JPH1082856A - Distance measuring equipment - Google Patents

Distance measuring equipment

Info

Publication number
JPH1082856A
JPH1082856A JP25781296A JP25781296A JPH1082856A JP H1082856 A JPH1082856 A JP H1082856A JP 25781296 A JP25781296 A JP 25781296A JP 25781296 A JP25781296 A JP 25781296A JP H1082856 A JPH1082856 A JP H1082856A
Authority
JP
Japan
Prior art keywords
wave
peak
distance
received
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25781296A
Other languages
Japanese (ja)
Inventor
Eiji Murao
英治 村尾
Naoyuki Hikita
尚之 疋田
Hideo Hosoya
英生 細谷
Satoshi Morioka
里志 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP25781296A priority Critical patent/JPH1082856A/en
Publication of JPH1082856A publication Critical patent/JPH1082856A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the distance measuring accuracy without being influenced by dispersion or the like of the levels of transmitted-received wave by detecting the respective waveform peaks of transmitted direct wave and received wave, making the peak of the direct wave the transmit time while making the peak of the received wave the receive time, and measuring the distance on the basis of time difference between both time. SOLUTION: In this distance measuring device, wave motion is transmitted in a pulse state directing in a prescribed detecting direction by a transmitting device 5, the wave motion reflected by a subject 6 is received by a receiving device 7 to convert it into an electric signal, and the distance to the subject 6 is measured on the basis of time difference between the transmitted wave and received wave. In this case, each waveform peak of transmitted direct wave and received wave is detected by a peak detecting circuit 11, and the peak of the direct wave is made transmit time, while the peak of the received wave is made receive time to measure the distance on the basis of time difference between both time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば車両のフ
ロント側、リヤ側に装備されたコーナセンサ、バックソ
ナーのように駐車時その他の必要時に障害物(被検物
体)との距離を計測するような距離測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the distance to an obstacle (object to be inspected) when parking or other necessity, such as a corner sensor mounted on the front side or rear side of a vehicle, or a back sonar, for example. To such a distance measuring device.

【0002】[0002]

【従来の技術】従来、上述例の距離測定装置としては例
えば図5に示す如き回路構成の装置がある。すなわち、
システム制御部51から送信トリガを送信部52(送信
波形を形成する回路)に出力し、この送信部52はトラ
ンスジューサ53内の送波部を駆動して波動(たとえば
超音波)を被検物体55の方向に向けてパルス状に送波
し、被検物体55で反射された波動をトランスジューサ
53内の受波部56で受波し、この受波波動を電気信号
に変換した後に次段の増幅器57で増幅し、さらに検波
器58で増幅後の受波信号の包絡線を抽出するような検
波処理を実行すると共に、予めしきい値が設定された比
較器59で受波レベルがしきい値に達した時に距離計数
部60(いわゆるカウンタ)にストップトリガを出力
し、先の送信トリガ出力と同時に距離計数部60に出力
させたスタートトリガと、このストップトリガとの間の
時間(送波と受波との時間差)に基づいて車両61(図
6,図7参照)と被検物体55との間の距離を測定する
装置である。
2. Description of the Related Art Conventionally, as a distance measuring apparatus of the above-described example, there is an apparatus having a circuit configuration as shown in FIG. That is,
A transmission trigger is output from the system control unit 51 to a transmission unit 52 (a circuit that forms a transmission waveform). The transmission unit 52 drives a transmission unit in the transducer 53 to generate a wave (eg, an ultrasonic wave). , And the wave reflected by the test object 55 is received by the wave receiving unit 56 in the transducer 53, and the wave received is converted into an electric signal, and then converted into an electric signal. Amplification is performed at 57, and a detection process is performed to extract the envelope of the amplified reception signal at a detector 58, and the reception level is set to a threshold value at a comparator 59 whose threshold value is set in advance. When the stop trigger is reached, a stop trigger is output to the distance counting unit 60 (so-called counter), and the time between the start trigger output to the distance counting unit 60 at the same time as the output of the previous transmission trigger and the stop trigger (wave transmission and Receiving waves Vehicle 61 (FIG. 6 based on the time difference), it is a device for measuring the distance between the see FIG. 7) and the test object 55.

