JPH1085719A - Liquid treatment method or sensing method - Google Patents

Liquid treatment method or sensing method

Info

Publication number
JPH1085719A
JPH1085719A JP24443996A JP24443996A JPH1085719A JP H1085719 A JPH1085719 A JP H1085719A JP 24443996 A JP24443996 A JP 24443996A JP 24443996 A JP24443996 A JP 24443996A JP H1085719 A JPH1085719 A JP H1085719A
Authority
JP
Japan
Prior art keywords
flow velocity
value
water tank
gate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24443996A
Other languages
Japanese (ja)
Inventor
Naoto Komatsu
直人 小松
Ken Amano
研 天野
Masamitsu Nakazawa
正光 中沢
Masayuki Yamashita
正幸 山下
Shigeo Shiono
繁男 塩野
晃治 ▲陰▼山
Koji Kageyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24443996A priority Critical patent/JPH1085719A/en
Priority to FR9711497A priority patent/FR2753443A1/en
Publication of JPH1085719A publication Critical patent/JPH1085719A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To display the flow velocity and the status of flow velocity vector of the whole of a water tank in an easily recognizable manner. SOLUTION: The flow velocity value of liquid flowing on gates 5A of an inlet and an outlet of a water tank 1 is found by a velocity sensor 12, and the flow velocity vector is found by the status of whether the height of water levels of both gates is same or the outlet gate side is lower, and the measured flow velocity vector is displayed in bar lines color classified in compliance with the flow velocity values. Therefore, the water flow distribution, the flow velocity distribution and the gas-liquid mixed distribution status in the water tank of a closed water treatment device can be visualized in the real time, and the process maintenance control can be carried out by an operator feeling at rest.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、上下水処理場にお
ける水処理装置の水槽に係り、特に処理水にオゾンや酸
素などの気体気泡を散気させて、酸化反応を行って有害
物質の除去を行わしめる水槽で処理水の流速値及び流速
ベクトルの全体分布あるいは気体気泡との混合、いわゆ
る気液混合状態を表示できるようにすることで、従来は
運転員が見ることができなかった水槽内の状況を見える
ようにした液体処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water tank of a water treatment apparatus in a water treatment and sewage treatment plant, and in particular, removes harmful substances by performing an oxidation reaction by diffusing gas bubbles such as ozone and oxygen into treated water. In the water tank, the flow rate value of the treated water and the overall distribution of the flow velocity vector or the mixing with the gas bubbles, that is, the so-called gas-liquid mixing state, can be displayed, so that the operator can not see in the water tank in the past. The present invention relates to a liquid processing method that makes the situation visible.

【0002】[0002]

【従来の技術】生活環境においては、水の使用は不可欠
であるので、下水処理場では河川へ放流する前に有害物
質を除去する為に酸素ガスや空気を吹き込んで、化学反
応させて低有機物にしたり、上水処理場では飲料水の配
水業務であることから、オゾン化ガスを吹き込んで強力
な酸化反応により水質基準に適合した安全な水をつくる
などの水処理装置がつくられて運転している。
2. Description of the Related Art In a living environment, the use of water is indispensable. Therefore, in a sewage treatment plant, oxygen gas or air is blown to remove harmful substances before being discharged into rivers, and chemical reaction is performed to reduce low organic substances. In addition, since water treatment is a drinking water distribution business at water treatment plants, water treatment equipment is built and operated, such as by injecting ozonized gas to produce safe water that meets water quality standards through a powerful oxidation reaction. ing.

【0003】特開平7−265884 号公報のオゾン処理装置
では、オゾン反応槽すなわち水処理装置の水槽内が見え
ないので、透過窓を設けて内部に照明灯をつけて外部か
らカメラでオゾンの気泡を観測して、画像処理装置で表
示してブラックボックスであった水槽内のオゾン散気状
態を直接観測して、オゾン化反応の適正化制御を行って
経済運転を図っている。
In the ozone treatment apparatus disclosed in JP-A-7-265884, the inside of the ozone reaction tank, that is, the water tank of the water treatment apparatus cannot be seen. , And directly observe the ozone diffused state in the water tank, which was displayed as a black box on the image processing apparatus, and controlled the optimization of the ozonation reaction to achieve economic operation.

【0004】[0004]

【発明が解決しようとする課題】従来の水槽では水槽内
を見るために、透過窓を設けて内部に照明灯をつけて外
部からカメラで気泡を観測していたので、透明窓を取付
けることによる経年的水漏れの心配と照明灯,カメラな
どのメンテナスを行う必要があった。また、水槽内全体
は、カメラの視野角より全部見えないなどの欠点があっ
た。また測定した流速値,流速ベクトル,気泡等は数字
で表示されるので、全体状況を知るのに時間を要する欠
点があった。
In a conventional water tank, a transparent window is provided to view the inside of the water tank, an illuminating light is provided inside, and bubbles are observed from outside by a camera. We had to worry about water leaks over time, and we needed to maintain lighting and cameras. In addition, there is a drawback that the entire inside of the aquarium cannot be seen from the viewing angle of the camera. In addition, since the measured flow velocity value, flow velocity vector, bubbles, and the like are displayed by numbers, there is a disadvantage that it takes time to know the overall situation.

【0005】本発明の目的は、水槽全体の流速及び流速
ベクトルの状況を表示装置に見やすく表示する水処理方
法を提供することにある。
An object of the present invention is to provide a water treatment method for displaying the flow velocity and the flow velocity vector of the entire water tank on a display device in an easily viewable manner.

【0006】[0006]

【課題を解決するための手段】本発明の液体処理方法
は、入口ゲートと出口ゲートを有する水槽であって、速
度検出器により入口ゲート上に流れる液体の流速値を検
出し、入口ゲートの高さを基準値に選び、出口ゲートが
基準値と同じか、又は下側かにより流速ベクトルを求
め、上記水槽をX方向とY方向とに複数個のメッシュに
分割し、各メッシュ毎に求めた流速ベクトルを棒線で表
示し、各メッシュ毎に求めた流速値を階級別色別区分表
にした区分表のどの色別区分に属するかを選び、各メッ
シュ毎に色別区分して流速値を表示することにある。
A liquid processing method according to the present invention is a water tank having an inlet gate and an outlet gate, wherein a velocity detector detects a flow velocity value of a liquid flowing on the inlet gate, and detects a height of the inlet gate. Is selected as a reference value, a flow velocity vector is determined depending on whether the exit gate is the same as or below the reference value, the water tank is divided into a plurality of meshes in the X direction and the Y direction, and the mesh is determined for each mesh. The flow velocity vector is displayed as a bar line, and the flow velocity value obtained for each mesh is selected as to which color classification in the classification table that is classified by class, and the flow velocity value is classified by color for each mesh. Is to display.

