JPH1084690A - Brushless motor drive control circuit - Google Patents

Brushless motor drive control circuit

Info

Publication number
JPH1084690A
JPH1084690A JP8261385A JP26138596A JPH1084690A JP H1084690 A JPH1084690 A JP H1084690A JP 8261385 A JP8261385 A JP 8261385A JP 26138596 A JP26138596 A JP 26138596A JP H1084690 A JPH1084690 A JP H1084690A
Authority
JP
Japan
Prior art keywords
signal
hall
harmonic component
brushless motor
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8261385A
Other languages
Japanese (ja)
Other versions
JP3568078B2 (en
Inventor
Satoshi Ito
智 伊藤
Hiroshi Iwai
広 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP26138596A priority Critical patent/JP3568078B2/en
Priority to US08/902,119 priority patent/US5969489A/en
Priority to MYPI97003466A priority patent/MY115100A/en
Priority to CN97118097A priority patent/CN1067189C/en
Publication of JPH1084690A publication Critical patent/JPH1084690A/en
Application granted granted Critical
Publication of JP3568078B2 publication Critical patent/JP3568078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase torque and prevent uneven rotation, by controlling the difference between the content of the third harmonic component and the content of the fifth harmonic component to a specified value or below. SOLUTION: Hall signals U and V are synthesized by a signal synthesizing means comprising an adder circuit 1 and a non-linear converting means 2, and the signal synthesizing means outputs a synthesized signal W. At this time, the driving magnetic pole waveform is of trapezoidal wave containing a third harmonic component and a fifth harmonic component; therefore, the synthesized signal W is obtained as triangular-wave-shaped signal. A triangular-wave-to-trapezoidal-wave conversion means 3 converts the synthesized signal W into a trapezoidal-wave-shaped conversion signal W', and supplies it to a drive circuit means 7. The stator coil 6 of the drive rotating means 7 produces rotating magnetic fields corresponding to the rotation of a rotor, and generates rotational driving force through interaction with driving magnetic poles. However, as the fifth harmonic component of the driving magnetic poles is eliminated and only the third harmonic component is increased, the trapezoidal waveform is distorted and uneven rotation results. To cope with this, the value obtained by subtracting the content of the third harmonic component is controlled to 16% or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はVTRやポリゴンミ
ラーのスピンドルモータやディスク型記憶装置等のスピ
ンドルモータに好適なブラシレスモータ駆動制御回路に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brushless motor drive control circuit suitable for a spindle motor of a VTR or a polygon mirror or a spindle motor of a disk type storage device.

【0002】[0002]

【従来の技術】図1はVTRのキャプスタン軸を直接回
転駆動するブラシレスモータの断面図であり、図2は図
1に示したブラシレスモータのステータ部の平面図であ
る。ロータ10は中心にキャプスタン軸であるシャフト
40が固着され軸受け手段90,100によって回転自
在に支持されており、ステータ20と対向する表面に8
極の正弦波状の駆動磁極を有する駆動マグネット50が
備えられている。また、その周囲には外周に360極の
FG磁極を有するFGマグネット60が備えられてい
る。
2. Description of the Related Art FIG. 1 is a sectional view of a brushless motor for directly driving the capstan shaft of a VTR, and FIG.
FIG. 2 is a plan view of a stator section of the brushless motor shown in FIG. The rotor 10 has a shaft 40 serving as a capstan shaft fixed at the center and rotatably supported by bearing means 90 and 100.
A drive magnet 50 having a sinusoidal drive magnetic pole is provided. An FG magnet 60 having 360 FG magnetic poles on the outer periphery is provided around the periphery.

【0003】ステータ20は軟磁性鋼板に絶縁層を介し
て銅箔を積層し、エッチング等の方法により回路パター
ンを形成したステータ基板70(配線基板を兼ねてい
る)をベースに、6個の空心のステータコイル80を6
0度間隔に回転中心と同軸に配し固着している。これら
のステータコイル80は前述した駆動磁極と平面で対向
しており、回転中心を挟んで対向する1組の2個が直列
に接続され、3組でスター結線の3相ステータコイルを
構成している。
[0003] A stator 20 is formed by laminating a copper foil on a soft magnetic steel sheet via an insulating layer and forming a circuit pattern by etching or the like on a stator substrate 70 (also serving as a wiring substrate). 6 of stator coil 80
It is arranged coaxially with the center of rotation at intervals of 0 degrees and fixed. These stator coils 80 are opposed to the above-described drive magnetic poles in a plane, and two pairs, one set facing each other across the rotation center, are connected in series, and three sets constitute a star-connected three-phase stator coil. I have.

【0004】これらのコイルの中心には機械角120度
の間隔で2個のホール素子130が、前述した駆動磁極
のホール素子に磁束を供給する部分の磁束密度に応じ1
20度位相差のホール信号U及びVを出力するように配
設されている。
[0004] At the center of these coils, two Hall elements 130 are provided at intervals of a mechanical angle of 120 degrees.
It is arranged to output Hall signals U and V having a phase difference of 20 degrees.