【0003】しかし、上述のトランスジューサ53の発
振子を保護するゴム等の保護部材が雰囲気温度の影響を
受ける等して送波レベルがばらつき、さらに図6、図7
に示すように車両61を後進させながら駐車するような
場合、車両61と被検物体55A,55Bまでの距離が
同じであっても、被検物体55A,55Bの形態(図面
では一例として壁面55Aと照明灯ポール55Bを示
す)により反射強度にばらつきが生じ、これら両被検物
体55A,55Bで反射された波動(受波)のレベルが
異なる。つまり送波レベルと受波レベルとが共にばらつ
くために、これらの各波のレベルのばらつき等に影響さ
れて、高精度の測距精度を確保することができない問題
点があった。
However, the transmission level fluctuates due to the influence of the ambient temperature on the protection member such as rubber for protecting the oscillator of the transducer 53 described above.
In the case where the vehicle 61 is parked while moving backward as shown in FIG. 5, even if the distance between the vehicle 61 and the test objects 55A and 55B is the same, the form of the test objects 55A and 55B (the wall surface 55A as an example in the drawing). And the illumination light pole 55B), the reflection intensity varies, and the levels of the waves (received waves) reflected by the two test objects 55A and 55B are different. That is, since both the transmission level and the reception level vary, there has been a problem that it is not possible to secure high-accuracy distance measurement accuracy due to variations in the level of each of these waves.

【0004】特に上記波動に超音波を用いると、残響の
影響を受けるうえに、送信波の変動分が大きく、かつ測
距レンジが短いため、上述のばらつきに起因して測距精
度がさらに悪化する問題点があった。
In particular, when an ultrasonic wave is used for the above-mentioned wave, the accuracy of the distance measurement is further deteriorated due to the above-described variation because the fluctuation of the transmission wave is large and the distance measurement range is short in addition to the influence of reverberation. There was a problem to do.

【0005】一方、特開平5−100026号公報に記
載の如く、レーザ測距する測距装置において、複数のし
きい値を設定し、受波信号を複数のしきい値と比較する
ことで、受波のピーク値近傍のタイミングを決定して、
送波タイミングと受波タイミングとに基づいて伝搬時間
を求めるように構成したものもあるが、完全なピークを
検出することができないうえ、回路構成が複雑化し、加
えて、同公報に開示されたものは受波側のみの対策であ
るから、波動として超音波を用いる場合には送波側の悪
影響を補償することができない問題点があった。
On the other hand, as described in Japanese Patent Application Laid-Open No. 5-100026, in a distance measuring apparatus for laser distance measurement, a plurality of threshold values are set, and a received signal is compared with the plurality of threshold values. Determine the timing near the peak value of the received wave,
There is also a configuration in which the propagation time is determined based on the transmission timing and the reception timing, but a complete peak cannot be detected, and the circuit configuration is complicated, and in addition, it is disclosed in the publication. However, when the ultrasonic wave is used as the wave, there is a problem that the adverse effect on the transmitting side cannot be compensated.

【0006】[0006]

【発明が解決しようとする課題】この発明の請求項1記
載の発明は、送波直接波と受波とのそれぞれの波形のピ
ークを検出し、直接波のピークを送波時刻、受波のピー
クを受波時刻として、これら両時刻の時間差に基づいて
測距することで、送受波のレベルのばらつき等に影響さ
れることがなく、測距精度の向上を図ることができる距
離測定装置の提供を目的とする。
SUMMARY OF THE INVENTION The invention according to claim 1 of the present invention detects peaks of respective waveforms of a transmitted direct wave and a received wave, and detects the peak of the direct wave at the transmission time and the received wave. By measuring the distance based on the time difference between these two times with the peak as the receiving time, the distance measuring device can improve the distance measuring accuracy without being affected by the variation in the level of the transmitting and receiving waves. For the purpose of providing.