【0007】[0007]

【発明の実施の形態】本発明の水処理装置を図1乃至図
5により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A water treatment apparatus according to the present invention will be described with reference to FIGS.

【0008】図4は、本発明の全体制御系の説明図であ
る。計測データユニット11には、水槽1入口の水流量
計2と水槽1の入口ゲート5A上側の速度検出器12の
数値データとが取込まれる。その他に最適運転条件を演
算する為に水位計13,水温計14,水質計15,オゾ
ン発生器16のガス流量計9,圧力計17,温度計1
8,オゾン濃度計19および排オゾン装置20の排オゾ
ン濃度計21の数値データとが計測データユニット11
へ取込まれている。計測データユニット11より演算制
御部22にこれらの数値データを取込んで後述の計算処
理を行い、表示部23へ表示すると共に、一方調節弁3
a,3bへの指示信号も発して調節弁3a,3bの絞り
具合を調節し、処理水Wを水槽内に流入させる。
FIG. 4 is an explanatory diagram of the overall control system of the present invention. The measurement data unit 11 receives the water flow meter 2 at the entrance of the water tank 1 and the numerical data of the speed detector 12 above the entrance gate 5A of the water tank 1. In addition, a water level gauge 13, a water temperature gauge 14, a water quality meter 15, a gas flow meter 9, a pressure gauge 17, and a thermometer 1 of an ozone generator 16 are used to calculate optimum operating conditions.
8. Numerical data of the ozone concentration meter 19 and the exhaust ozone concentration meter 21 of the exhaust ozone device 20 correspond to the measurement data unit 11.
Has been taken into. These numerical data are fetched from the measurement data unit 11 into the arithmetic and control unit 22, and are subjected to calculation processing described later, and are displayed on the display unit 23.
An instruction signal is also issued to the control valves 3a and 3b to adjust the degree of throttle of the control valves 3a and 3b, and the treated water W flows into the water tank.

【0009】尚、データファイル24は計算結果のポイ
ント項目をファイルし、変化予測するときなどに用いる
もので出力結果来歴や予測トレンド推定するときに活用
される。
The data file 24 is a file for storing point items of calculation results and is used for estimating a change, and is used for estimating output result history and prediction trend.

【0010】水槽1の詳細は図1により説明する。図1
は、上水処理場における水処理装置の水槽1であってオ
ゾン化ガスを散気するための水槽1の断面説明図であ
る。
The details of the water tank 1 will be described with reference to FIG. FIG.
FIG. 1 is a cross-sectional explanatory view of a water tank 1 of a water treatment apparatus in a water treatment plant for diffusing ozonized gas.

【0011】水槽1は、入口ゲート5A,中間ゲート5
B,出口ゲート5C及び連結口6を有する水槽1であっ
て、中間及び出口ゲート5B,5Cによりオゾン反応槽
7と滞留槽8を区分している。図1では出口ゲート5C
の高さは入口ゲート5Aの高さを低く設計されている。
処理水Wは、水槽1の左側下部より水流量計2を通って
調節弁3Bを経由して、流入渠4へ入ってくる。流入渠
4より溢れる処理水Wは、入口ゲート5Aを越流してオ
ゾン反応槽7に入り込み、中間ゲート5Bに衝突して、
下向きの流れとなり、連結口6を通って再度迂流上昇し
て出口ゲート5Cを越流して、滞留槽8に流れ込んで水
槽1の右側下部側より右方へ排出される。
The water tank 1 has an entrance gate 5A, an intermediate gate 5
B, a water tank 1 having an outlet gate 5C and a connection port 6, wherein an ozone reaction tank 7 and a retention tank 8 are separated by intermediate and outlet gates 5B and 5C. In FIG. 1, the exit gate 5C
Is designed to lower the height of the entrance gate 5A.
The treated water W enters the inflow culvert 4 from the lower left part of the water tank 1 through the water flow meter 2 via the control valve 3B. The treated water W overflowing from the inflow culvert 4 flows over the inlet gate 5A, enters the ozone reactor 7 and collides with the intermediate gate 5B,
The water flows downward, flows upward again through the connection port 6, flows over the exit gate 5C, flows into the retaining tank 8, and is discharged to the right from the lower right side of the water tank 1.

【0012】入口ゲート5Aの高さが出口ゲート5Cの
高さより高い時には、流速ベクトルは水位計13により
出口ゲート5Cの高さを計測し、この計測値を入力した
計測データユニット11から演算制御部22に入る。演
算制御部22では水位計測値が演算制御部22の記憶部
に予め記憶されている。演算制御部22の基準水位によ
り水位計測値が上側か下側かにより流速ベクトルを決め
る。
When the height of the entrance gate 5A is higher than the height of the exit gate 5C, the flow velocity vector measures the height of the exit gate 5C with the water level gauge 13, and the measurement data unit 11 to which this measurement value has been input is used to calculate the operation control unit. Enter 22. In the arithmetic control unit 22, the water level measurement value is stored in the storage unit of the arithmetic control unit 22 in advance. The flow velocity vector is determined based on whether the measured water level is an upper side or a lower side based on the reference water level of the arithmetic control unit 22.

【0013】一方、入口ゲート5Aの高さと出口ゲート
5Cの高さが同じ構成では、流速ベクトルは常にθ=0
度(水平)なので、両ゲートの高さが異なる場合に比べ
て、演算制御部22で基準水位などを予め記憶する必要
がなく、演算制御部22に記憶容量を少なく出来る利点
がある。
On the other hand, when the height of the entrance gate 5A is equal to the height of the exit gate 5C, the flow velocity vector is always θ = 0.
Since this is a degree (horizontal), there is no need to previously store the reference water level and the like in the arithmetic control unit 22 as compared with the case where the heights of both gates are different, and there is an advantage that the arithmetic control unit 22 can reduce the storage capacity.

【0014】図2,図3の速度検出器12のυ1とυ2
のデータ(図2のυ1とυ2)が等しくない時のみ調節弁3
aと3bとの開度を調節して、処理水量の絞り具合より
υ1=υ2となる制御も行わしめる。
[0014] Figure 2, control valve 3 only when data (for upsilon 1 and upsilon 2 Figure 2) is not equal to the upsilon 1 and upsilon 2 of the speed detector 12 of FIG. 3
The opening degree between a and 3b is adjusted, and control is performed such that υ 1 = υ 2 depending on the degree of restriction of the amount of treated water.