【0005】また、図示しないMR型感磁素子はステー
タ20上に配設され、ロータ10に設けたFGマグネッ
ト60の外周のFG磁極に0.1mm程度の隙間を空け
て対向し、FG磁極に応じて1回転当たり360サイク
ルのFG信号を出力する。FG信号は速度制御手段によ
りモータを目的の回転速度に制御する速度制御信号に変
換され、駆動電流を制御するようにIC140に内蔵さ
れた駆動回路に供給される。
An MR type magnetic sensing element (not shown) is disposed on the stator 20 and faces the FG magnetic pole on the outer periphery of the FG magnet 60 provided on the rotor 10 with a gap of about 0.1 mm. Accordingly, an FG signal of 360 cycles per rotation is output. The FG signal is converted into a speed control signal for controlling the motor to a target rotation speed by the speed control means, and is supplied to a drive circuit built in the IC 140 so as to control the drive current.

【0006】前述したホール信号U及びVは信号合成手
段により和演算及び反転がなされ、合成信号Wとして出
力される。このとき、駆動磁極を正弦波状に形成すれば
ホール信号U及びVも正弦波状の信号となり、合成信号
Wも振幅が同じ正弦波状の信号として得られる。ホール
信号U,V及び合成信号Wは各々120度位相差の3相
位置信号を構成し駆動回路に供給され、駆動回路は3相
のステータコイルに、前述した速度制御信号に応じた大
きさの電流を、この位置信号に応じた比率に制御して流
すように作用する。この駆動電流により、ステータコイ
ル80はロータ10の回転に応じた回転磁界を生じさ
せ、駆動磁極の磁界との相互作用により回転駆動力を発
生する。
The above-mentioned Hall signals U and V are summed and inverted by the signal synthesizing means and output as a synthesized signal W. At this time, if the drive magnetic poles are formed in a sine wave shape, the Hall signals U and V also become sine wave signals, and the composite signal W is obtained as a sine wave signal having the same amplitude. The Hall signals U and V and the composite signal W each constitute a three-phase position signal having a phase difference of 120 degrees and are supplied to a drive circuit. The drive circuit supplies a three-phase stator coil with a magnitude corresponding to the speed control signal described above. The current acts to control and flow at a ratio corresponding to the position signal. The driving current causes the stator coil 80 to generate a rotating magnetic field corresponding to the rotation of the rotor 10 and generate a rotational driving force by interaction with the magnetic field of the driving magnetic pole.

【0007】[0007]

【発明が解決しようとする課題】近年、機器の小型化及
び効率向上が求められ、このようなブラシレスモータに
おいて、駆動電流を低減しトルクを増大する事が求めら
れており、このためには、総磁束量を増すことが有効と
考えられており、駆動磁極を正弦波から台形波状にする
ことが試みられている。駆動磁極を正弦波から台形波状
にしていくと、マグネットの特性で定まる最大磁束密度
は一定であるから、図8に示すように第3次高調波が含
有率が増大することに伴って基本波も増大しトルク増大
に寄与することが判明した。即ち、図4によると、例え
ば駆動磁極に10%の第3次高調波を含有するようにす
ると、基本波も10%程度増大し、この結果トルクも1
0%増大することが分かる。
In recent years, there has been a demand for miniaturization and improved efficiency of devices, and in such a brushless motor, it has been required to reduce the drive current and increase the torque. Increasing the total magnetic flux is considered to be effective, and attempts have been made to change the drive magnetic pole from a sine wave to a trapezoidal wave. When the driving magnetic pole is changed from a sine wave to a trapezoidal wave, the maximum magnetic flux density determined by the characteristics of the magnet is constant. Therefore, as shown in FIG. It has also been found that this also increases the torque. In other words, according to FIG. 4, for example, if the driving magnetic pole contains 10% of the third harmonic, the fundamental wave also increases by about 10%, and as a result, the torque also increases by 1%.
It can be seen that it increases by 0%.

【0008】しかし、ホール素子に磁束を供給する部分
も同様で、ホール信号もこの第3次高調波成分が含ま
れ、これらを和演算及び反転をなし合成信号Wを生成す
ると、ホール信号の波形と異なった歪みを多く含む波形
を生じ、各相のステータコイル相互の駆動電流の相違と
なり、これがトルクのムラとなってモータの回転ムラを
悪化させる原因となった。これらは図5に示すように、
駆動磁極の第3次高調波の含有率の増大にともなって回
転ムラが増大し、特に含有率が8%以上では回転ムラは
0.3%を超え使用に耐えない程となる問題を生じた。
本発明はかかる従来の問題点に鑑みなされたもので、請
求の範囲記載の構成とすることにより、トルクを増大
し、回転ムラも良好なブラシレスモータを提供するもの
である。
However, the same applies to the portion that supplies the magnetic flux to the Hall element. The Hall signal also contains this third harmonic component, and when these signals are summed and inverted to generate a composite signal W, the waveform of the Hall signal becomes A waveform including a lot of distortion different from the above was generated, resulting in a difference in drive current between the stator coils of each phase, which resulted in torque unevenness, which worsened the rotation unevenness of the motor. These are shown in FIG.
As the content of the third harmonic of the driving magnetic pole increases, the rotation unevenness increases. In particular, when the content is 8% or more, the rotation unevenness exceeds 0.3% and becomes unusable. .
SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem, and provides a brushless motor that increases torque and has good rotation unevenness by adopting the configuration described in the claims.

