JPH1084221A - Polalization shared plane antenna - Google Patents

Polalization shared plane antenna

Info

Publication number
JPH1084221A
JPH1084221A JP23869596A JP23869596A JPH1084221A JP H1084221 A JPH1084221 A JP H1084221A JP 23869596 A JP23869596 A JP 23869596A JP 23869596 A JP23869596 A JP 23869596A JP H1084221 A JPH1084221 A JP H1084221A
Authority
JP
Japan
Prior art keywords
use frequency
feed line
elements
radiating
output terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23869596A
Other languages
Japanese (ja)
Inventor
Masahiko Ota
雅彦 太田
Hisayoshi Mizugaki
久良 水柿
Hironobu Ishizaka
裕宣 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP23869596A priority Critical patent/JPH1084221A/en
Publication of JPH1084221A publication Critical patent/JPH1084221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an antenna which excels in directivity with no deterioration of its efficiency by setting an element array space of radiation elements at a specific multiple as much as a free space wavelength of a 1st use frequency in an exciting direction of a radiation element. SOLUTION: The element array space P1 of radiation elements 7 is set by a feeder line 8 at about 0.813 times as much as the free space wavelength of a 1st use frequency in the exciting direction of the elements 7 together with the number of elements 7 set at a multiple of 16 respectively. Then the output terminal of the line 8 is used as an input terminal of the 2nd frequency that is equivalent to about 1.14 times as much as the 1st use frequency together with the output terminal of a feeder line 4 used as an output terminal for the 1st use frequency respectively. In regard to the directivity that is defined by the line 4 within a plane that is orthogonal to the exciting direction of the radiation elements 3, the null points are formed in directions of ±4.4 deg., ±8.8 deg. and ±13.2 deg. to the direction where the maximum interference radio wave arrives from an adjacent communication satellite, i.e., to the main radiation direction. Thereby, the influence of the interference radio wave sent from the adjacent communication satellite can be reduced when the 1st use frequency is used for reception.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波帯の衛
星通信等に用いられる偏波共用トリプレート型平面アン
テナに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dual-polarized triplate type planar antenna used for satellite communication in a microwave band.

【0002】[0002]

【従来の技術】マイクロ波帯の衛星通信では、送信と受
信を直交する偏波で区分しているため、これらの用途に
対応できるように1つのアンテナで直交する偏波が放射
可能で送受信に適当可能な平面アンテナが開発されてい
る。このような平面アンテナとして、本願発明者等は、
放射素子3と放射素子7を電磁結合させ、かつ給電線路
4による放射素子3の励振方向と給電線路8による放射
素子7の励振方向が直交した偏波共用平面アンテナを提
案し、1992年電子情報通信学会春季大会予稿B─6
2「偏波共用トリプレート給電型平面アンテナの放射特
性」に開示している。
2. Description of the Related Art In microwave band satellite communication, transmission and reception are separated by orthogonal polarizations, so that orthogonal polarization can be radiated by one antenna so that transmission and reception can be performed in order to support these applications. Suitable possible planar antennas have been developed. As such a planar antenna, the present inventors have
The radiating element 3 and the radiating element 7 are electromagnetically coupled, and a dual-polarized planar antenna in which the excitation direction of the radiating element 3 by the feed line 4 and the excitation direction of the radiating element 7 by the feed line 8 are orthogonal is proposed in 1992. Proceedings of the IEICE Spring Meeting B6
2 "Radiation characteristics of a dual-polarized triplate-fed planar antenna".

【0003】また、送受信にも対応可能な2つの異なる
周波数で機能する偏波共用平面アンテナに関しても、論
文”Dual-frequency and Dual-polarization Low Sidel
obeMicrostrip Array Antenna for Satellite Communic
ations”(Proceeding ofISAP’92,P.P.1113-1116,)に
開示している。
[0003] Further, regarding a dual-polarized planar antenna functioning at two different frequencies capable of coping with transmission / reception, the paper "Dual-frequency and Dual-polarization Low Sidel" is also disclosed.
obeMicrostrip Array Antenna for Satellite Communic
ations "(Proceeding of ISAP '92, PP1113-1116,).

【0004】[0004]

【発明が解決しようとする課題】このような衛星通信に
用いられるアンテナでは、一般に他の衛星通信システム
への妨害を防ぐために、送信対象とする通信衛星以外の
隣接通信衛星に対して妨害電波の放射許容電力が規定さ
れるので、アンテナの指向性のうちのサイドローブレベ
ルを、規定レベル以下に抑圧する必要がある。また、受
信に際しても、隣接通信衛星からの電波が干渉信号とな
って受信性能が低下するため、アンテナの指向性のうち
のサイドローブレベルを、低く抑えなければならない。
In such an antenna used for satellite communication, generally, in order to prevent interference with other satellite communication systems, adjacent communication satellites other than the communication satellite to be transmitted are subjected to interference radio waves. Since the allowable radiation power is specified, it is necessary to suppress the side lobe level in the directivity of the antenna to a specified level or less. Also, at the time of reception, radio waves from adjacent communication satellites become interference signals and the reception performance deteriorates. Therefore, the side lobe level in the directivity of the antenna must be kept low.

【0005】ここで、アンテナ指向性のサイドローブレ
ベルを下げるためには、素子アレーアンテナの場合、各
素子への給電電力分布や位相分布が一様でない特殊な分
布とする必要があるため、アンテナの効率が低下し、所
望の利得が得られないという課題があった。
Here, in order to reduce the side lobe level of the antenna directivity, in the case of an element array antenna, it is necessary to make the power supply distribution and the phase distribution to each element a special distribution that is not uniform. However, there has been a problem that the efficiency of the method is reduced and a desired gain cannot be obtained.

【0006】本発明は、偏波共用平面アンテナにおい
て、効率低下を生じることなく指向性に優れたアンテナ
を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a dual-polarized planar antenna having excellent directivity without lowering the efficiency.