【0015】図2及び図3では、計算のための初期条件
を正しく測定できるように工夫した水槽1の平面及び断
面説明図である。
FIGS. 2 and 3 are a plan view and a sectional view of the water tank 1 devised so that the initial conditions for the calculation can be correctly measured.

【0016】図2では、複数例えば2槽の水槽1の処理
水は、2個の調節弁3bを介して流入渠4とに流入する
と、流速分布は中央部分が早く、両端側が遅くなる。入
口ゲート5A上の越流の平均流速は中央部と水槽1側面
との中間に存在するので、速度検出器12の測定点は×
部υ1又はυ2の位置とすれば、平均流速値を測定でき
る。
In FIG. 2, when the treated water in a plurality of, for example, two water tanks 1 flows into the inflow culvert 4 via the two control valves 3b, the flow velocity distribution is fast at the center and slow at both ends. Since the average flow velocity of the overflow on the entrance gate 5A is between the center and the side of the water tank 1, the measurement point of the velocity detector 12 is ×
If the position is defined as part 1 or 2 , the average flow velocity value can be measured.

【0017】図3では、水槽1の断面図で流入渠4へは
下側より処理水Wが湧水させると、流速分布は中央部が
早く端面側が遅くなり、越流してオゾン反応槽7へ流れ
込むので、速度検出器12の測定点は入口ゲート5A上
の水面と入口ゲート5A端部の中間に設置すれば、流速
が正確に測定出来る。
In FIG. 3, in the sectional view of the water tank 1, when the treated water W is sprinkled from the lower side into the inflow culvert 4, the flow velocity distribution is early in the central part, slow in the end face side, and overflows to the ozone reaction tank 7. Since the water flows, if the measurement point of the speed detector 12 is set between the water surface on the entrance gate 5A and the end of the entrance gate 5A, the flow velocity can be measured accurately.

【0018】一方、オゾン化ガスはガス流量計9を通っ
てオゾン化反応槽7の下側に設置したセラミックス性
(気孔径50〜60μm)の散気管10より、微小気泡
として水中に散気される。オゾン化ガスは散気水深と散
気管10の圧力損失より大きい圧力があるので、水中に
散気されることになる。水中に散気されたオゾンの気泡
は水中に溶解して、水中の有機物質などと酸化反応す
る。水中に溶解されなかった未反応のオゾン化ガスは、
排オゾン装置20によって無害化され大気中に放出され
る。ここに、オゾン反応槽7におけるオゾン化ガスと処
理水の酸化反応時間は約5分程度必要で更に、5分程度
溶存オゾンの反応時間をとるために滞留槽8が設けられ
ている。
On the other hand, the ozonized gas passes through a gas flow meter 9 and is diffused into water as fine bubbles from a ceramic (pore diameter: 50 to 60 μm) diffusion tube 10 installed below the ozonation reaction tank 7. You. Since the ozonized gas has a pressure greater than the pressure of the diffuser pipe 10 and the depth of the diffuser water, the ozonized gas is diffused into the water. The ozone bubbles diffused in the water are dissolved in the water and oxidize with organic substances in the water. Unreacted ozonized gas not dissolved in water is
It is rendered harmless by the exhaust ozone device 20 and released into the atmosphere. Here, the oxidation reaction time of the ozonized gas and the treated water in the ozone reaction tank 7 is required to be about 5 minutes, and a residence tank 8 is provided for taking the reaction time of the dissolved ozone for about 5 minutes.

【0019】図1での処理水Wの流れはマクロ的に矢印
で説明するが、θ=0の時は水平方向に右側へ強く流れ
て中間ゲート5Bに衝突して下向きになるので、短絡流
(早い流れ)領域が大きく、中央部分は渦巻きを生じ
て、停滞流(遅い流れ)領域となる。θが下方へ大きく
なると斜め右側方向へ短絡流領域が移動する。オゾン反
応槽7内は、下方からオゾン化ガスが散気管10より散
気して、上方へ浮上しながら処理水との酸化反応を生ず
るので、流速分布は短絡流,停滞流を減らし、オゾン反
応槽7内で均一となることが理想的条件となる。
Although the flow of the treated water W in FIG. 1 is macroscopically described by an arrow, when θ = 0, it flows strongly to the right in the horizontal direction and collides with the intermediate gate 5B and becomes downward. The (fast flow) region is large, and the central portion is swirled to become a stagnant flow (slow flow) region. When θ increases downward, the short-circuit flow region moves diagonally rightward. In the ozone reaction tank 7, the ozonized gas diffuses from the air diffuser 10 from below and generates an oxidation reaction with the treated water while floating upward, so that the flow velocity distribution reduces short-circuit flow and stagnant flow, and the ozone reaction The ideal condition is to be uniform in the tank 7.

【0020】次に、水槽内の流速値,流速ベクトル,気
泡数を求める場合を説明する。
Next, the case where the flow velocity value, the flow velocity vector, and the number of bubbles in the water tank are obtained will be described.

【0021】入口ゲート5A及び出口ゲート5Cの水槽
天井面1Aに速度検出器12及び水位計13、例えば超
音波計測器を取付けている。これらの検出器,水位計か
らの計測値は計測データユニット11に入力され、計測
データユニット11より演算制御部22に入力される。
演算制御部22で上述の流速値,流速ベクトル,気泡数
は、次のように求める。
A speed detector 12 and a water level gauge 13, for example, an ultrasonic measuring instrument are mounted on the water tank ceiling surface 1A of the entrance gate 5A and the exit gate 5C. The measurement values from these detectors and the water level gauge are input to the measurement data unit 11, and are input from the measurement data unit 11 to the arithmetic control unit 22.
The above-described flow velocity value, flow velocity vector, and number of bubbles are obtained by the arithmetic control unit 22 as follows.