【0007】この発明の請求項2記載の発明は、上記請
求項1記載の発明の目的と併せて、ピーク検出に微分型
ピーク検出回路を用いることで、微分処理により変化率
を検出し、簡単な回路構成でありながら正確なピーク検
出を行なうことができる距離測定値の提供を目的とす
る。
According to a second aspect of the present invention, in addition to the object of the first aspect of the present invention, a differential type peak detection circuit is used for peak detection, so that a change rate can be detected by a differential processing, and It is an object of the present invention to provide a distance measurement value capable of performing accurate peak detection with a simple circuit configuration.

【0008】この発明の請求項3記載の発明は、上記請
求項1もしくは2記載の発明の目的と併せて、波動とし
て超音波を用いることで、特に残響や送受波レベルの変
動等の影響が大きい超音波であっても正確な測距が達成
でき、この超音波に好適な距離測定装置の提供を目的と
する。
According to a third aspect of the present invention, in addition to the object of the first or second aspect of the present invention, the use of ultrasonic waves as waves makes it possible to reduce the effects of reverberation and fluctuations in transmission and reception levels. An object of the present invention is to provide a distance measuring device that can achieve accurate distance measurement even with a large ultrasonic wave and is suitable for the ultrasonic wave.

【0009】[0009]

【課題を解決するための手段】この発明の請求項1記載
の発明は、波動を所定検知方向に向けてパルス状に送波
装置で送波し、被検物体で反射された上記波動を受波装
置にて受波して電気信号に変換し、送波と受波との時間
差に基づいて被検物体までの距離を測定する距離測定装
置であって、送波直接波と受波との各々の波形のピーク
をピーク検出回路で検出し、直接波のピークを送波時
刻、受波のピークを受波時刻として、これら両者時間差
に基づいて測距する距離測定装置であることを特徴とす
る。
According to the first aspect of the present invention, a wave is transmitted in a pulsed manner in a predetermined detection direction by a transmitting device, and the wave reflected by an object to be detected is received. A distance measuring device that receives a wave by a wave device, converts the signal into an electric signal, and measures a distance to a test object based on a time difference between the transmitted wave and the received wave. It is a distance measuring device that detects a peak of each waveform with a peak detection circuit, sets a peak of a direct wave as a transmission time and a peak of a reception as a reception time, and measures a distance based on a time difference between the two. I do.

【0010】この発明の請求項2記載の発明は、上記請
求項1記載の発明の目的と併せて、上記ピーク検出回路
を微分型ピーク検出回路に設定した距離測定装置である
ことを特徴とする。
According to a second aspect of the present invention, in addition to the object of the first aspect, the present invention is a distance measuring apparatus in which the peak detection circuit is set as a differential peak detection circuit. .

【0011】この発明の請求項3記載の発明は、上記請
求項1もしくは2記載の発明の目的と併せて、上記波動
を超音波に設定した距離測定装置であることを特徴とす
る。
According to a third aspect of the present invention, in addition to the object of the first or second aspect, the present invention is a distance measuring apparatus in which the wave is set to an ultrasonic wave.

【0012】[0012]

【発明の作用及び効果】この発明の請求項1記載の発明
によれば、上述の送波装置は波動を所定検知方向に向け
てパルス状に送波し、上述の受波装置は被検物体で反射
された波動を受波するが、上記ピーク検出回路は送波直
接波の波形のピークと、受波の波形のピークとをそれぞ
れ検出し、このピーク検出回路にて検出された直接波の
ピークを送波時刻、受波のピークを受波時刻として、こ
れら両時刻の時間差に基づいて測距するので、送受波の
レベルにばらつきがあっても、これらばらつきの何等影
響されることがなく、測距精度の向上を図ることができ
る効果がある。
According to the first aspect of the present invention, the above-described wave transmitting device transmits a wave in a pulse shape in a predetermined detection direction, and the above-described wave receiving device transmits the object to be measured. The peak detection circuit detects the peak of the waveform of the transmitted direct wave and the peak of the waveform of the received wave, respectively, and detects the peak of the direct wave detected by the peak detection circuit. Since the peak is the transmission time and the reception peak is the reception time, distance measurement is performed based on the time difference between these two times, so that even if there is a variation in the level of the transmission and reception, these variations are not affected at all. Thus, there is an effect that the ranging accuracy can be improved.