【0007】[0007]

【課題を解決するための手段】本発明の偏波共用トリプ
レート型平面アンテナは、図7に示すような、地導体1
1と、誘電体10と、複数の放射素子7と給電線路8を
形成した給電基板9と、誘電体6と、各スロット12が
前記放射素子7の真上に位置するように設置した複数の
スロット12を有する地導体1と、誘電体2と、複数の
放射素子3と給電線路4を形成した給電基板5と、誘電
体13と、各スロット14が前記放射素子3の真上に位
置するように設置した複数のスロット14を有する地導
体15とを、この順に積み重ね、前記放射素子3と前記
放射素子7を電磁結合させ、かつ前記給電線路4による
放射素子3の励振方向と前記給電線路8による放射素子
7の励振方向を直交させるように構成した偏波共用平面
アンテナにおいて、図1に示すように、前記給電線路8
による放射素子7の励振方向の素子配列間隔P1を、第
1の利用周波数の自由空間波長の概略0.813倍に設
定すると共に、配列素子数を16の倍数とし、さらに、
前記給電線路8の出力端子を前記第1の利用周波数の約
1.14倍に相当する第2の周波数の入力端子として用
いると共に、前記給電線路4の出力端子を、前記第1の
利用周波数の出力端子として用いることを特徴とする。
According to the present invention, there is provided a dual-polarized triplate planar antenna according to the present invention, as shown in FIG.
1, a dielectric 10, a plurality of radiating elements 7 and a feeding board 9 on which a feeding line 8 is formed, a dielectric 6, and a plurality of slots provided so that each slot 12 is located directly above the radiating element 7. A ground conductor 1 having a slot 12, a dielectric 2, a feed substrate 5 on which a plurality of radiating elements 3 and a feed line 4 are formed, a dielectric 13, and each slot 14 are located directly above the radiating element 3. And a ground conductor 15 having a plurality of slots 14 are stacked in this order, the radiating element 3 and the radiating element 7 are electromagnetically coupled, and the excitation direction of the radiating element 3 by the feed line 4 and the feed line As shown in FIG. 1, in the dual-polarized planar antenna configured so that the excitation directions of the radiating elements 7 by the
, The element arrangement interval P1 in the excitation direction of the radiating element 7 is set to approximately 0.813 times the free space wavelength of the first use frequency, the number of array elements is set to a multiple of 16, and
An output terminal of the feed line 8 is used as an input terminal of a second frequency corresponding to about 1.14 times the first use frequency, and an output terminal of the feed line 4 is used as an input terminal of the first use frequency. It is characterized in that it is used as an output terminal.

【0008】[0008]

【発明の実施の形態】また、本発明の偏波共用トリプレ
ート型平面アンテナは、図2に示すように、前記給電線
路8による放射素子7の励振方向と直交する方向の素子
配列間隔P2を、第1の利用周波数の自由空間波長の概
略0.879倍に設定し、配列素子数を15の倍数と
し、さらに、前記給電線路8の出力端子を前記第1の利
用周波数の約1.14倍に相当する第2の周波数の入力
端子として用いると共に、前記給電線路4の出力端子
を、前記第1の利用周波数の出力端子として用いること
もできる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 2, in a dual-polarized triplate type planar antenna according to the present invention, an element arrangement interval P2 in a direction orthogonal to the excitation direction of the radiating element 7 by the feed line 8 is set. Is set to approximately 0.879 times the free space wavelength of the first use frequency, the number of array elements is a multiple of 15, and the output terminal of the feed line 8 is set to about 1.14 of the first use frequency. The output terminal of the feed line 4 can be used as an output terminal of the first use frequency while being used as an input terminal of the second frequency corresponding to the double frequency.

【0009】さらに本発明の偏波共用トリプレート型平
面アンテナは、図3に示すように、前記給電線路8によ
る放射素子7の励振方向の素子配列間隔P1を、第1の
利用周波数の自由空間波長の概略0.725倍に設定し
て配列素子数を20素子とし、これと直交する方向の素
子配列間隔P2を、第1の利用周波数の自由空間波長の
概略0.879倍に設定して配列素子数を20素子と
し、かつ、前記給電基板5の配列間隔P1方向の両端か
ら2列目内で各々20素子相当の無給電素子部、また
は、素子欠落部を形成し、さらに、前記給電線路8の出
力端子を前記第1の利用周波数の約1.14倍に相当す
る第2の周波数の入力端子として用いると共に、前記給
電線路4の出力端子を、前記第1の利用周波数の出力端
子として用いることもできる。
Further, in the dual-polarized triplate type planar antenna of the present invention, as shown in FIG. 3, the element arrangement interval P1 in the excitation direction of the radiating element 7 by the feed line 8 is set to the free space of the first use frequency. The wavelength is set to approximately 0.725 times and the number of array elements is set to 20. The element array interval P2 in the direction orthogonal to this is set to approximately 0.879 times the free space wavelength of the first use frequency. The number of arranged elements is 20 and a passive element portion or an element missing portion corresponding to each of 20 elements is formed in the second row from both ends of the power supply substrate 5 in the direction of the arrangement interval P1. An output terminal of the line 8 is used as an input terminal of a second frequency corresponding to about 1.14 times the first use frequency, and an output terminal of the feed line 4 is used as an output terminal of the first use frequency. Can also be used as Kill.

【0010】また、図3において、前記素子配列間隔P
1を、図4に示すように、第1の利用周波数の自由空間
波長の概略0.708倍に設定し、かつ、前記配列間隔
P1方向の両端から2列目内の無給電素子部、または、
素子欠落部を各々24素子相当分形成することもでき
る。
In FIG. 3, the element arrangement interval P
1 is set to approximately 0.708 times the free space wavelength of the first use frequency, as shown in FIG. 4, and the parasitic element portion in the second row from both ends in the arrangement interval P1 direction, or ,
The element missing portions can be formed corresponding to 24 elements each.

【0011】本発明の偏波共用平面アンテナは、図1に
示すように、素子配列間隔P1を、第1の利用周波数の
自由空間波長の概略0.813倍に設定すると共に、配
列素子数を16の倍数としているので、給電線路4の出
力端子を、第1の利用周波数の出力端子として用いる
と、給電線路4による放射素子3の励振方向と直交する
面内の指向性は、図5に示すように、隣接通信衛星から
の干渉電波の最大到来方向、すなわち主放射方向から±
4.4゜、±8.8゜、±13.2゜の方向にヌル点が
形成され、第1の利用周波数で受信する場合、隣接通信
衛星からの干渉電波の影響を軽減することができる。
In the dual-polarized planar antenna according to the present invention, as shown in FIG. 1, the element arrangement interval P1 is set to approximately 0.813 times the free space wavelength of the first use frequency, and the number of arrangement elements is reduced. When the output terminal of the feed line 4 is used as the output terminal of the first use frequency, the directivity of the feed line 4 in a plane orthogonal to the excitation direction of the radiating element 3 is shown in FIG. As shown, the maximum arrival direction of the interfering radio wave from the adjacent communication satellite, that is, ±
Null points are formed in the directions of 4.4 °, ± 8.8 °, and ± 13.2 °, and when receiving at the first use frequency, the influence of interference radio waves from adjacent communication satellites can be reduced. .