【0022】即ち、速度検出器12により入口ゲート上
の水中内に設置して流速値を検出し、検出信号を上述の
経路で演算制御22に入力する。また水位計13は入口
ゲート5Aと出口ゲート5Cとの水位が等しいか、或い
は入口ゲート5Aより出口ゲート5Cの水位の方が低い
かを検出する。等しい場合は水量が多く、平行な流速ベ
クトルとなり、低い場合には水量が少なく、下側に傾斜
する流速ベクトルとなる。尚、入口ゲートと出口ゲート
との高さが異なる時には、流速ベクトルは水位検出器1
2により出口ゲートの水位の高さを計測し、この計測値
を計測データユニット11に入力し、計測データユニッ
ト11より入力された演算制御部22に入力される。
That is, the speed detector 12 is installed in the water above the entrance gate to detect a flow velocity value, and a detection signal is input to the arithmetic and control unit 22 through the above-described route. The water level gauge 13 detects whether the water level at the inlet gate 5A is equal to the water level at the outlet gate 5C, or whether the water level at the outlet gate 5C is lower than that at the inlet gate 5A. If they are equal, the flow rate vector is large and the flow velocity vector is parallel. If the flow rate is low, the flow rate vector is low and the flow velocity vector is inclined downward. When the height of the entrance gate is different from the height of the exit gate, the flow velocity vector is
The height of the water level at the exit gate is measured by 2 and the measured value is input to the measurement data unit 11 and is input to the arithmetic and control unit 22 input from the measurement data unit 11.

【0023】演算制御部22では水位計測値が演算制御
部に予め記憶されている。基準水位より、上側か下側か
により、流速ベクトルを決める。そして、入口ゲート5
Aより出口ゲート5Cの高さを同じくした構成は、流速
ベクトルは常にθ=0度(水平)なので、両ゲートの高
さが異なる場合に比べて、演算制御部で基準値などを予
め記憶に置く必要がなく、演算制御部での演算ができる
利点がある。
In the arithmetic and control unit 22, the measured water level is stored in advance in the arithmetic and control unit. The flow velocity vector is determined depending on whether it is above or below the reference water level. And the entrance gate 5
In the configuration in which the height of the exit gate 5C is the same as that of A, since the flow velocity vector is always θ = 0 degrees (horizontal), the reference value and the like are stored in advance in the arithmetic control unit as compared with the case where the heights of both gates are different. There is an advantage that there is no need to place them, and calculations can be performed by the calculation control unit.

【0024】次に、図8,図9のように水槽内をX方向
とY方向とに複数個のメッシュに分割し、上記流速値,
水位値及びオゾン化ガス量を演算制御部22に入力した
後、次のような計算処理を行う。
Next, the inside of the water tank is divided into a plurality of meshes in the X direction and the Y direction as shown in FIGS.
After inputting the water level value and the amount of ozonized gas to the arithmetic and control unit 22, the following calculation processing is performed.

【0025】運動方程式とは ∂/∂t(ρa.υb)+∇.(ρa.υb.υb) =−∇pa−∇∂a+Fsa−∇.(Pa.υb.υb)+Rsυa…(1) ここに、ρ=密度,P=圧力,υ=流速,Fs=単位体
積・時間t当りの移行運動量,Rs=流体の密度変化
率、aマークは時間平均値を、bは質量加重平均値を,
cは質量加重平均値からの変動量を示す。
The equation of motion is ∂ / ∂t (ρa.υb) + ∇. (ρa.υb.υb) = − {pa− {a + Fsa−}. (Pa.υb.υb) + Rsυa (1) where, ρ = density, P = pressure, υ = flow velocity, Fs = transfer momentum per unit volume / time t, Rs = fluid density change rate, a mark is Time average, b is mass-weighted average,
c indicates the amount of change from the weighted average value.

【0026】質量保存則の計算式とは ∂P/∂t+∇(ρa.υb)=Rsa …(2) 気泡の運動方程式は、オゾン化空気の気泡に対して、次
の運動方程式が成り立つ。ここに、液体密度をρf,粒
子密度をρp(ガス密度ρg+流体付加分子密度),粒
径をDp,抗力係数をCd,粒子速度をUp,流体速度
Uf,ゆらぎ流速をU′f,重力加速度をgとすれば、 πDp3/6・(ρp・∂Up)/∂t =πDp2/4・[Cd・ρf|Uf−Up|(Uf+U′f−Up)]/ 2+(πDp3・ρ・tg)/6 …(3) (3)式でπDp2/4・[Cd・ρf|Uf−Up|
(Uf+U′f−Up)]/2は抗力成分を、(πDp3
ρ・fg)/6は浮力成分を表わしている。
The equation for calculating the law of conservation of mass is as follows: ∂P / ∂t + ∇ (ρa.υb) = Rsa (2) The following equation of motion is established for the bubble of ozonized air. Here, the liquid density is ρf, the particle density is ρp (gas density ρg + fluid added molecular density), the particle diameter is Dp, the drag coefficient is Cd, the particle velocity is Up, the fluid velocity is Uf, the fluctuation velocity is U′f, and the gravitational acceleration is if the the g, πDp 3/6 · ( ρp · ∂Up) / ∂t = πDp 2/4 · [Cd · ρf | Uf-Up | (Uf + U'f-Up)] / 2+ (πDp 3 · ρ · tg) / 6 ... (3 ) (3) expression in the πDp 2/4 · [Cd · ρf | Uf-Up |
(Uf + U'f-Up)] / 2 represents the drag component, and (πDp 3 ·
ρ · fg) / 6 represents a buoyancy component.

【0027】気泡の運動方程式は、気泡の上昇速度(浮
力)と抗力より計算する。散気管10からの初期気泡の
上昇速度は実験的に求めて与える。つまり、浮力成分の
実測値は散気管10からの1秒間当りの気泡の浮力上昇
値は20±5cm/sec で示され、調節弁3Aにより散気
量が可変されるので、初期上昇速度も変化して与えるよ
うにしている。
The equation of motion of the bubble is calculated from the rising speed (buoyancy) of the bubble and the drag. The rising speed of the initial bubbles from the air diffuser 10 is determined experimentally and given. In other words, the measured value of the buoyancy component is the buoyancy rise value of bubbles per second from the air diffuser 10 is indicated by 20 ± 5 cm / sec, and the amount of air diffusion is variable by the control valve 3A. And give it.

【0028】自然法則に基づいたこれらの(1)〜(3)
式の連立方程式をメッシュ毎にデジタル計算機より数値
的に求め、ある時間内における各メッシュ毎の流速ベク
トル,流速値,気泡数を図5の演算制御部22で計算に
より求めた。
These (1) to (3) based on the law of nature
The simultaneous equations of the equations were numerically obtained for each mesh by a digital computer, and the flow velocity vector, flow velocity value, and number of bubbles for each mesh within a certain time were calculated by the arithmetic control unit 22 in FIG.