【0013】この発明の請求項2記載の発明によれば、
上記請求項1記載の発明の効果と併せて、上記ピーク検
出回路を微分型ピーク検出回路に設定したので、微分処
理により変化率を検出することができ、簡単な回路構成
でありながら、正確なピーク検出を行なうことができる
効果がある。
According to the invention described in claim 2 of the present invention,
In addition to the effect of the first aspect of the present invention, since the peak detection circuit is set as a differential type peak detection circuit, the rate of change can be detected by differential processing. There is an effect that peak detection can be performed.

【0014】この発明の請求項3記載の発明によれば、
上記請求項1もしくは2記載の発明の効果と併せて、上
述の波動を超音波に設定したので、特に残響や送受波レ
ベルの変動等の影響を受けやすい超音波であっても、上
記ピーク検出手段により正確な測距が達成でき、測距レ
ンジが短い超音波に好適となる効果がある。
According to the third aspect of the present invention,
Since the above-mentioned wave is set to the ultrasonic wave in addition to the effect of the invention of claim 1 or 2, the above-described peak detection is performed even for an ultrasonic wave which is particularly susceptible to reverberation or fluctuations in the transmission / reception level. By this means, accurate ranging can be achieved, and there is an effect that it is suitable for ultrasonic waves having a short ranging range.

【0015】つまりピーク検出手段により各波形のピー
クを検出するようにしたので、残響中であっても受波信
号の検知自身も容易で、かつ正確に行える。因に、単に
しきい等を設定して検知を行なう方法では特に残響中の
受波信号の検知自身が困難となる。
That is, since the peak of each waveform is detected by the peak detecting means, the detection of the received signal itself can be easily and accurately performed even during reverberation. However, in the method of performing detection by simply setting a threshold or the like, it is particularly difficult to detect a received signal during reverberation.

【0016】[0016]

【実施例】この発明の一実施例を以下図面に基づいて詳
述する。図面は距離測定装置を示し、図1において、こ
の距離測定装置1はシステム制御部2の次段に送信波形
を形成する送信部3を介して、超音波トランスジューサ
4の送波部5を接続している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings. The drawing shows a distance measuring device. In FIG. 1, the distance measuring device 1 is connected to a transmitting unit 5 of an ultrasonic transducer 4 via a transmitting unit 3 which forms a transmitting waveform at the next stage of the system control unit 2. ing.

【0017】上述の送波部5は波動すなわち超音波を被
検物体6の方向(所定検知方向)に向けてパルス状に送
波する送波装置であって、この被検物体6で反射された
波動は受波装置としての受波部7にて受波され、電気信
号に変換される。この実施例では上述の送波部5と受波
部7とは一体化されているが、図1にあっては説明の便
宜上、それぞれ分けて図示している。
The above-mentioned wave transmitting unit 5 is a wave transmitting device for transmitting a wave, that is, an ultrasonic wave in a pulse direction toward the object 6 (predetermined detection direction). The wave is received by the wave receiving unit 7 as a wave receiving device, and is converted into an electric signal. In this embodiment, the above-mentioned wave transmitting unit 5 and wave receiving unit 7 are integrated, but are separately shown in FIG. 1 for convenience of explanation.

【0018】上述の受波部7の次段には増幅器8、検波
器9、LPF(ローパスフィルタ)10、微分型ピーク
検出回路としての微分器11、比較器12、第1の立下
がり計数器13、第2の立下がり計数器14をこの順に
接続している。また、前述のシステム制御部2ライン1
5,16を介して各立下がり計数器13,14を接続す
る一方、第1の立下がり計数器1にスタート・トリガラ
イン17を介して距離計数部18いわゆるカウンタを接
続し、この距離計数部18にはストップ・トリガライン
19を介して第2の立下がり計数器14をも接続してい
る。
An amplifier 8, a detector 9, an LPF (low-pass filter) 10, a differentiator 11 as a differential peak detection circuit, a comparator 12, and a first falling counter are provided at a stage subsequent to the above-described wave receiving unit 7. 13, the second falling counter 14 is connected in this order. Also, the above-mentioned system control unit 2 line 1
Each of the falling counters 13 and 14 is connected to the first falling counter 1 via a start trigger line 17, and the falling counters 13 and 14 are connected to the first falling counter 1 via a start trigger line 17. The second falling counter 14 is also connected to 18 via a stop trigger line 19.