【0012】また、本発明の偏波共用平面アンテナは、
図2に示すように、素子配列間隔P2を、第1の利用周
波数の自由空間波長の概略0.879倍に設定すると共
に、配列素子数を15の倍数としているので、給電線路
4の出力端子を、第1の利用周波数の出力端子として用
いると、給電線路4による放射素子3の励振方向の指向
性においても、図5に示すように、隣接通信衛星からの
干渉電波の最大到来方向、すなわち主放射方向から±
4.4゜、±8.8゜、±13.2゜の方向にヌル点が
形成できるので、図2の構成は、図1の構成の偏波方向
に対して直交する偏波方向の場合に対応できる。
A dual-polarized planar antenna according to the present invention comprises:
As shown in FIG. 2, the element arrangement interval P2 is set to approximately 0.879 times the free space wavelength of the first use frequency and the number of array elements is set to a multiple of 15, so that the output terminal of the feed line 4 Is used as the output terminal of the first use frequency, the directivity of the excitation direction of the radiating element 3 by the feed line 4 also becomes the maximum arrival direction of the interference radio wave from the adjacent communication satellite as shown in FIG. ± from main radiation direction
Since null points can be formed in the directions of 4.4 °, ± 8.8 °, and ± 13.2 °, the configuration of FIG. 2 is applied to the case of a polarization direction orthogonal to the polarization direction of the configuration of FIG. Can respond to.

【0013】さらに、図3に示す場合は、単純に給電線
路8による放射素子7の励振方向の素子配列間隔P1
を、第1の利用周波数の自由空間波長の概略0.725
倍に設定し、配列素子数を20素子とし、これと直交す
る方向の素子配列間隔P2を、第1の利用周波数の自由
空間波長の概略0.879倍に設定し、配列素子数を2
0素子としただけでは、給電線路4による放射素子3の
励振方向と直交する面内の指向性は、主放射方向から±
4.4゜、±8.8゜、±13.2゜の方向にヌル点を
形成することはできないが、前記給電基板5の配列間隔
P1方向の両端から2列目内で各々20素子相当の無給
電素子部、または、素子欠落部を形成することで、図5
に示すようなヌル点を形成することができる。
Further, in the case shown in FIG. 3, the element arrangement interval P1 in the excitation direction of the radiation element 7 by the feed line 8 is simply used.
Is approximately 0.725 of the free space wavelength of the first use frequency.
The number of array elements is set to 20 elements, the element array interval P2 in the direction orthogonal to this is set to approximately 0.879 times the free space wavelength of the first use frequency, and the number of array elements is set to 2
If only the 0 element is used, the directivity of the feed line 4 in a plane orthogonal to the excitation direction of the radiating element 3 is ±± from the main radiation direction.
Although null points cannot be formed in the directions of 4.4 °, ± 8.8 °, and ± 13.2 °, 20 elements are respectively equivalent in the second row from both ends in the direction of the arrangement interval P1 of the power supply substrate 5. By forming the parasitic element part or the element missing part of FIG.
Null points can be formed as shown in FIG.

【0014】また、図4に示す場合も、単純に、給電線
路8による放射素子7の励振方向の素子配列間隔P1
を、第1の利用周波数の自由空間波長の概略0.708
倍に設定し、配列素子数を20素子とし、これと直交す
る方向の素子配列間隔P2を、第1の利用周波数の自由
空間波長の概略0.879倍に設定し、配列素子数を2
0素子としただけでは、給電線路4による放射素子3の
励振方向と直交する面内の指向性は、主放射方向から±
4.4゜、±8.8゜、±13.2゜の方向にヌル点を
形成することはできないが、前記給電基板5の配列間隔
P1方向の両端から2列目内で各々24素子相当分の無
給電素子部、または、素子欠落部を形成することで、図
5に示すようなヌル点を形成することができる。
Also, in the case shown in FIG. 4, the element arrangement interval P1 in the excitation direction of the radiating element 7 by the feed line 8 is simply described.
Is approximately 0.708 of the free space wavelength of the first use frequency.
The number of array elements is set to 20 elements, the element array interval P2 in the direction orthogonal to this is set to approximately 0.879 times the free space wavelength of the first use frequency, and the number of array elements is set to 2
If only the 0 element is used, the directivity of the feed line 4 in a plane orthogonal to the excitation direction of the radiating element 3 is ±± from the main radiation direction.
Although null points cannot be formed in the directions of 4.4 °, ± 8.8 °, and ± 13.2 °, 24 elements are equivalent in the second row from both ends of the feed board 5 in the direction of the arrangement interval P1. By forming the passive element portion or the element missing portion for each minute, a null point as shown in FIG. 5 can be formed.

【0015】一方、図1の構成において、給電線路8の
出力端子を前記第1の利用周波数の約1.14倍に相当
する第2の周波数の入力端子として用いると、第1の利
用周波数の自由空間波長の概略0.813倍に設定した
素子配列間隔P1は、第2の周波数の自由空間波長の概
略0.926倍に相当するため、第2の周波数に対して
高効率特性を維持することができ、さらに放射素子3が
放射素子7に対して無給電素子として作用するので、放
射素子単体の指向性が主放射方向へ絞られて、アレーを
構成した際に各素子への給電電力の振幅や位相の分布を
制御することなく一様な分布とした場合でも、図6に示
すように乱れの少ない良好な指向性が得られるので、第
2の周波数で送信する場合、効率を低下させることなく
送信対象とする通信衛星以外の隣接通信衛星への妨害電
波を抑制することができる。
On the other hand, in the configuration of FIG. 1, if the output terminal of the feed line 8 is used as the input terminal of the second frequency corresponding to about 1.14 times the first use frequency, Since the element arrangement interval P1 set to approximately 0.813 times the free space wavelength corresponds to approximately 0.926 times the free space wavelength of the second frequency, high efficiency characteristics are maintained for the second frequency. Further, since the radiating element 3 acts as a parasitic element with respect to the radiating element 7, the directivity of the radiating element itself is narrowed in the main radiation direction, and the power supplied to each element when the array is formed is reduced. Even if the amplitude and phase distributions are uniform without controlling the distribution, good directivity with little disturbance can be obtained as shown in FIG. 6, so that efficiency is reduced when transmitting at the second frequency. Messages to be sent without It is possible to suppress the jamming of the adjacent communication satellite other than the satellite.