【0029】図5は演算制御部22内の基本手順を示す
処理フロー説明図である。
FIG. 5 is an explanatory diagram of a processing flow showing a basic procedure in the arithmetic control unit 22.

【0030】.水槽1の構造図より形状入力(寸法均
等縮尺と水位値の境界条件)と断面に対してX−Y方向
に複数のメッシュ分割して、水槽1の形状.メッシュ入
力処理の計算条件を確立させる。
[0030] From the structural drawing of the water tank 1, the shape input (the boundary conditions of uniform scale and water level value) and a plurality of meshes are divided in the XY direction with respect to the cross section, and the shape of the water tank 1 is determined. Establish calculation conditions for mesh input processing.

【0031】.実測データとして処理水量(Q)とオ
ゾンガス量(G)とを入口ゲート5Aの流速値υ1とυ2
と、水位計13(△L)とを取込み、(1)の運動方程
式(方程式を差分法で離散化し、線形代数方程式を作っ
て反復解法を求める)により流量と速度演算を行わしめ
る。
[0031] The flow rate values υ 1 and υ 2 of the inlet gate 5A are calculated based on the treated water amount (Q) and the ozone gas amount (G) as measured data.
And the water level gauge 13 (△ L), and the flow rate and velocity calculations are performed by the equation of motion (1) by discretizing the equation by a difference method and forming a linear algebraic equation to obtain an iterative solution.

【0032】.(2)の質量保存則の差分法により圧
力を演算して圧力を求めた後に、各メッシュ毎の流速ベ
クトル,流速値を表示ソフト処理により図6の階級別色
別区分表に応じて、表示データを作成する。ここに、実
測データ入力が変化した時は、自動的に変化検出して再
計算を行わしめる。
[0032] After calculating the pressure by the difference method of the law of conservation of mass in (2) and obtaining the pressure, the flow velocity vector and the flow velocity value for each mesh are displayed by the display software processing according to the classification table according to the class in FIG. Create data. Here, when the actual measurement data input changes, the change is automatically detected and recalculated.

【0033】.気泡の浮力・抗力演算を行い、運動方
程式よりメッシュ毎の気泡数(気泡濃度)演算を行い、
各メッシュ毎に気泡数を表示ソフト処理により図7の階
級別色別区分表に応じて、表示データを作成する。
[0033] Calculate the buoyancy and drag of bubbles, calculate the number of bubbles (bubble concentration) for each mesh from the equation of motion,
The display data is created according to the classification table for each class in FIG.

【0034】次に、演算制御部22で計算した結果を図
6,図7の特性図で表示部23に表示することにより、
パターン認識を容易にした。
Next, the result calculated by the arithmetic and control unit 22 is displayed on the display unit 23 in the characteristic diagrams of FIGS.
Pattern recognition made easy.

【0035】即ち、本発明では上述の(1)〜(3)式に
より計算で求めた流速値及び気泡数を図6,図7の縦軸
Yと横軸X1,横軸X2に色別区分表示との関係を示
し、これらの特性図について説明する。
That is, in the present invention, the flow velocity value and the number of bubbles calculated by the above-described equations (1) to (3) are classified into the vertical axis Y, the horizontal axis X1, and the horizontal axis X2 in FIGS. The relationship with the display is shown, and these characteristic diagrams will be described.

【0036】(a).図6のように流速数値をYとし、
色別区分をX1とすれば、次の式が成り立ち、AはX1
とYとの比例定数である。
(A). As shown in FIG. 6, the flow velocity value is Y,
Assuming that the classification by color is X1, the following equation holds, and A is X1
And Y are proportional constants.

【0037】 X1=AY …(4) この式に図1の速度検出器12で測定値を上述の計算式
で計算した流速値、例えばY=0.7m/sを(4)式に
代入すると、横軸X1で色別表示された色、例えば橙色
を求めることができる。このようにして得た流速数値Y
と色別区分表示X1との対応は以下のようになる。
X1 = AY (4) In this equation, the flow velocity value obtained by calculating the measured value by the speed detector 12 in FIG. 1 by the above-described equation, for example, Y = 0.7 m / s is substituted into the equation (4). , The color indicated by the color on the horizontal axis X1, for example, orange can be obtained. The flow velocity value Y thus obtained
Correspondence with the color-specific classification display X1 is as follows.

【0038】(1).流速(m/s)⇒1.0m/s〜0.
8m/sの流速値範囲を基準として赤色で、0.8m/
s〜0.6m/sの流速値範囲を橙色で0.6m/s〜
0.4m/sの流速値範囲を黄色で0.4m/s〜0.2
m/sの流速値範囲を緑色で0.2m/s〜0.1m/s
の流速値範囲を青色で0.1m/s未満の流速値範囲を
紫色で階級別色別区分表に応じて、色別表示に変換させ
ることができる。
(1). Flow velocity (m / s) ⇒ 1.0 m / s to 0.1
0.8 m / s in red based on the flow velocity value range of 8 m / s.
The flow velocity range from 0.6 m / s to 0.6 m / s is 0.6 m / s in orange.
The flow velocity value range of 0.4 m / s is 0.4 m / s to 0.2 in yellow.
The flow velocity range of m / s is from 0.2 m / s to 0.1 m / s in green.
The flow velocity value range of blue is less than 0.1 m / s, and the flow velocity value range of less than 0.1 m / s is purple.

【0039】また水位計13で測定した流速ベクトルは
図8に示す棒線Z1で表示できる。棒線Z1をたどって
ゆけば、水槽内の流速ベクトルがわかると共に、流速値
の色別表示をみれば、誰でもすぐに流速値と流速ベクト
ルとの関係を判断することが出来る。
The flow velocity vector measured by the water level gauge 13 can be indicated by a bar Z1 shown in FIG. By following the bar Z1, the flow velocity vector in the water tank can be known, and if the flow velocity values are displayed in different colors, anyone can immediately determine the relationship between the flow velocity values and the flow velocity vectors.

【0040】(b).次に、気泡数について説明する。(B). Next, the number of bubbles will be described.

【0041】(a)と同様に図7のように気泡数数値を
Yとし、色別区分をX2とすれば、次の式が成り立ち、
AはX2とYとの比例定数である。
As shown in FIG. 7A, if the numerical value of the number of bubbles is Y and the classification by color is X2 as shown in FIG.
A is a proportional constant between X2 and Y.