【0009】[0009]

【課題を解決するための手段】上述した課題を解決する
ために、本発明によるブラシレスモータ駆動制御回路
は、 駆動磁極を備えると共に回転自在に保持されるロ
ータと、前記駆動磁極と対向する3相のステータコイル
と、前記ロータの回転角度に応じた磁束を供給され、電
気角で120度の位相差のホール信号U及びVを出力す
る2個のホール素子と、前記ホール信号U及びVを合成
して前記ホール信号U及びVに対して電気角で120度
の位相差の合成信号Wを出力する信号合成手段と、前記
ホール信号U,V及び合成信号Wとに応じて前記ステー
タコイルに駆動電流を制御して流す駆動回路とを備えた
ブラシレスモータにおいて、前記信号合成手段は加算回
路と非線形変換手段とを含んで構成され、前記ロータの
回転角度に応じて前記ホール素子に磁束を供給する部分
の磁極波形が基本波と同相の第3次高調波成分及び第5
次高調波成分を含んでなり、前記第3次高調波成分の含
有率と前記第5次高調波成分の含有率との差が16%以
下であることを特徴とするものであり、また、前記駆動
回路は前記ホール信号Uに応じた信号と前記ホール信号
Vに応じた信号との差分Xと、前記ホール信号Vに応じ
た信号と前記合成信号Wに応じた信号との差分Yと、前
記合成信号Wに応じた信号と前記ホール信号Uに応じた
信号との差分Zとを生成し、前記差分X、Y及びZに応
じて前記ステータコイルに流す駆動電流を制御するよう
にしたことを特徴とするもの、更に、前記2個のホール
素子は機械角で60度以下の間隔で配置したことを特徴
とするもの、あるいは前記ホール素子はGaAs型ホー
ル素子であるものである。
In order to solve the above-mentioned problems, a brushless motor drive control circuit according to the present invention comprises: a rotor provided with a drive magnetic pole and rotatably held; and a three-phase rotor facing the drive magnetic pole. And two Hall elements that are supplied with a magnetic flux according to the rotation angle of the rotor and output Hall signals U and V having a phase difference of 120 degrees in electrical angle, and synthesize the Hall signals U and V. Signal combining means for outputting a combined signal W having a phase difference of 120 degrees in electrical angle with respect to the Hall signals U and V, and driving the stator coil according to the Hall signals U, V and the combined signal W In a brushless motor having a drive circuit for controlling and flowing an electric current, the signal synthesizing means is configured to include an addition circuit and a non-linear conversion means, and the signal synthesizing means is provided in accordance with a rotation angle of the rotor. The magnetic pole waveform of the portion that supplies the magnetic flux to the Hall element has the third harmonic component in phase with the fundamental wave and the fifth harmonic component.
And wherein the difference between the content of the third harmonic component and the content of the fifth harmonic component is 16% or less, and The drive circuit has a difference X between a signal corresponding to the Hall signal U and a signal according to the Hall signal V, a difference Y between a signal according to the Hall signal V and a signal according to the composite signal W, A difference Z between a signal corresponding to the composite signal W and a signal corresponding to the Hall signal U is generated, and a driving current flowing through the stator coil is controlled according to the differences X, Y, and Z. Further, the two Hall elements are arranged at an interval of 60 degrees or less in mechanical angle, or the Hall elements are GaAs type Hall elements.

【0010】[0010]

【発明の実施の形態】本発明の一実施例に係るブラシレ
スモータの外観構成は先に図1及び図2を用いて説明し
た従来例と略同様な構成であるので図1及び図2を再び
用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The appearance of a brushless motor according to an embodiment of the present invention is substantially the same as that of the prior art described with reference to FIGS. It will be described using FIG.

【0011】本発明に係るブラシレスモータでは、ロー
タ10の表面に8極の所定の第3次高調波成分と第5次
高調波成分を含ませた台形波状の駆動磁極を有する駆動
マグネット50が備えられており、ステータ20は従来
例と同様に回路パターンを形成した基板をベースに、6
個の空心コイルを60度間隔に回転中心と同軸に配し固
着されている。
The brushless motor according to the present invention is provided with a drive magnet 50 having a trapezoidal drive magnetic pole on the surface of the rotor 10 containing predetermined eight-pole third and fifth harmonic components. The stator 20 is based on a substrate on which a circuit pattern is formed in the same manner as in the prior art, and
The air core coils are arranged coaxially with the center of rotation at intervals of 60 degrees and fixed.

【0012】これらのコイルは前述した駆動磁極と平面
で対向しており、回転中心を挟んで対向する1組の2個
が直列に接続され、3組でスター結線の3相ステータコ
イル80を構成している。また、これらのコイルの中心
には2個のホール素子130が、前述した駆動磁極のホ
ール素子に磁極を供給する部分の磁束密度に応じ120
度位相差のホール信号U及びVを出力するように配設さ
れている。
These coils are opposed to the above-described drive magnetic poles in a plane, and a pair of two coils facing each other across the center of rotation are connected in series, and three sets constitute a star-connected three-phase stator coil 80. doing. In addition, two Hall elements 130 are provided at the center of these coils in accordance with the magnetic flux density of a portion for supplying the magnetic pole to the Hall element of the driving magnetic pole.
It is arranged so as to output Hall signals U and V of a phase difference.

