ind Ltd Method for producing polyoxyalkylene alcohol

Also Published As

Publication number Publication date
JP3932145B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
US5099074A (en) Process for the preparation of polyether glycols
CN102741320B (en) Integrated copolyether glycol manufacturing process
JP3932145B2 (en) Method for producing copolymer polyether polyol
TWI328015B (en) Preparation of tetrahydrofuran copolymers
JP3925744B2 (en) Method for producing copolymer polyether polyol
EP0802938B1 (en) Process for producing polyethylene naphthalate
KR100564874B1 (en) Oxytetramethylene glycol copolymer and process for producing the same
JPS61120830A (en) Production of polyether polyol
US7586011B2 (en) Method for the production of tetrahydrofuran copolymers
WO1999065968A1 (en) Process for producing tetrahydrofuran polymer
JP3747961B2 (en) Method for recovering diol in polyether polyol
JPWO2003031426A1 (en) Succinic anhydride, production method thereof and use thereof
WO2006098437A1 (en) Process for producing polyether polyol compound
JP3484596B2 (en) Polyester production method
JPH1087813A (en) Method for purifying copolyether polyol
JPH0713139B2 (en) Method for producing polyether polyol copolymer
KR100358481B1 (en) Extraction of heteropoly compounds from polyethers, polyesters and polyether esters
JP2007534776A (en) Method for producing tetrahydrofuran copolymer
JP5040130B2 (en) Method for producing polyether polyols
JP2001510852A (en) Purification of propylene oxide
JP4831852B2 (en) Method for producing THF polymer using heteropolyphosphoric acid as catalyst
JPS59221326A (en) Production of polyoxytetramethylene glycol having medium molecular weight
JPS60158218A (en) Production of polyoxytetramethylene glycol
JP2000336164A (en) Production of polytetramethylene ether glycol
JPH06220042A (en) Method for synthesizing trioxane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

EXPY Cancellation because of completion of term