【0019】ここで、上述の増幅器8は電気信号に変換
後の受波信号を増幅し、上述の検波器9は増幅後の受波
信号の包絡線を抽出するような検波処理を実行し、上述
のLPE10は検波波型からノイズを除去し、上述の微
分器11はLPF出力を微分して送波直接波a(図2参
照)の波形のピークP1(図2において零クロスするポ
イントx1参照)と、受波bの波形のピークP2(図2
において零クロスするポイントx2参照)とを検出し、
比較器12は図2に示すような比較器出力を形成し、第
1の立下がり計数器13は比較器12出力の最初の立下
がりd1時に計数を開始し、2番目の立下がりd2時に
計数を終了し、第2の立下がり計数器14は比較器12
の2番目の立下がりd2時に計数を開始し、3番目の立
下がりd3時に計数を終了する。
Here, the above-mentioned amplifier 8 amplifies the received signal after being converted into an electric signal, and the above-mentioned detector 9 executes a detection process such as extracting the envelope of the amplified received signal. The above-described LPE 10 removes noise from the detection wave type, and the above-described differentiator 11 differentiates the LPF output to obtain a peak P1 of the waveform of the transmitted direct wave a (see FIG. 2) (see a point x1 at which zero crosses in FIG. 2). ) And the peak P2 of the waveform of the received wave b (FIG. 2).
At point x2 at which zero crossing occurs).
The comparator 12 forms a comparator output as shown in FIG. 2, the first falling counter 13 starts counting at the first falling d1 of the output of the comparator 12, and counting at the second falling d2. , And the second falling counter 14 outputs the comparator 12
The counting is started at the second falling d2, and the counting is finished at the third falling d3.

【0020】しかも、上述の直接波aのピークP1(ポ
イントx1参照)を送波時刻t1とし、この送波時刻t
1において第1の立下がり計数器13は距離計数器18
にスタート・トリガを印加し、受波bのピークP2(ポ
イントx2参照)を受波時刻t2とし、この受波時刻t
2において第2の立下がり計数器14は距離計数器18
にストップ・トリガを印加し、この距離計数器18は両
時刻t1,t2の時間差Δtに基づいて測距を実行す
る。つまり、上述の距離計数器18は時間差Δtと波の
伝搬速度との積をとって距離情報に変換する。
Further, the peak P1 (see point x1) of the direct wave a is set as a transmission time t1, and the transmission time t1
In FIG. 1, the first falling counter 13 is a distance counter 18
, A peak P2 of the received wave b (see point x2) is set as a received time t2, and the received time t
2, the second falling counter 14 is a distance counter 18
The distance counter 18 executes distance measurement based on the time difference Δt between both times t1 and t2. That is, the above-described distance counter 18 converts the time difference Δt and the propagation speed of the wave into distance information.