【0013】更に、従来例同様にMR型感磁素子が配設
されFG信号を出力し、このFG信号は速度制御手段に
よりモータを目的の回転速度に制御する速度制御信号に
変換され、駆動電流を制御するように駆動回路手段に供
給される。
Further, similarly to the conventional example, an MR type magnetic sensing element is provided and outputs an FG signal. This FG signal is converted by a speed control means into a speed control signal for controlling the motor to a target rotation speed, and the drive current is controlled. Is supplied to the drive circuit means so as to control.

【0014】(第1実施例)図3は第1実施例の構成を示
すブロック図であり、図6は各波形を示す図である。以
下図面を参照して説明する。前述したホール信号U及び
Vは加算回路1及び非線形変換手段2より成る信号合成
手段で和演算及び反転をなし合成信号Wを出力する。こ
のとき駆動磁極のホール素子に磁束を供給する部分の磁
極波形は第3次高調波成分と第5次高調波成分を含ませ
た台形波状であるから、ホール信号U及びVも図6の
(a)、(b)に示すように台形波状の信号となり、合
成信号Wは同図の(c)に示すような歪んだ三角波状の
信号として得られる。
(First Embodiment) FIG. 3 is a block diagram showing the configuration of the first embodiment, and FIG. 6 is a diagram showing each waveform. This will be described below with reference to the drawings. The above-mentioned Hall signals U and V are summed and inverted by a signal synthesizing means comprising an adding circuit 1 and a non-linear conversion means 2 to output a synthesized signal W. At this time, the magnetic pole waveform of the portion of the drive magnetic pole that supplies the magnetic flux to the Hall element has a trapezoidal waveform including the third harmonic component and the fifth harmonic component, so that the Hall signals U and V are also shown in FIG. As shown in (a) and (b), the signal becomes a trapezoidal wave, and the combined signal W is obtained as a distorted triangular wave signal as shown in (c) of FIG.

【0015】三角波−台形波変換手段3は入力された三
角波状の合成信号Wを図6の(d)に示すような台形波
状の変換信号W’に変換し、入力信号のゼロクロス付近
ではゲインが高く、入力信号の振幅が大きくなるにつれ
てゲインが低下し最終的には入力振幅が上昇しても出力
振幅は殆ど上昇しないような特性を有し、入力振幅と出
力振幅との関係は三角波−台形波変換特性を有する。
The triangular-wave / trapezoidal-wave converting means 3 converts the input triangular-wave composite signal W into a trapezoidal-wave converted signal W 'as shown in FIG. 6 (d). High, the gain decreases as the amplitude of the input signal increases, and finally the output amplitude hardly increases even if the input amplitude increases. The relationship between the input amplitude and the output amplitude is triangular-trapezoidal. It has wave conversion characteristics.

【0016】具体的には本実施例の場合、入力振幅を3
/4乗した後、更に差動増幅器の対数変換特性を用いて
三角波状の信号を台形波状の信号に変換するよう構成し
ており、実験では1/2乗〜1/1乗の間で必要な変換
特性が得られ、特に1/2乗〜5/6乗で好ましい三角
波−台形波変換特性を得た。
Specifically, in the case of this embodiment, the input amplitude is set to 3
After the power of / 4, the signal is further converted from a triangular wave signal to a trapezoidal wave signal by using the logarithmic conversion characteristic of the differential amplifier. Conversion characteristics were obtained, and preferable triangular wave-trapezoidal wave conversion characteristics were obtained especially in the 乗 power to the / power.

【0017】ホール信号U、V及び変換信号W’は各々
120度位相差の3相位置信号を構成し、ホールアンプ
4,差動分配出力回路5,ステータコイル6により構成
される駆動回路手段7に供給される。駆動回路手段7は
3相のステータコイル6に、前述した速度制御信号に応
じた大きさの電流を、この位置信号に応じた比率に制御
して流すように作用する。
Each of the Hall signals U and V and the conversion signal W 'constitutes a three-phase position signal having a phase difference of 120 degrees, and a drive circuit means 7 comprising a Hall amplifier 4, a differential distribution output circuit 5, and a stator coil 6. Supplied to The drive circuit means 7 acts to flow a current of a magnitude corresponding to the above-described speed control signal to the three-phase stator coil 6 at a ratio corresponding to the position signal.

【0018】この駆動電流により、ステータコイル6は
ロータの回転に応じた回転磁界を生じさせ、駆動磁極の
磁界との相互作用により回転駆動力を発生する。しか
し、駆動磁極の第5次高調波を無くし、第3次高調波成
分のみを増していくと図6の(e)に示すように三角波
状の合成信号Wのゼロクロス付近の傾斜が小さくなり、
非線形変換手段を通しても図2のfに示すような歪んだ
台形波出力となり、回転ムラが悪化する問題がある。
The driving current causes the stator coil 6 to generate a rotating magnetic field corresponding to the rotation of the rotor, and generates a rotational driving force by interaction with the magnetic field of the driving magnetic pole. However, if the fifth harmonic of the driving magnetic pole is eliminated and only the third harmonic component is increased, the inclination of the triangular wave synthesized signal W near the zero cross becomes small as shown in FIG.
Even through the non-linear conversion means, the output becomes a distorted trapezoidal wave as shown in FIG.