【0042】 X2=AY …(5) 気泡数数値を出力データとし、(5)式に代入すると、
直ちに色別区分される。例えば、図9に示す気泡Z2が
Y=800個ならば、図7のように(5)式により色別
区分は、X2=黄色となる。またその他の気泡数数値と
色別区分の対応は以下のようになる。
X2 = AY (5) By using the numerical value of the number of bubbles as output data and substituting it into the equation (5),
Immediately classified by color. For example, if the number of bubbles Z2 shown in FIG. 9 is Y = 800, the classification by color is X2 = yellow according to the equation (5) as shown in FIG. The correspondence between the other bubble number values and the classification by color is as follows.

【0043】(2).気泡分布(気泡数)⇒2500個〜
1500個の気泡数を基準として赤色で、1500個〜
1000個の気泡数を橙色で1000個〜 500個の
気泡数を黄色で500個〜 300個の気泡数を緑色で
300個〜 100個の気泡数を青色で100未満個の
気泡数を紫色で階級別色別区分表に応じて、色別表示に
変換させた。
(2). Bubble distribution (number of bubbles) ⇒ 2500 pieces ~
Red based on the number of 1500 bubbles, from 1500 to
1000 bubbles in orange 1000 to 500 bubbles in yellow 500 to 300 bubbles in green 300 to 100 bubbles in blue and less than 100 bubbles in purple The display was converted to color according to the classification table according to class.

【0044】(3).上述(a),(b)のどれかを重ね合せ
表示するために流速値の色別表示と気泡数の色別表示が
重ならないように同時表示に変換させた。
(3). In order to superimpose and display any one of the above (a) and (b), the display by color of the flow velocity value and the display by color of the number of bubbles are converted to the simultaneous display so that they do not overlap.

【0045】上述の流速の色別表示,流速ベクトルの棒
線方向,気泡分布(気泡数)の色別表示は、表示部23
に表示される。この表示部23の詳細は図8,図9によ
り表示されるので、誰でも流速値と流速ベクトル及び気
泡数との関係は、従来技術に比べてすぐに判断できる。
この判断結果により、その時の負荷つまり水の消費量に
応じて演算制御部22により調整弁3A,3Bを制御
し、流速,気泡発生数を制御して、経済的な水処理を行
うことができるようになった。
The color display of the flow velocity, the rod direction of the flow velocity vector, and the color display of the bubble distribution (the number of bubbles) are described in the display section 23.
Will be displayed. Since the details of the display unit 23 are displayed by FIGS. 8 and 9, anyone can immediately determine the relationship between the flow velocity value, the flow velocity vector, and the number of bubbles as compared with the related art.
Based on this determination result, the arithmetic control unit 22 controls the regulating valves 3A and 3B in accordance with the load at that time, that is, the amount of water consumption, and controls the flow velocity and the number of generated bubbles, thereby performing economical water treatment. It became so.

【0046】次に、本発明の変形例として次の適用によ
る表示法でも同様の効果が得られる。
Next, a similar effect can be obtained by a display method according to the following application as a modification of the present invention.

【0047】(1) 水槽1のメッシュ分割法として図8
のような構造なので3次元方向(X−Y−Z軸)のメッ
シュ分割を行い、上述表示を3次元表示してもよい。
(より水槽内の状況が精密に判る。) (2) 図2の演算制御部22において、スタンドアロン
型として計算データユニット11の諸条件を手入力して
図7の演算計算を行わしめ、上記色別区分の表示を出力
させてもよい。(簡易で安価な装置となる。) (3) 図2の調節弁3a,3bを省略して、あるいは全
開としておいて、流入渠4の入口径に大小の差をつけて
速度検出器12の流速値がυ1=υ2となるようにしても
よい。(制御の簡易化となる。) (4) 図1は、上水道の実施例であるが、下水処理場の
曝気槽内への空気又は酸素又はオゾン化ガスを散気拡散
させる場合も同様の手法で表示してもよい。
(1) FIG. 8 shows a method of dividing the water tank 1 into meshes.
With such a structure, mesh division in the three-dimensional direction (XYZ axes) may be performed, and the above-described display may be displayed in three dimensions.
(The situation in the water tank can be understood more precisely.) (2) In the arithmetic control unit 22 in FIG. 2, the conditions of the calculation data unit 11 are manually input as a stand-alone type, and the arithmetic calculation in FIG. 7 is performed. The display of another classification may be output. (It becomes a simple and inexpensive device.) (3) The control valves 3a, 3b in FIG. flow rate value may be set to be υ 1 = υ 2. (The control is simplified.) (4) FIG. 1 shows an embodiment of a water supply system, but the same method is used for diffusing and diffusing air or oxygen or ozonized gas into the aeration tank of a sewage treatment plant. May be displayed.

【0048】(気液混合表示なので同じ表示効果があ
る。) (5) 上記色別区分表示において、処理水Wとオゾン化
ガスとのオゾン化反応は気液混合条件に略々比例するの
で、図2の計測データユニット11を用いてオゾン化反
応計算式により各メッシュ毎のオゾン化反応(吸収率,
有機物の減少具合など)を色別表示としてもよい。(オ
ゾン化反応が一目で判るようになり運転員が処理効果を
把握するのが容易になる。)
(The same display effect is obtained because of the gas-liquid mixed display.) (5) In the above-described color-based classification display, the ozonation reaction between the treated water W and the ozonized gas is substantially proportional to the gas-liquid mixing conditions. The ozonation reaction (absorption rate,
The degree of reduction in organic matter) may be displayed in different colors. (The ozonation reaction can be understood at a glance, and it becomes easier for the operator to grasp the treatment effect.)

【0049】[0049]

【発明の効果】本発明によれば、水処理装置の水槽内の
状況が従来ブラックボックスで見ることができなかった
が、処理水量,入口ゲート上の処理水の流速値と流速ベ
クトル及びオゾン化ガスの散気量との計測データを初期
条件として計算処理して、メッシュ分割毎に数値化し
て、流速ベクトルは棒線で表示させ、流速値,気泡数は
階級別色別区分表に応じて、色別表示することにより、
水槽内の気液混合状態が一目で目視判定できるようにな
った。
According to the present invention, although the situation in the water tank of the water treatment apparatus could not be seen in the conventional black box, the amount of treated water, the velocity value and velocity vector of the treated water on the entrance gate, and the ozonation Calculate and process the measured data with the gas diffusion amount as the initial condition, digitize each mesh division, display the flow velocity vector with a bar, and the flow velocity value and the number of bubbles according to the classification table according to class and color. , By displaying by color,
The gas-liquid mixing state in the water tank can be visually determined at a glance.