【0016】また、図2の構成においても同様に給電線
路8による放射素子7の励振方向の素子配列間隔PI
を、第2の周波数の自由空間波長に対して高効率特性を
維持できるように設定すればよく、図3の構成でも、第
1の利用周波数の自由空間波長の概略0.725倍に設
定した素子配列間隔P1は、第2の周波数の自由空間波
長の概略0.827倍に相当するため第2の周波数に対
して高効率特性を維持することができ、図4の構成で
も、第1の利用周波数の自由空間波長の概略0.708
倍に設定した素子配列間隔P1は、第2の周波数の自由
空間波長の概略0.804倍に相当するため、第2の周
波数に対して高効率特性を維持することができる。さら
に図1の構成同様、放射素子3が放射素子7に対して無
給電素子として作用するので放射素子単体の指向性が主
放射方向へ絞られて、アレーを構成した際に各素子への
給電電力の振幅や位相の分布を制御することなく一様な
分布とした場合でも、図6に示すような乱れの少ない良
好な指向性が得られるので、第2の周波数で送信する場
合、効率を低下させることなく送信対象とする通信衛星
以外の隣接通信衛星への妨害電波を抑制することができ
る。
In the configuration shown in FIG. 2, similarly, the element arrangement interval PI in the excitation direction of the radiating element 7 by the feed line 8 is used.
May be set so as to maintain high efficiency characteristics with respect to the free space wavelength of the second frequency. In the configuration of FIG. 3 as well, it is set to approximately 0.725 times the free space wavelength of the first use frequency. Since the element arrangement interval P1 is equivalent to approximately 0.827 times the free space wavelength of the second frequency, high efficiency characteristics can be maintained for the second frequency. Even in the configuration of FIG. Approximately 0.708 of free space wavelength of use frequency
Since the doubled element arrangement interval P1 is equivalent to approximately 0.804 times the free space wavelength of the second frequency, high efficiency characteristics can be maintained for the second frequency. Further, as in the configuration of FIG. 1, the radiating element 3 acts as a parasitic element to the radiating element 7, so that the directivity of the radiating element itself is narrowed in the main radiation direction, and power is supplied to each element when an array is formed. Even if the distribution is uniform without controlling the distribution of the power amplitude and phase, good directivity with little disturbance as shown in FIG. 6 can be obtained. It is possible to suppress interference radio waves to adjacent communication satellites other than the communication satellite to be transmitted without lowering.

【0017】[0017]

【実施例】【Example】

実施例1 図7に示す構成において、地導体1及び15として厚さ
0.5mm、地導体11として厚さ1mmで、大きさは
各々450mmのアルミ板を用い、誘電体2、6、10
及び13として厚さ1mmで比誘電率約1.1のポリエ
チレンフォームを用い、また給電基板5及び9として厚
さ25μmのPETフィルムに厚さ35μmの銅箔を貼
り合わせた基板を用いた。給電基板5には放射素子3及
び給電線路4を含むアンテナ回路を、給電基板9には放
射素子7及び給電線路8を含むアンテナ回路を銅箔の不
要な箇所をエッチング除去して形成した。また、地導体
1及び15の放射素子3及び7にあたる位置にはスロッ
ト12及び14をプレス加工して形成した。さらに前記
放射素子3の給電線路4による励振方向の寸法を第1の
利用周波数12.5GHzの自由空間波長λ(=24m
m)に対し約0.33倍とし、これと直交する方向の寸
法を約0.25倍とし、また、前記放射素子7の給電線
路8による励振方向の寸法を第1の利用周波数12.5
GHzの自由空間波長λ(=24mm)に対し約0.3
8倍とし、これと直交する方向の寸法を約0.33倍と
した、またスロット12及び14は一辺が第1の利用周
波数12.5GHzの自由空間波長λ(=24mm)に
対し約0.54倍の正方形とした。上記の構成により、
図1に示すように、素子配列間隔P1を第1の利用周波
数12.5GHzの自由空間波長λ(=24mm)に対
し約0.813倍となる19.5mmに設定し、かつP
1方向の配列素子数を16素子とした。また、これと直
交する方向の素子配列間隔P2を、第1の利用周波数1
2.5GHzの自由空間波長λ(=24mm)に対し約
0.879倍となる21.1mmに設定し、かつ、P2
方向の配列素子数を20素子とし、さらに、各素子への
給電電力の振幅は均一として、すべての素子を同位相で
励振した。本アンテナの第1の利用周波数12.5GH
zにおけるP1方向の指向性は、図5に示すように隣接
通信衛星からの干渉電波の最大到来方向、すなわち主放
射方向から±4.4゜、±8.8゜、±13.2゜の方
向にヌル点が形成できた。また、給電線路8の出力端子
を前記第1の利用周波数の約1.14倍に相当する第2
の周波数14.25GHzの入力端子として用いた場合
のP1方向の指向性は、図6に示すように、広角範囲に
渡って規定レベル以下の乱れの少ない良好な指向性が得
られた。
Example 1 In the configuration shown in FIG. 7, an aluminum plate having a thickness of 0.5 mm as the ground conductors 1 and 15 and a thickness of 1 mm as the ground conductor 11 and a size of 450 mm each was used.
And 13, a polyethylene foam having a thickness of 1 mm and a relative dielectric constant of about 1.1 was used. Further, as power supply substrates 5 and 9, a substrate in which a 35 μm thick copper foil was bonded to a 25 μm thick PET film was used. An antenna circuit including the radiating element 3 and the feeding line 4 was formed on the feeding substrate 5, and an antenna circuit including the radiating element 7 and the feeding line 8 was formed on the feeding substrate 9 by removing unnecessary portions of the copper foil by etching. Slots 12 and 14 were formed by pressing at positions corresponding to the radiating elements 3 and 7 of the ground conductors 1 and 15. Further, the dimension of the radiating element 3 in the excitation direction by the feed line 4 is set to a free space wavelength λ (= 24 m) of the first use frequency 12.5 GHz.
m), and the dimension in the direction orthogonal to this is about 0.25 times, and the dimension of the radiating element 7 in the excitation direction by the feed line 8 is the first use frequency 12.5.
About 0.3 for a free space wavelength λ (= 24 mm) of GHz.
The length in the direction perpendicular to this is about 0.33 times, and the length of each of the slots 12 and 14 is about 0.2 with respect to the free space wavelength λ (= 24 mm) of the first use frequency 12.5 GHz. It was a 54 times square. With the above configuration,
As shown in FIG. 1, the element arrangement interval P1 is set to 19.5 mm, which is about 0.813 times the free space wavelength λ (= 24 mm) of the first use frequency 12.5 GHz, and P
The number of array elements in one direction was set to 16 elements. Further, the element arrangement interval P2 in the direction orthogonal to this is set to the first use frequency 1
It is set to 21.1 mm, which is about 0.879 times the free space wavelength λ (= 24 mm) of 2.5 GHz, and P2
The number of elements in the direction was 20 elements, and the amplitude of the power supplied to each element was made uniform, and all the elements were excited in the same phase. The first use frequency of this antenna is 12.5 GH
As shown in FIG. 5, the directivity in the P1 direction at z is ± 4.4 °, ± 8.8 °, ± 13.2 ° from the maximum arrival direction of interference radio waves from adjacent communication satellites, that is, the main radiation direction. A null point was formed in the direction. Further, the output terminal of the feed line 8 is connected to a second terminal corresponding to about 1.14 times the first use frequency.
As for the directivity in the P1 direction when used as an input terminal having a frequency of 14.25 GHz, as shown in FIG. 6, a good directivity with less disturbance below a specified level over a wide angle range was obtained.