【0019】特に第3次高調波の含有率が16%を超え
ると図6の(g)に示すように合成信号Wのゼロクロス
付近の傾斜が逆になり、図6の(h)に示すように極端
に歪んだ変換出力となり、逆方向の駆動トルクが発生す
るなど使用に耐えなくなる。
In particular, when the content of the third harmonic exceeds 16%, the slope near the zero cross of the composite signal W is reversed as shown in FIG. 6G, and as shown in FIG. 6H. The output becomes extremely distorted, and a driving torque in the reverse direction is generated, which makes the device unusable.

【0020】この問題の解決のため駆動磁極に第5次高
調波を含有させると上述の合成信号Wは図6の(i)に
示すようにゼロクロス付近の傾斜が良好となり変換波形
W’の歪みも図6の(j)に示すように低下し、良好な
回転ムラ特性を呈する。このため、第3次高調波の含有
率が16%を超えても、第3次高調波の含有率から第5
次高調波の含有率を差し引いた差が16%以下であれば
合成信号Wのゼロクロス付近の傾斜が逆にならず、逆方
向の駆動トルクも発生することはなく、第3次高調波と
第5次高調波の含有率の差が12%以下であれば更に良
好な回転ムラ特性をも示す。
When the fifth harmonic is included in the driving magnetic pole to solve this problem, the above-mentioned synthesized signal W has a good slope near the zero cross as shown in FIG. 6 also decreases as shown in FIG. 6 (j), and exhibits excellent rotation unevenness characteristics. For this reason, even if the content of the third harmonic exceeds 16%, the content of the third
If the difference obtained by subtracting the content of the second harmonic is 16% or less, the inclination of the synthesized signal W near the zero cross does not reverse, and no driving torque is generated in the reverse direction. If the difference in the content of the fifth harmonic is 12% or less, even better rotation unevenness characteristics are exhibited.

【0021】なお、駆動磁極のホール素子に磁束を供給
する部分の磁極波形が上述したように第3次高調波成分
及び第5次高調波成分を含んでいれば、上述の課題は解
決されるので、駆動磁極の他の部分の含有率が異なって
も同様の効果を得る。
The above-mentioned problem is solved if the magnetic pole waveform of the portion of the driving magnetic pole that supplies the magnetic flux to the Hall element contains the third harmonic component and the fifth harmonic component as described above. Therefore, the same effect can be obtained even if the contents of other parts of the driving magnetic pole are different.

【0022】(第2実施例)第1実施例で説明したよう
に、駆動回路手段7は3相のステータコイル6に、前記
した速度制御信号に応じた大きさの電流を、これらの信
号の大きさに応じた比率に制御して流すように作用する
かので、ホール信号U,V及び変換信号W’が台形波で
ある場合、3相のステータコイルの電流の比率の変化が
急峻となり、振動や騒音、電磁ノイズの発生量が増大す
る問題がある。
(Second Embodiment) As described in the first embodiment, the drive circuit means 7 supplies the three-phase stator coil 6 with a current having a magnitude corresponding to the speed control signal described above, If the Hall signals U and V and the conversion signal W ′ are trapezoidal waves, the change in the ratio of the currents of the three-phase stator coils becomes steep, because they act so as to flow in a controlled manner according to the size. There is a problem that the amount of generation of vibration, noise, and electromagnetic noise increases.

【0023】差動分配&出力合成手段5によって、ホー
ル信号Uに応じた信号とホール信号Vに応じた信号との
差分X、ホール信号Vに応じた信号と変換信号W’に応
じた信号との差分Y、及び変換信号W’に応じた信号と
ホール信号Uに応じた信号との差分Zを生成すると、差
分信号は第3次高調波信号が打ち消し合い、図6の
(k),(l),(m)に示すように略正弦波状とな
る。この略正弦波状の差分信号X,Y及びZに応じて前
記ステータコイル6に駆動電流を制御して流すように駆
動回路手段7を構成することにより、駆動磁極は台形波
でトルク増大の効果を得ながら、かつ、この3相のステ
ータイル6の電流の比率の変化が緩慢となり、振動や騒
音、電磁ノイズの発生量が減少し、上述した問題も解決
される。
The differential X between the signal corresponding to the Hall signal U and the signal corresponding to the Hall signal V, the signal corresponding to the Hall signal V, and the signal corresponding to the converted signal W ' Is generated, and the difference Z between the signal corresponding to the converted signal W ′ and the signal corresponding to the Hall signal U is generated, the third harmonic signal cancels out the difference signal, and (k) and (k) in FIG. 1) and (m) have a substantially sinusoidal shape. By configuring the drive circuit means 7 so as to control and supply a drive current to the stator coil 6 in accordance with the substantially sinusoidal difference signals X, Y and Z, the drive magnetic pole has a trapezoidal wave to increase the torque. At the same time, the change in the current ratio of the three-phase stator tail 6 becomes slow, the amount of vibration, noise, and electromagnetic noise is reduced, and the above-mentioned problem is solved.