【0021】図示実施例は上述の如く構成するものにし
て、以下作用を説明する。システム制御部2からの送信
トリガを受けて送信部3は送信波形を形成し、送波部5
は被検物体6の方向に向けて超音波をパルス状に送波す
る。この被検物体6で反射された超音波は受波部7によ
り受波され、電気信号に変換されるが、ピーク検出回路
としての微分器11は増幅、検波、ノイズ除去後のLP
F出力を微分して変化率を検出することで、図2に示す
送波直接波aの波形のピークP1(ポイントx1参照)
と、受波bの波形のピークP2(ポイントx2参照)と
をそれぞれ検出し、この微分器11にて検出された直接
波aのピークP1を送波時刻t1、受波bのピークP2
を受波時刻として距離計数器18は各立下がり計数器1
3,14からのスタート・トリガ(時刻t1に印加)お
よびストップ・トリガ(時刻t2に印加)にて時間差
(Δt=t2−t1)をカウントし、この時間差Δtと
超音波の伝搬速度との積をとって距離情報に変換する。
The illustrated embodiment is constructed as described above, and the operation will be described below. Upon receiving a transmission trigger from the system control unit 2, the transmission unit 3 forms a transmission waveform, and the transmission unit 5
Transmits an ultrasonic wave in the direction of the test object 6 in a pulse form. The ultrasonic wave reflected by the test object 6 is received by the wave receiving unit 7 and converted into an electric signal. The differentiator 11 as a peak detection circuit performs LP detection after amplification, detection, and noise removal.
By detecting the rate of change by differentiating the F output, the peak P1 of the waveform of the direct transmission wave a shown in FIG. 2 (see point x1)
And the peak P2 (see point x2) of the waveform of the received wave b, respectively, and the peak P1 of the direct wave a detected by the differentiator 11 is transmitted at the transmission time t1 and the peak P2 of the received wave b.
Is the reception time, the distance counter 18
The time difference (Δt = t2−t1) is counted by a start trigger (applied at time t1) and a stop trigger (applied at time t2) from 3 and 14, and the product of the time difference Δt and the propagation speed of the ultrasonic wave is counted. To convert to distance information.

【0022】このように両波a,bのピークP1,P2
を検出し、上記時間差Δtに基づいて測距するので、送
受波のレベルにばらつきがあっても、これらばらつきに
何等影響されることがなく、測距精度の向上を図ること
ができる効果がある。また微分型ピーク検出回路として
の微分型11を用いるので、微分処理により変化率を検
出することができ、簡単な回路構成でありながら、正確
なピーク検出を行なうことができる効果がある。
As described above, the peaks P1 and P2 of the two waves a and b are obtained.
Is detected and the distance is measured based on the time difference Δt. Therefore, even if there is a variation in the level of the transmitted and received waves, the variation is not affected at all and there is an effect that the ranging accuracy can be improved. . Further, since the differential type 11 is used as the differential type peak detection circuit, the rate of change can be detected by the differential processing, and there is an effect that accurate peak detection can be performed with a simple circuit configuration.

【0023】さらに、残響や送受波レベルの変動等の影
響を受けやすい超音波を、波動として用いても、上述の
如きピーク検出手段によって正確な測距が達成できるの
で、測距レンジが短い超音波に好適となる効果がある。
加えて、図2に示す直接波aの残響領域cにおいても受
信波を抽出することができるうえ、装置全体の回路構成
も簡単かつ安価となる。さらには単一の微分器11にて
送波時刻t1と受波時刻t2とを検出することができる
ので、システムが簡単となる効果がある。
Furthermore, even if an ultrasonic wave which is easily affected by reverberation or fluctuations in the level of transmitted / received waves is used as a wave, accurate distance measurement can be achieved by the peak detecting means as described above. There is an effect that is suitable for sound waves.
In addition, the received wave can be extracted from the reverberation area c of the direct wave a shown in FIG. 2, and the circuit configuration of the entire apparatus is simple and inexpensive. Further, since the transmission time t1 and the reception time t2 can be detected by the single differentiator 11, there is an effect that the system is simplified.

【0024】図3は上記構成の距離測定装置1を車両2
0のフロント側およびリヤ側の複数箇所に配置して、図
3に示す各センサ検知領域A〜Fを確保すべく構成した
実施例を示し、インストルメントパネル部には距離表示
と接近部位の表示とを実行する前方表示器21を取付
け、センタピラー等のピラー部材には後進時にドライバ
が目視可能なように後方表示器22を取付け、この後方
表示器22で距離表示を実行する。
FIG. 3 shows a distance measuring device 1 having the above-described configuration,
0 is arranged at a plurality of locations on the front side and the rear side to secure the sensor detection areas A to F shown in FIG. 3. And a rear display 22 is attached to a pillar member such as a center pillar so that the driver can see the distance when the vehicle is moving backward, and the rear display 22 performs distance display.