【0018】実施例2 図2に示すように、素子配列間隔P2を第1の利用周波
数12.5GHzの自由空間波長λ(=24mm)に対
し約0.879倍となる21.1mmに設定し、かつ、
P2方向の配列素子数を15素子とした。また、これと
直交する方向の素子配列間隔P1を第1の利用周波数1
2.5GHzの自由空間波長λ(=24mm)に対し約
0.813倍となる19.5mmに設定し、かつ、P1
方向の配列素子数を20素子とした以外は、実施例1と
同様にアンテナを製作した。本アンテナの第1の利用周
波数12.5GHzにおけるP2方向の指向性は、図5
に示すように隣接通信衛星からの干渉電波の最大到来方
向、すなわち主放射方向から±4.4゜、±8.8゜、
±13.2゜の方向にヌル点が形成できた。また、給電
線路8の出力端子を前記第1の利用周波数の約1.14
倍に相当する第2の周波数14.25GHzの入力端子
として用いた場合のP2方向の指向性は、図6に示すよ
うに、広角範囲に渡って規定レベル以下の乱れの少ない
良好な指向性が得られた。
Embodiment 2 As shown in FIG. 2, the element arrangement interval P2 is set to 21.1 mm which is about 0.879 times the free space wavelength λ (= 24 mm) of the first use frequency 12.5 GHz. ,And,
The number of array elements in the P2 direction was set to 15 elements. Further, the element arrangement interval P1 in the direction orthogonal to this is set to the first use frequency 1
It is set to 19.5 mm, which is about 0.813 times the free space wavelength λ (= 24 mm) of 2.5 GHz, and P1
An antenna was manufactured in the same manner as in Example 1, except that the number of array elements in the direction was changed to 20. The directivity of the present antenna in the P2 direction at the first use frequency of 12.5 GHz is shown in FIG.
As shown in the figure, the maximum arrival direction of interference radio waves from adjacent communication satellites, that is, ± 4.4 °, ± 8.8 ° from the main radiation direction,
A null point was formed in the direction of ± 13.2 °. Further, the output terminal of the feed line 8 is set to about 1.14 of the first use frequency.
As shown in FIG. 6, the directivity in the P2 direction when used as an input terminal having a second frequency of 14.25 GHz, which is twice as large, has good directivity with less disturbance below a specified level over a wide angle range. Obtained.

【0019】実施例3 図3に示すように、素子配列間隔P1を第1の利用周波
数12.5GHzの自由空間波長λ(=24mm)に対
し約0.725倍となる17.4mmに設定し、かつ、
P1方向の配列素子数を20素子とした。また、これと
直交する方向の素子配列間隔P2を第1の利用周波数1
2.5GHzの自由空間波長λ(=24mm)に対し約
0.879倍となる21.1mmに設定し、かつ、P2
方向の配列素子数も20素子とし、さらに、給電基板5
の配列間隔P1方向の両端から2列目内で各々20素子
相当の無給電素子部を形成した以外は、実施例1と同様
にアンテナを製作した。本アンテナの第1の利用周波数
12.5GHzにおけるP2方向の指向性は、図5に示
すように隣接通信衛星からの干渉電波の最大到来方向、
すなわち主放射方向から±4.4゜、±8.8゜、±1
3.2゜の方向にヌル点が形成できた。また、給電線路
8の出力端子を前記第1の利用周波数の約1.14倍に
相当する第2の周波数14.25GHzの入力端子とし
て用いた場合のP2方向の指向性は、図6に示すよう
に、広角範囲に渡って規定レベル以下の乱れの少ない良
好な指向性が得られた。
Embodiment 3 As shown in FIG. 3, the element arrangement interval P1 is set to 17.4 mm which is about 0.725 times the free space wavelength λ (= 24 mm) of the first use frequency 12.5 GHz. ,And,
The number of array elements in the P1 direction was set to 20 elements. Also, the element arrangement interval P2 in the direction orthogonal to this is set to the first use frequency 1
It is set to 21.1 mm, which is about 0.879 times the free space wavelength λ (= 24 mm) of 2.5 GHz, and P2
The number of array elements in the direction is also 20 elements, and
An antenna was manufactured in the same manner as in Example 1 except that parasitic elements corresponding to 20 elements were formed in the second row from both ends in the direction of the arrangement interval P1. As shown in FIG. 5, the directivity in the P2 direction at the first use frequency 12.5 GHz of the present antenna indicates the maximum arrival direction of the interference radio wave from the adjacent communication satellite,
That is, ± 4.4 °, ± 8.8 °, ± 1 from the main radiation direction
A null point was formed in the direction of 3.2 °. FIG. 6 shows the directivity in the P2 direction when the output terminal of the feed line 8 is used as an input terminal of the second frequency 14.25 GHz corresponding to about 1.14 times the first use frequency. As described above, good directivity with less disturbance below a specified level was obtained over a wide angle range.