【0024】(第3実施例)ロータの駆動マグネットは
注意して製作してもホール素子と対向する面に面振れが
残り、ホール素子に供給される磁束の磁束密度がロータ
の回転により変化する。この影響は、ホール素子出力の
振幅が回転内で大きくなる部分と小さくなる部分とが交
互に繰り返されるいわゆる1回転1サイクルのAM変調
となる。
(Third Embodiment) Even if the rotor driving magnet is manufactured with care, surface runout remains on the surface facing the Hall element, and the magnetic flux density of the magnetic flux supplied to the Hall element changes due to the rotation of the rotor. . This effect is what is called AM modulation of one cycle per rotation in which a portion where the amplitude of the Hall element output increases and a portion where the amplitude of the Hall element output decreases alternately are repeated.

【0025】信号合成手段を備えた回路の固有の問題と
して、2個のホール素子の配置が離れていると、一方の
ホール素子出力の振幅が大であるときに、他方のホール
素子の出力の振幅が小となり、合成信号W及び変換信号
W’の波形が変化し、回転ムラ増大の原因となる。
As an inherent problem of the circuit having the signal synthesizing means, if the arrangement of the two Hall elements is far apart, when the amplitude of one Hall element output is large, the output of the other Hall element becomes large. The amplitude becomes small, and the waveforms of the combined signal W and the converted signal W ′ change, causing an increase in rotation unevenness.

【0026】そこで図7に示すようにホール素子の機械
角における配置を30°とすると、その回転ムラの比率
は0.15%程度となる。図9は駆動マグネットのホー
ル素子と対向する面の面振れが大きい場合において、機
械角で表したホール素子の間隔と回転ムラとの関係を実
験で求めたもので、同図によればホール素子の間隔が6
0度以下で回転ムラ増大の影響が使用可能な0.25%
程度に低減され、45度以下では回転ムラ増大の影響は
無視し得る0.18%程度に小さくなる。
Therefore, as shown in FIG. 7, when the arrangement of the Hall elements in the mechanical angle is 30 °, the ratio of the rotation unevenness is about 0.15%. FIG. 9 shows the relationship between the distance between the Hall elements expressed in mechanical angles and the rotation unevenness in an experiment when the surface deflection of the surface of the drive magnet facing the Hall element is large. Is 6
0.25% at which the effect of increased rotation unevenness can be used below 0 degree
When the angle is 45 degrees or less, the influence of the increase in rotation unevenness is reduced to about 0.18%, which can be ignored.

【0027】(第4実施例)前述した非線形変換回路を
備えた場合の回路の固有の問題として、ホール素子の感
度が温度によって変化し、ホール素子出力の振幅が変化
すると、非線形変換手段の出力波形が変化する特性があ
り、回転ムラの増大につながる場合があり、使用できる
温度範囲が限定される。この問題解決のため、非線形変
換手段の変換特性を温度に応じて変化させ、出力波形を
補償する方法があるがその回路構成が複雑となる別の問
題を生じる。
(Fourth Embodiment) As an inherent problem of the circuit provided with the above-described nonlinear conversion circuit, when the sensitivity of the Hall element changes with temperature and the amplitude of the output of the Hall element changes, the output of the nonlinear conversion means is changed. There is a characteristic that the waveform changes, which may lead to an increase in rotation unevenness, and the usable temperature range is limited. In order to solve this problem, there is a method of changing the conversion characteristic of the non-linear conversion means according to the temperature and compensating the output waveform. However, another problem arises in that the circuit configuration becomes complicated.

【0028】このため、ホール素子に温度特性の良好な
GaAs型ホール素子を用いることにより、温度変化に
よりホール素子出力の振幅が変化することが少なくな
り、回路構成を複雑にすることなく、非線形変換手段の
出力波形が変化することがなく、温度に対して安定した
回転ムラが得られ、使用できる温度範囲が拡大される効
果がある。
For this reason, by using a GaAs type Hall element having good temperature characteristics as the Hall element, the amplitude of the output of the Hall element is less likely to change due to a temperature change, and the nonlinear conversion can be performed without complicating the circuit configuration. There is no change in the output waveform of the means, and there is obtained an effect that stable rotation unevenness with respect to temperature is obtained and the usable temperature range is expanded.

【0029】また、本実施例においてはいわゆるアキシ
ャルギャップ型のブラシレスモータで説明したが、ラジ
アルギャプ型のモータであっても本発明は実施可能で同
様な効果を得ることが出来る。更に、駆動磁極が同一面
に一体的に存在するモータについて説明したが、ステー
タコイルに磁束を供給する面と、ホール素子に磁束を供
給する面とに区分されて存在するようなブラシレスモー
タも本発明を逸脱するものではないなど、説明した実施
例に限らず種々の変形が可能である。
Although the present embodiment has been described with reference to a so-called axial gap type brushless motor, the present invention can be applied to a radial gap type motor and the same effects can be obtained. Furthermore, although the description has been given of the motor in which the driving magnetic poles are integrally provided on the same surface, a brushless motor in which the magnetic flux is supplied to the stator coil and the magnetic flux is supplied to the Hall element in a divided manner is also described. Various modifications are possible without being limited to the described embodiment, such as not departing from the invention.