【0050】また水槽の入口ゲート及び出口ゲートを流
れる液体の流速値を速度検出器で求めると共に、両ゲー
トの水位の高さが同じか、出口ゲートが低いかによって
流速ベクトルを簡単に検出することができる。
Further, the flow velocity value of the liquid flowing through the inlet and outlet gates of the water tank is obtained by a speed detector, and the flow velocity vector can be easily detected based on whether the water level of both gates is the same or the outlet gate is low. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例として示した水処理装置の水槽
の断面説明図である。
FIG. 1 is an explanatory sectional view of a water tank of a water treatment apparatus shown as an embodiment of the present invention.

【図2】図1の水槽を上から見た時の平面図である。FIG. 2 is a plan view when the water tank of FIG. 1 is viewed from above.

【図3】図2のA−A線からの断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 2;

【図4】図1の水処理装置の全体制御系の説明図であ
る。
FIG. 4 is an explanatory diagram of an overall control system of the water treatment apparatus of FIG.

【図5】図2の演算制御部内の計算処理フロー説明図で
ある。
FIG. 5 is an explanatory diagram of a calculation processing flow in an arithmetic control unit in FIG. 2;

【図6】流速値と階級別色別区分との関係を示す説明図
である。
FIG. 6 is an explanatory diagram illustrating a relationship between a flow velocity value and a class-based color classification.

【図7】流速値と気泡数の階級別色別区分との関係を示
す説明図である。
FIG. 7 is an explanatory diagram showing the relationship between the flow velocity value and the classification of the number of bubbles by class and color.

【図8】図1の水槽内の流速値と階級別色別区分とを表
示した断面説明図である。
FIG. 8 is an explanatory sectional view showing a flow velocity value in the water tank of FIG. 1 and classification by color according to class;

【図9】図1の水槽内の気泡数と階級別色別区分とを表
示した断面説明図である。
FIG. 9 is an explanatory sectional view showing the number of bubbles in the water tank of FIG.

【符号の説明】 1…水槽、2…水流量計、3…調節弁、4…流入渠、5
A…入口ゲート、5B…中間ゲート、5C…出口ゲー
ト、6…連結口、7…オゾン反応槽、8…滞留槽、9…
ガス流量計、10…散気管、11…計測データユニッ
ト、12…速度検出器、13…水位計、14…水温計、
15…水質計、16…オゾン発生器、17…圧力計、1
8…温度計、19…オゾン濃度計、20…排オゾン装
置、21…排オゾン濃度計、22…演算制御部、23…
表示部、24…データファイル、25…色別表示部。
[Description of Signs] 1 ... Water tank, 2 ... Water flow meter, 3 ... Control valve, 4 ... Inflow culvert, 5
A: Inlet gate, 5B: Intermediate gate, 5C: Exit gate, 6: Connection port, 7: Ozone reaction tank, 8: Retention tank, 9 ...
Gas flow meter, 10: diffuser tube, 11: measurement data unit, 12: speed detector, 13: water level meter, 14: water temperature meter,
15 water quality meter, 16 ozone generator, 17 pressure gauge, 1
8 thermometer 19 ozone concentration meter 20 exhaust ozone device 21 exhaust ozone concentration meter 22 arithmetic control unit 23
Display unit, 24: Data file, 25: Display unit for each color.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 正幸 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 塩野 繁男 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 ▲陰▼山 晃治 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masayuki Yamashita 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Kokubu Plant, Hitachi, Ltd. (72) Inventor Shigeo Shiono 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture No. 1 Inside Kokubu Plant, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】入口ゲートと出口ゲートを有する水槽であ
って、速度検出器により入口ゲート上に流れる液体の流
速値を検出し、入口ゲートの高さを基準値に選び、出口
ゲートが基準値と同じか、又は下側かにより流速ベクト
ルを求め、上記水槽をX方向とY方向とに複数個のメッ
シュに分割し、各メッシュ毎に求めた流速ベクトルを棒
線で表示し、各メッシュ毎に求めた流速値を階級別色別
区分表にした区分表のどの色別区分に属するかを選び、
各メッシュ毎に色別区分して流速値を表示することを特
徴とする液体処理方法。
1. A water tank having an entrance gate and an exit gate, wherein a velocity detector detects a flow velocity value of a liquid flowing over the entrance gate, selects a height of the entrance gate as a reference value, and sets the exit gate to a reference value. The flow velocity vector is determined depending on whether the flow rate is the same as or below, the water tank is divided into a plurality of meshes in the X direction and the Y direction, and the flow velocity vectors determined for each mesh are displayed by bar lines, and Select which color classification of the classification table that made the flow velocity value obtained in
A liquid processing method, wherein a flow velocity value is displayed by classifying each mesh by color.
【請求項2】入口ゲートと出口ゲートを有する水槽であ
って、速度検出器により入口ゲート上に流れる液体の流
速値を検出し、入口ゲートの高さを基準値に選び、出口
ゲートが基準値と同じか、又は下側かにより流速ベクト
ルを求め、上記水槽をX方向とY方向とに複数個のメッ
シュに分割し、各メッシュ毎に求めた流速ベクトルを棒
線で表示し、水槽下側より注入した気体の気泡が上昇す
るときの上昇速度と各メッシュ毎の水槽内の流速ベクト
ルとを差分して、ある時間内における各メッシュ内の気
泡数を求め、気泡数を階級別色別区分表にした区分表の
どの色別区分に属するかを選び、各メッシュ毎に色別区
分して気泡を表示することを特徴とする液体処理方法。
2. A water tank having an entrance gate and an exit gate, wherein a velocity detector detects a flow velocity value of a liquid flowing over the entrance gate, selects a height of the entrance gate as a reference value, and sets the exit gate to a reference value. The flow velocity vector is determined depending on whether it is the same as or below, and the water tank is divided into a plurality of meshes in the X direction and the Y direction, and the flow velocity vector determined for each mesh is displayed as a bar line, The difference between the rising speed when the gas bubbles of the injected gas rises and the flow velocity vector in the water tank for each mesh is determined, the number of bubbles in each mesh within a certain time is obtained, and the number of bubbles is classified by class and color. A liquid processing method characterized by selecting which color-specific section belongs to a tabulated section table, and displaying bubbles by classifying by color for each mesh.
【請求項3】水槽内に設けた流速検出器,流速ベクトル
を検出する水位計及び気泡を検出するガス流量計からの
測定値を演算制御部に入力し、演算制御部で測定値を流
速数値,流速ベクトルを変形した棒線及び気泡数値に演
算し、流速数値及び気泡数値の各々に対応する色別区分
表を作成し、表示部で色別区分表に応じた流速数値,気
泡数値と棒線とをグラフイク表示することを特徴とする
請求項1または2項記載の液体処理方法。
3. A measurement value from a flow velocity detector provided in a water tank, a water level meter for detecting a flow velocity vector, and a gas flow meter for detecting air bubbles is inputted to an arithmetic control unit, and the measured value is converted into a numerical value of flow velocity by the arithmetic control unit. , Calculates the flow velocity vector into the deformed bar and bubble numerical values, creates a color classification table corresponding to each of the flow velocity numerical value and the bubble numerical value, and displays the flow velocity numerical value, the bubble numerical value and the rod according to the color classification table on the display unit. 3. The liquid processing method according to claim 1, wherein the line and the line are graphically displayed.
【請求項4】水槽内に入口ゲートの高さを出口ゲートの
高さより高くし、速度検出器により入口ゲート上に流れ
る液体の流速値を検出し、入口ゲートの高さを基準値に
選び、出口ゲートが基準値と同じか、又は下側かにより
流速ベクトルを求め、流速値と流速ベクトルを検出する
ことを特徴とする液体処理検出方法。
4. The height of the inlet gate in the water tank is made higher than the height of the outlet gate, a velocity detector detects a flow velocity value of the liquid flowing on the inlet gate, and selects the height of the inlet gate as a reference value. A liquid processing detection method, wherein a flow velocity vector is determined based on whether an exit gate is equal to or lower than a reference value, and the flow velocity value and the flow velocity vector are detected.
【請求項5】複数の水槽の各入口に設けた制御弁を制御
して、各水槽への流速値及び流速ベクトルを均一にする
ことを特徴とする請求項1ないし3のいずれか1項記載
の液体処理方法または検出方法。
5. The method according to claim 1, wherein a control valve provided at each inlet of the plurality of water tanks is controlled to make the flow velocity value and the flow velocity vector to each water tank uniform. Liquid treatment method or detection method.
JP24443996A 1996-09-17 1996-09-17 Liquid treatment method or sensing method Pending JPH1085719A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24443996A JPH1085719A (en) 1996-09-17 1996-09-17 Liquid treatment method or sensing method
FR9711497A FR2753443A1 (en) 1996-09-17 1997-09-16 Determination of liquid flow rates in treatment column reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24443996A JPH1085719A (en) 1996-09-17 1996-09-17 Liquid treatment method or sensing method