【0020】実施例4 図4に示すように、素子配列間隔P1を第1の利用周波
数12.5GHzの自由空間波長λ(=24mm)に対
し約0.708倍となる16.9mmに設定し、かつ、
P1方向の配列素子数を20素子とした。また、これと
直交する方向の素子配列間隔P2を第1の利用周波数1
2.5GHzの自由空間波長λ(=24mm)に対し約
0.879倍となる21.1mmに設定し、かつ、P2
方向の配列素子数も20素子とし、さらに、給電基板5
の配列間隔P1方向の両端から2列目内で各々24素子
相当の無給電素子部を形成した以外は、実施例1と同様
にアンテナを製作した。本アンテナの第1の利用周波数
12.5GHzにおけるP2方向の指向性は、図5に示
すように隣接通信衛星からの干渉電波の最大到来方向、
すなわち主放射方向から±4.4゜、±8.8゜、±1
3.2゜の方向にヌル点が形成できた。また、給電線路
8の出力端子を前記第1の利用周波数の約1.14倍に
相当する第2の周波数14.25GHzの入力端子とし
て用いた場合のP2方向の指向性は、図6に示すよう
に、広角範囲に渡って規定レベル以下の乱れの少ない良
好な指向性が得られた。
Embodiment 4 As shown in FIG. 4, the element arrangement interval P1 is set to 16.9 mm which is about 0.708 times the free space wavelength λ (= 24 mm) of the first use frequency 12.5 GHz. ,And,
The number of array elements in the P1 direction was set to 20 elements. Also, the element arrangement interval P2 in the direction orthogonal to this is set to the first use frequency 1
It is set to 21.1 mm, which is about 0.879 times the free space wavelength λ (= 24 mm) of 2.5 GHz, and P2
The number of array elements in the direction is also 20 elements, and
An antenna was manufactured in the same manner as in Example 1 except that parasitic elements corresponding to 24 elements were formed in the second row from both ends in the direction of the arrangement interval P1. As shown in FIG. 5, the directivity in the P2 direction at the first use frequency 12.5 GHz of the present antenna indicates the maximum arrival direction of the interference radio wave from the adjacent communication satellite,
That is, ± 4.4 °, ± 8.8 °, ± 1 from the main radiation direction
A null point was formed in the direction of 3.2 °. FIG. 6 shows the directivity in the P2 direction when the output terminal of the feed line 8 is used as an input terminal of the second frequency 14.25 GHz corresponding to about 1.14 times the first use frequency. As described above, good directivity with less disturbance below a specified level was obtained over a wide angle range.

【0021】[0021]

【発明の効果】以上説明したように、本発明によって給
電線路4の出力端子を第1の利用周波数の出力端子とし
て用いると、隣接通信衛星からの干渉電波の最大到来方
向、すなわち主放射方向から±4.4゜、±8.8゜、
±13.2゜の方向にヌル点が形成され、第1の利用周
波数で受信する場合、隣接通信衛星からの干渉電波の影
響を軽減することができる。さらに、給電線路8の出力
端子を前記第1の利用周波数の約1.14倍に相当する
第2の周波数の入力端子として用いると、放射素子3が
放射素子7に対して無給電素子として作用するので、放
射素子単体の指向性が主放射方向へ絞られて、アレーを
構成した際に、各素子への給電電力の振幅や位相の分布
を制御することなく一様な分布とした場合でも、乱れの
少ない良好な指向性が得られるので、第2の周波数で送
信する場合、効率を低下させることなく送信対象とする
通信衛星以外の隣接通信衛星への妨害電波を抑制するこ
とができる。
As described above, when the output terminal of the feed line 4 is used as the output terminal of the first use frequency according to the present invention, the maximum arrival direction of the interference radio wave from the adjacent communication satellite, that is, from the main radiation direction. ± 4.4 ゜, ± 8.8 ゜,
When a null point is formed in the direction of ± 13.2 ° and reception is performed at the first use frequency, the influence of interference radio waves from an adjacent communication satellite can be reduced. Further, when the output terminal of the feed line 8 is used as an input terminal of a second frequency corresponding to about 1.14 times the first use frequency, the radiating element 3 acts as a parasitic element with respect to the radiating element 7. Therefore, even if the directivity of the radiating element itself is narrowed down in the main radiation direction and an array is configured, even if the distribution of the amplitude and phase of the power supply to each element is made uniform without controlling the distribution. Since good directivity with little disturbance can be obtained, when transmitting at the second frequency, it is possible to suppress interference radio waves to adjacent communication satellites other than the communication satellite to be transmitted without lowering the efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す給電基板5及び9の平
面図である。
FIG. 1 is a plan view of power supply boards 5 and 9 showing one embodiment of the present invention.

【図2】本発明の他の一実施例を示す給電基板5及び9
の平面図である。
FIG. 2 shows power supply substrates 5 and 9 showing another embodiment of the present invention.
FIG.

【図3】本発明の他の一実施例を示す給電基板5及び9
の平面図である。
FIG. 3 shows power supply substrates 5 and 9 showing another embodiment of the present invention.
FIG.

【図4】本発明の他の一実施例を示す給電基板5及び9
の平面図である。
FIG. 4 shows power supply substrates 5 and 9 showing another embodiment of the present invention.
FIG.

【図5】本発明の一実施例の第1の利用周波数における
指向性特性を示す線図である。
FIG. 5 is a diagram showing directivity characteristics at a first use frequency according to one embodiment of the present invention.

【図6】本発明の一実施例の第2の利用周波数における
指向性特性を示す線図である。
FIG. 6 is a diagram showing directivity characteristics at a second use frequency according to one embodiment of the present invention.

【図7】本発明のアンテナの基本構成を示す斜視図であ
る。
FIG. 7 is a perspective view showing a basic configuration of an antenna according to the present invention.