【0030】[0030]

【発明の効果】本発明によれば、2つのホール素子から
出力されるホール信号U,Vを合成して合成信号Wを生
成するブラシレスモータの駆動回路制御装置において、
信号合成手段に非線形変換手段を含み、駆動磁極に第3
次高調波成分と第5次高調波成分を含有し、その含有率
の差を16%以下にすることによりトルクを増大し、効
率が良く消費電流が少なく回転ムラも良好とでき、また
ステータコイルの電流の比率の変化が緩慢となり、振動
や騒音、電磁ノイズの発生量が減少し、駆動マグネット
の面振れの影響が小さく歩留まりが向上し、使用できる
温度範囲の広いブラシレスモータを安価に提供すること
が出来るなどの効果を奏する。
According to the present invention, in a drive circuit control device for a brushless motor for generating a synthesized signal W by synthesizing Hall signals U and V output from two Hall elements,
The signal synthesizing means includes a non-linear conversion means, and the driving magnetic pole has a third
Includes a fifth harmonic component and a fifth harmonic component, and by increasing the difference between the contents to 16% or less, torque can be increased, efficiency can be reduced, current consumption can be reduced, and rotation unevenness can be improved. The change of the current ratio becomes slow, the amount of vibration, noise, and electromagnetic noise is reduced, the effect of the drive magnet surface runout is reduced, the yield is improved, and a brushless motor with a wide usable temperature range is provided at low cost. It has the effect of being able to do things.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 VTRのキャプスタン軸を直接駆動するブラ
シレスモータの断面図である。
FIG. 1 is a cross-sectional view of a brushless motor that directly drives a capstan shaft of a VTR.

【図2】 本発明の一実施例に係るブラシレスモータ駆
動制御回路に使用するブラシレスモータのステータの平
面図
FIG. 2 is a plan view of a brushless motor stator used in a brushless motor drive control circuit according to one embodiment of the present invention.

【図3】 本発明の一実施例に係るブラシレスモータ駆
動回路を示すブロック図である。
FIG. 3 is a block diagram showing a brushless motor drive circuit according to one embodiment of the present invention.

【図4】 第3次高調波の含有率によるトルク増大率を
示す図である。
FIG. 4 is a diagram showing a torque increase rate depending on a content rate of a third harmonic.

【図5】 第3次高調波の含有率による回転ムラの比率
を示す図である。
FIG. 5 is a diagram showing a ratio of rotation unevenness depending on a content rate of a third harmonic.

【図6】 ホール信号,合成信号及び変換信号の波形を
示す図である。
FIG. 6 is a diagram showing waveforms of a hall signal, a composite signal, and a converted signal.

【図7】 本発明の一実施例に係るブラシレスモータ駆
動制御回路に使用するブラシレスモータの他のステータ
の平面図である。
FIG. 7 is a plan view of another stator of the brushless motor used in the brushless motor drive control circuit according to one embodiment of the present invention.

【図8】 駆動磁極波形の比較図である。FIG. 8 is a comparison diagram of drive magnetic pole waveforms.

【図9】 ホール素子の間隔による回転ムラの比率を示
す図である。
FIG. 9 is a diagram illustrating a ratio of rotation unevenness depending on a distance between Hall elements.

【符号の説明】[Explanation of symbols]

1 加算回路 2 非線形変換手段 3 三角波−台形波変換手段 4 ホールアンプ 5 差動分配&出力合成手段 6 ステータコイル 7 駆動回路手段 DESCRIPTION OF SYMBOLS 1 Addition circuit 2 Nonlinear conversion means 3 Triangular wave-trapezoidal wave conversion means 4 Hall amplifier 5 Differential distribution & output synthesis means 6 Stator coil 7 Drive circuit means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】駆動磁極を備えると共に回転自在に保持さ
れるロータと、前記駆動磁極と対向する3相のステータ
コイルと、前記ロータの回転角度に応じた磁束を供給さ
れ、電気角で120度の位相差のホール信号U及びVを
出力する2個のホール素子と、前記ホール信号U及びV
を合成して前記ホール信号U及びVに対して電気角で1
20度の位相差の合成信号Wを出力する信号合成手段
と、前記ホール信号U,V及び合成信号Wとに応じて前
記ステータコイルに駆動電流を制御して流す駆動回路と
を備えたブラシレスモータにおいて、 前記信号合成手段は加算回路と非線形変換手段とを含ん
で構成され、前記ロータの回転角度に応じて前記ホール
素子に磁束を供給する部分の磁極波形が基本波と同相の
第3次高調波成分及び第5次高調波成分を含んでなり、
前記第3次高調波成分の含有率と前記第5次高調波成分
の含有率との差が16%以下であることを特徴とするブ
ラシレスモータ駆動制御回路。
1. A rotor having a driving magnetic pole and rotatably held therein, a three-phase stator coil facing the driving magnetic pole, and a magnetic flux corresponding to a rotation angle of the rotor is supplied, and an electrical angle of 120 degrees is provided. Two Hall elements for outputting Hall signals U and V having a phase difference of
And the Hall signals U and V are converted into 1 electrical angle.
A brushless motor comprising: signal combining means for outputting a combined signal W having a phase difference of 20 degrees; and a drive circuit for controlling and flowing a drive current to the stator coil according to the Hall signals U and V and the combined signal W. In the above, the signal synthesizing means includes an adding circuit and a non-linear conversion means, and a third-order harmonic in which a magnetic pole waveform of a portion for supplying a magnetic flux to the Hall element according to a rotation angle of the rotor has the same phase as a fundamental wave. A wave component and a fifth harmonic component,
A brushless motor drive control circuit, wherein a difference between the content of the third harmonic component and the content of the fifth harmonic component is 16% or less.
【請求項2】前記駆動回路は前記ホール信号Uに応じた
信号と前記ホール信号Vに応じた信号との差分Xと、前
記ホール信号Vに応じた信号と前記合成信号Wに応じた
信号との差分Yと、前記合成信号Wに応じた信号と前記
ホール信号Uに応じた信号との差分Zとを生成し、前記
差分X、Y及びZに応じて前記ステータコイルに流す駆
動電流を制御するようにしたことを特徴とする請求項1
に記載したブラシレスモータ駆動制御回路。
2. The driving circuit according to claim 1, wherein a difference X between a signal corresponding to the Hall signal U and a signal corresponding to the Hall signal V, a signal corresponding to the Hall signal V, and a signal corresponding to the composite signal W. And a difference Z between a signal corresponding to the composite signal W and a signal corresponding to the Hall signal U, and controls a drive current flowing through the stator coil according to the differences X, Y, and Z. 2. The method according to claim 1, wherein
The brushless motor drive control circuit described in the above.
【請求項3】前記2個のホール素子は機械角で60度以
下の間隔で配置したことを特徴とする請求項1又は2に
記載したブラシレスモータ駆動制御回路。
3. The brushless motor drive control circuit according to claim 1, wherein said two Hall elements are arranged at a mechanical angle of 60 degrees or less.
【請求項4】前記ホール素子はGaAs型ホール素子で
ある請求項1,2又は3に記載したブラシレスモータ駆
動制御回路。
4. The brushless motor drive control circuit according to claim 1, wherein said Hall element is a GaAs type Hall element.
JP26138596A 1996-07-31 1996-09-10 Brushless motor drive control circuit Expired - Lifetime JP3568078B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26138596A JP3568078B2 (en) 1996-09-10 1996-09-10 Brushless motor drive control circuit
US08/902,119 US5969489A (en) 1996-07-31 1997-07-29 Motor driving system for driving brushless motor
MYPI97003466A MY115100A (en) 1996-07-31 1997-07-30 Motor driving system for driving brushless motor
CN97118097A CN1067189C (en) 1996-07-31 1997-07-31 Motor driving system for driving brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26138596A JP3568078B2 (en) 1996-09-10 1996-09-10 Brushless motor drive control circuit