Publications (1)

Publication Number Publication Date
JPH1085719A true JPH1085719A (en) 1998-04-07

Family

ID=17118678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24443996A Pending JPH1085719A (en) 1996-09-17 1996-09-17 Liquid treatment method or sensing method

Country Status (2)

Country Link
JP (1) JPH1085719A (en)
FR (1) FR2753443A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104310512A (en) * 2014-11-13 2015-01-28 安徽工业大学 Water flow fluctuation generator and use method thereof
WO2023112871A1 (en) * 2021-12-13 2023-06-22 三機工業株式会社 Water treatment plant operation management support system and operation management support method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003832A (en) * 1974-01-07 1977-01-18 Tii Corporation Method of applying ozone and sonic energy to sterilize and oxidize waste water
JPS58159895A (en) * 1982-03-19 1983-09-22 Hitachi Ltd Method for controlling sewage treatment plant
JPS5946191A (en) * 1982-09-06 1984-03-15 Hitachi Ltd Dissolved oxygen controller
GB9314592D0 (en) * 1993-07-14 1993-08-25 Anglian Water Services Ltd Method and apparatus for improving liquid flow
JPH07265884A (en) * 1994-03-30 1995-10-17 Hitachi Ltd Ozone treatment device
JPH07290072A (en) * 1994-04-21 1995-11-07 Hitachi Ltd Method for controlling ozone injection in water purifying plant and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104310512A (en) * 2014-11-13 2015-01-28 安徽工业大学 Water flow fluctuation generator and use method thereof
WO2023112871A1 (en) * 2021-12-13 2023-06-22 三機工業株式会社 Water treatment plant operation management support system and operation management support method

Also Published As

Publication number Publication date
FR2753443A1 (en) 1998-03-20

Similar Documents

Publication Publication Date Title
Komori et al. Turbulence structure and mass transfer across a sheared air–water interface in wind-driven turbulence
Talmon et al. Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes
Ohnuki et al. Experimental study on transition of flow pattern and phase distribution in upward air–water two-phase flow along a large vertical pipe
Pinto et al. Coalescence of two gas slugs rising in a vertical column of liquid
CN109711107B (en) Water resource burst water pollutant diffusion simulation system
Weitbrecht Influence of dead-water zones on the dispersive mass transport in rivers
Harteveld et al. Dynamics of a bubble column: influence of gas distribution on coherent structures
EP0109810A2 (en) Simulator of fluid flow in field of flow entailing combustion or reaction
Srebric et al. A method of test to obtain diffuser data for CFD modeling of room airflow (RP-1009)
Armfield et al. Purging of density stabilized basins
Law et al. Transport across a turbulent air‐water interface
JPH1085719A (en) Liquid treatment method or sensing method
Noutsopoulos et al. The round vertical turbulent buoyant jet
Butman et al. 10. THE 17-METER FLUME AT THE COASTAL RESEARCH LABORATORY PART I: DESCRIPTION AND USER'S MANUAL
Shvidchenko Incipient motion of streambeds
Duc et al. Local hydrodynamic investigation of the aeration in a submerged hollow fibre membranes cassette
Al-Rawahi et al. A neural network algorithm for density measurement of multiphase flow
Chu Experiments on gas transfer and turbulence structure in free surface flows with combined wind/bottom shear
Davis et al. A wind tunnel study of the flow field within and around open-top chambers used for air pollution studies
McGillis et al. Air-water flux reconciliation between the atmospheric CO 2 profile and mass balance techniques
Pöpel et al. Prediction of oxygen transfer rates from simple measurements of bubble characteristics
Kubasch Bubble hydrodynamics in large pools
Das et al. An experimental study to determine fractal parameters for lean premixed flames
Xu et al. The use of particle image velocimetry in the physical modeling of flow in electromagnetic or direct-chill casting of aluminum: part I. Development of the physical model
Ozcan et al. An overview on ventilation rate measuring and modelling techniques through naturally ventilated buildings