【符号の説明】[Explanation of symbols]

1.地導体 2.誘電体 3.放射素子 4.給電線路 5.給電基板 6.誘電体 7.放射素子 8.給電線路 9.給電基板 10.誘電体 11 地導体 12.スロット 13.誘電体 14.スロット 15.地導体 1. Ground conductor 2. Dielectric 3. Radiating element 4. Feeding line 5. Power supply board 6. Dielectric 7. Radiating element 8. Feeding line 9. Power supply board 10. Dielectric 11 Ground conductor 12. Slot 13. Dielectric 14. Slot 15. Earth conductor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】地導体11と、誘電体10と、複数の放射
素子7と給電線路8を形成した給電基板9と、誘電体6
と、各スロット12が前記放射素子7の真上に位置する
ように設置した複数のスロット12を有する地導体1
と、誘電体2と、複数の放射素子3と給電線路4を形成
した給電基板5と、誘電体13と、各スロット14が前
記放射素子3の真上に位置するように設置した複数のス
ロット14を有する地導体15とを、この順に積み重
ね、前記放射素子3と前記放射素子7を電磁結合させ、
かつ前記給電線路4による放射素子3の励振方向と前記
給電線路8による放射素子7の励振方向を直交させるよ
うに構成した偏波共用平面アンテナにおいて、前記給電
線路8による放射素子7の励振方向の素子配列間隔P1
を、第1の利用周波数の自由空間波長の概略0.813
倍に設定すると共に、配列素子数を16の倍数とし、さ
らに、前記給電線路8の出力端子を、前記第1の利用周
波数の約1.14倍に相当する第2の利用周波数の入力
端子として用いると共に、前記給電線路4の出力端子
を、前記第1の利用周波数の出力端子として用いること
を特徴とする偏波共用平面アンテナ。
A feeder board on which a plurality of radiating elements and a feeder line are formed;
And a ground conductor 1 having a plurality of slots 12 installed such that each slot 12 is located directly above the radiating element 7.
, A dielectric 2, a feed substrate 5 on which a plurality of radiating elements 3 and a feed line 4 are formed, a dielectric 13, and a plurality of slots provided such that each slot 14 is located directly above the radiating element 3. And a ground conductor 15 having a radiating element 14 are stacked in this order, and the radiating element 3 and the radiating element 7 are electromagnetically coupled,
In addition, in the dual-polarized planar antenna configured so that the excitation direction of the radiation element 3 by the feed line 4 and the excitation direction of the radiation element 7 by the feed line 8 are orthogonal to each other, the excitation direction of the radiation element 7 by the feed line 8 is Element arrangement interval P1
Is approximately 0.813 of the free space wavelength of the first use frequency.
At the same time, the number of array elements is set to a multiple of 16, and the output terminal of the feed line 8 is used as an input terminal of a second use frequency corresponding to about 1.14 times the first use frequency. And an output terminal of the feed line 4 is used as an output terminal of the first use frequency.
【請求項2】地導体11と、誘電体10と、複数の放射
素子7と給電線路8を形成した給電基板9と、誘電体6
と、各スロット12が前記放射素子7の真上に位置する
ように設置した複数のスロット12を有する地導体1
と、誘電体2と、複数の放射素子3と給電線路4を形成
した給電基板5と、誘電体13と、各スロット14が前
記放射素子3の真上に位置するように設置した複数のス
ロット14を有する地導体15とを、この順に積み重
ね、前記放射素子3と前記放射素子7を電磁結合させ、
かつ前記給電線路4による放射素子3の励振方向と前記
給電線路8による放射素子7の励振方向を直交させるよ
うに構成した偏波共用平面アンテナにおいて、前記給電
線路8による放射素子7の励振方向と直交する方向の素
子配列間隔P2を、第1の利用周波数の自由空間波長の
概略0.879倍に設定し、配列素子数を15の倍数と
し、さらに、前記給電線路8の出力端子を、前記第1の
利用周波数の約1.14倍に相当する第2の周波数の入
力端子として用いると共に、前記給電線路4の出力端子
を、前記第1の利用周波数の出力端子として用いること
を特徴とする偏波共用平面アンテナ。
2. A feeder board 9 on which a ground conductor 11, a dielectric 10, a plurality of radiating elements 7 and feeder lines 8 are formed, and a dielectric 6
And a ground conductor 1 having a plurality of slots 12 installed such that each slot 12 is located directly above the radiating element 7.
, A dielectric 2, a feed substrate 5 on which a plurality of radiating elements 3 and a feed line 4 are formed, a dielectric 13, and a plurality of slots provided such that each slot 14 is located directly above the radiating element 3. And a ground conductor 15 having a radiating element 14 are stacked in this order, and the radiating element 3 and the radiating element 7 are electromagnetically coupled,
Further, in the dual-polarized planar antenna configured so that the excitation direction of the radiation element 3 by the feed line 4 and the excitation direction of the radiation element 7 by the feed line 8 are orthogonal to each other, the excitation direction of the radiation element 7 by the feed line 8 The element arrangement interval P2 in the orthogonal direction is set to approximately 0.879 times the free space wavelength of the first use frequency, the number of array elements is set to a multiple of 15, and the output terminal of the feed line 8 is It is used as an input terminal of a second frequency corresponding to about 1.14 times the first use frequency, and an output terminal of the feed line 4 is used as an output terminal of the first use frequency. Dual-polarized planar antenna.
【請求項3】地導体11と、誘電体10と、複数の放射
素子7と給電線路8を形成した給電基板9と、誘電体6
と、各スロット12が前記放射素子7の真上に位置する
ように設置した複数のスロット12を有する地導体1
と、誘電体2と、複数の放射素子3と給電線路4を形成
した給電基板5と、誘電体13と、各スロット14が前
記放射素子3の真上に位置するように設置した複数のス
ロット14を有する地導体15とを、この順に積み重
ね、前記放射素子3と前記放射素子7を電磁結合させ、
かつ前記給電線路4による放射素子3の励振方向と前記
給電線路8による放射素子7の励振方向を直交させるよ
うに構成した偏波共用平面アンテナにおいて、前記給電
線路8による放射素子7の励振方向の素子配列間隔P1
を、第1の利用周波数の自由空間波長の概略0.725
倍に設定し、配列素子数を20素子とし、これと直交す
る方向の素子配列間隔P2を、第1の利用周波数の自由
空間波長の概略0.879倍に設定し、配列素子数を2
0素子とし、かつ、前記給電基板5の配列間隔P1方向
の両端から2列目内に各々20素子相当の無給電素子
部、または、素子欠落部を形成し、さらに、前記給電線
路8の出力端子を、前記第1の利用周波数の約1.14
倍に相当する第2の周波数の入力端子として用いると共
に、前記給電線路4の出力端子を、前記第1の利用周波
数の出力端子として用いることを特徴とする偏波共用平
面アンテナ。
3. A feeder board 9 on which a ground conductor 11, a dielectric 10, a plurality of radiating elements 7 and a feeder line 8 are formed, and a dielectric 6
And a ground conductor 1 having a plurality of slots 12 installed such that each slot 12 is located directly above the radiating element 7.
, A dielectric 2, a feed substrate 5 on which a plurality of radiating elements 3 and a feed line 4 are formed, a dielectric 13, and a plurality of slots provided such that each slot 14 is located directly above the radiating element 3. And a ground conductor 15 having a radiating element 14 are stacked in this order, and the radiating element 3 and the radiating element 7 are electromagnetically coupled,
In addition, in the dual-polarized planar antenna configured so that the excitation direction of the radiation element 3 by the feed line 4 and the excitation direction of the radiation element 7 by the feed line 8 are orthogonal to each other, the excitation direction of the radiation element 7 by the feed line 8 is Element arrangement interval P1
Is approximately 0.725 of the free space wavelength of the first use frequency.
The number of array elements is set to 20 elements, the element array interval P2 in the direction orthogonal to this is set to approximately 0.879 times the free space wavelength of the first use frequency, and the number of array elements is set to 2
A passive element portion or an element missing portion corresponding to 20 elements each in the second column from both ends in the direction of the arrangement interval P1 of the power supply board 5 and the output of the power supply line 8 The terminal is connected to about 1.14 of the first use frequency.
2. A dual-polarized planar antenna, wherein the antenna is used as an input terminal of a second frequency corresponding to the frequency, and an output terminal of the feed line 4 is used as an output terminal of the first use frequency.
【請求項4】素子配列間隔P1を、第1の利用周波数の
自由空間波長の概略0.705倍に設定すると共に、前
記配列間隔P1方向の両端から2列目内の無給電素子
部、または、素子欠落部を、各々24素子相当分形成し
ていることを特徴とする請求項3に記載の偏波共用平面
アンテナ。
4. An element arrangement interval P1 is set to approximately 0.705 times the free space wavelength of the first use frequency, and a parasitic element portion in a second column from both ends in the arrangement interval P1 direction, or 4. The dual-polarized planar antenna according to claim 3, wherein each of the element missing portions corresponds to 24 elements.
JP23869596A 1996-09-10 1996-09-10 Polalization shared plane antenna Pending JPH1084221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23869596A JPH1084221A (en) 1996-09-10 1996-09-10 Polalization shared plane antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23869596A JPH1084221A (en) 1996-09-10 1996-09-10 Polalization shared plane antenna