Publications (2)

Publication Number Publication Date
JPH1084690A true JPH1084690A (en) 1998-03-31
JP3568078B2 JP3568078B2 (en) 2004-09-22

Family

ID=17361124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26138596A Expired - Lifetime JP3568078B2 (en) 1996-07-31 1996-09-10 Brushless motor drive control circuit

Country Status (1)

Country Link
JP (1) JP3568078B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038739A1 (en) * 2006-09-29 2008-04-03 Daikin Industries, Ltd. Motor drive control apparatus and motor drive control system
KR101038332B1 (en) 2003-07-04 2011-05-31 페어차일드코리아반도체 주식회사 A driving circuit and driving method of three phase bldc motor
WO2016194919A1 (en) * 2015-06-02 2016-12-08 並木精密宝石株式会社 Control method for three-phase brushless dc motor and motor control device using such control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788067A (en) * 2016-12-19 2017-05-31 南京航空航天大学 Permagnetic synchronous motor position estimation method based on Hall switch position sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038332B1 (en) 2003-07-04 2011-05-31 페어차일드코리아반도체 주식회사 A driving circuit and driving method of three phase bldc motor
WO2008038739A1 (en) * 2006-09-29 2008-04-03 Daikin Industries, Ltd. Motor drive control apparatus and motor drive control system
US7719216B2 (en) 2006-09-29 2010-05-18 Daikin Industries, Ltd. Motor drive control device and motor drive control system
WO2016194919A1 (en) * 2015-06-02 2016-12-08 並木精密宝石株式会社 Control method for three-phase brushless dc motor and motor control device using such control method

Also Published As

Publication number Publication date
JP3568078B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
US9431934B2 (en) Motor controller with drive-signal conditioning
JP2004140897A (en) Single phase brushless dc motor
US5969489A (en) Motor driving system for driving brushless motor
JP3568078B2 (en) Brushless motor drive control circuit
JP3568075B2 (en) Drive control circuit for brushless motor
JPH0750880Y2 (en) Brushless motor drive circuit
JP2005117863A (en) Ac rotating electric machine device
JPH01286759A (en) Brushless motor
JPS6333395B2 (en)
JPH0561877B2 (en)
JPH0946999A (en) Commutator motor
JPS6321434B2 (en)
JP2541194B2 (en) Brushless motor
JPS63287386A (en) Brushless motor
JPS6070956A (en) Disk-shaped brushless motor
JPH0568954B2 (en)
JP3365167B2 (en) Brushless motor
JPH0763231B2 (en) Brushless motor drive circuit
JP3240868B2 (en) Motor with speed control
JPS61199453A (en) Dc brushless motor
JP2001186788A (en) Drive circuit of brushless motor
JPS5950764A (en) Torque generator using brushless motor
JPH02254990A (en) Three-phase brushless motor
JPS58119762A (en) Dc brushless motor
JPS6087692A (en) Drive circuit in dc brushless motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040610

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6