Publications (1)

Publication Number Publication Date
JPH1084221A true JPH1084221A (en) 1998-03-31

Family

ID=17033931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23869596A Pending JPH1084221A (en) 1996-09-10 1996-09-10 Polalization shared plane antenna

Country Status (1)

Country Link
JP (1) JPH1084221A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322194B1 (en) * 1999-06-30 2001-11-27 Silverbrook Research Pty Ltd Calibrating a micro electro-mechanical device
US20120062420A1 (en) * 2007-12-06 2012-03-15 Chang Donald C D Satellite Ground Terminal Incorporating a Smart Antenna that Rejects interference
JP2016063330A (en) * 2014-09-17 2016-04-25 日本無線株式会社 Planar antenna element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322194B1 (en) * 1999-06-30 2001-11-27 Silverbrook Research Pty Ltd Calibrating a micro electro-mechanical device
US20120062420A1 (en) * 2007-12-06 2012-03-15 Chang Donald C D Satellite Ground Terminal Incorporating a Smart Antenna that Rejects interference
US10490892B2 (en) * 2007-12-06 2019-11-26 Spatial Digital Systems, Inc. Satellite ground terminal incorporating a smart antenna that rejects interference
JP2016063330A (en) * 2014-09-17 2016-04-25 日本無線株式会社 Planar antenna element

Similar Documents

Publication Publication Date Title
US6480167B2 (en) Flat panel array antenna
KR100542829B1 (en) High Gain and Wideband Microstrip Patch Antenna for Transmitting/Receiving and Array Antenna Arraying it
US4916457A (en) Printed-circuit crossed-slot antenna
US4464663A (en) Dual polarized, high efficiency microstrip antenna
US5510803A (en) Dual-polarization planar antenna
EP1070366B1 (en) Multiple parasitic coupling from inner patch antenna elements to outer patch antenna elements
US6535169B2 (en) Source antennas for transmitting/receiving electromagnetic waves for satellite telecommunications systems
US5400042A (en) Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna
US9379438B1 (en) Fragmented aperture for the Ka/K/Ku frequency bands
JP3029231B2 (en) Double circularly polarized TEM mode slot array antenna
US10978812B2 (en) Single layer shared aperture dual band antenna
CN112332111B (en) Double circular polarization expandable active subarray
US6618012B1 (en) Device for transmitting and/or receiving signals
JP3782278B2 (en) Beam width control method of dual-polarized antenna
JP4081228B2 (en) Dual-polarized planar antenna
KR100618653B1 (en) Circular Polarized Microstrip Patch Antenna for Transmitting/Receiving and Array Antenna Arraying it for Sequential Rotation Feeding
KR20050075966A (en) Omnidirectional antenna
JPH1084221A (en) Polalization shared plane antenna
JPH06237119A (en) Shared plane antenna for polarized waves
JPH06125214A (en) Planar antenna
JP3304019B2 (en) ARRAY ANTENNA, RECEIVER HAVING THE SAME, AND METHOD OF DETERMINING DIRECTIVITY CHARACTERISTICS IN ARRAY ANTENNA
KR100449836B1 (en) Wideband Microstrip Patch Antenna for Transmitting/Receiving and Array Antenna Arraying it
JP2002217639A (en) Phased array antenna and transmitter/receiver using the same
JPH09312515A (en) Shared polarized wave planar antenna
JP3292487B2 (en) Array antenna

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050331

A131 Notification of reasons for refusal

Effective date: 20050414

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051115