【0025】而して、上記各表示器21,22による表
示態様を次の6通りの何れかに設定する。 表示態様1 前方表示器21については全領域A〜F中で検知してい
る最短の距離とその位置(どの領域かを示す位置)を表
示し、後方表示器22については領域D,E,F長の最
短の距離を表示する。このように設定すると、基本的に
ドライバが前方を向いている状態下にあって全領域の接
近状況を把握することができると共に、後方側を確認す
る際には、ドライバが後方を向くため後方表示器22に
て自動的に後方領域の目視確認ができる。
The display mode of each of the indicators 21 and 22 is set to one of the following six types. Display Mode 1 The front display 21 displays the shortest distance detected in all the areas A to F and its position (position indicating which area), and the rear display 22 displays the areas D, E, and F. Displays the shortest distance of the longest. With this setting, it is possible to grasp the approaching situation in all areas while the driver is basically facing the front, and when checking the rear side, the driver is facing the rear. The display 22 can automatically visually confirm the rear area.

【0026】表示態様2 前方表示器21については領域A,C,D,F中で検知
している最短の距離とその位置を表示し、後方表示器2
2については領域Eの距離を表示する。このように設定
すると、領域A,C,D,Fは横方向にも検知領域があ
るため、縦列駐車するような際には、前方表示器21に
て横方向の距離が表示され、後方表示器22にて後ろ方
向の距離が表示され、車両20の位置関係が容易に把握
できる。
Display Mode 2 The front display 21 displays the shortest distance detected in the areas A, C, D, and F and its position.
For 2, the distance of the area E is displayed. With this setting, the areas A, C, D, and F also have a detection area in the horizontal direction. Therefore, when the vehicle is parked in parallel, the horizontal distance is displayed on the front display 21 and the rear display is displayed. The distance in the backward direction is displayed on the container 22, and the positional relationship of the vehicle 20 can be easily grasped.

【0027】表示態様3 前方表示器21については領域A,B,C中で検知して
いる最短の距離とその位置を表示し、後方表示器22に
ついては領域D,E,F中で検知している最短の距離を
表示する。このように設定すると、前方表示器21には
前側の距離が表示され、後方表示22には後ろ側の距離
が表示されているので、ドライバの向いている方向の距
離が確認できると共に、ドライバにあっても表示目視に
より直観的に理解しやすくなる。
Display Mode 3 The front display 21 displays the shortest distance detected in the areas A, B, and C and its position, and the rear display 22 detects the distance D in the areas D, E, and F. Shows the shortest distance you have. With this setting, the front display 21 displays the distance on the front side, and the rear display 22 displays the distance on the rear side. Even if there is, it is easy to understand intuitively by visual observation.

【0028】表示態様4 前方表示器21については先の表示態様1〜3のそれぞ
れに一定時間毎に距離を表示する領域を切り替えるモー
ドを付加し、後方表示器22についても同様に先の表示
態様1〜3のそれぞれに一定時間毎に距離を表示する領
域を切り替えるモードを付加する。このように設定する
と、サイン距離のみならず全領域A〜Fの距離を確認す
ることができる。
Display Mode 4 For the front display 21, a mode for switching the area for displaying the distance at regular intervals is added to each of the previous display modes 1 to 3, and the rear display 22 is similarly displayed in the previous display mode. A mode for switching the area in which the distance is displayed at regular intervals is added to each of 1 to 3. With this setting, not only the sign distance but also the distances of all the areas A to F can be confirmed.

【0029】表示態様5 前方表示器21については表示態様1〜3のそれぞれに
前後の全ての領域A〜Fの中からドライバが選択した領
域(例えばインストルメントパネルに予めタッチスイッ
チを組込み、このスイッチにより選択された領域)の距
離を表示するモードを付加し、後方表示器22について
は表示態様1〜3と同様に設定する。このように設定す
ると、例えば車両20を壁に寄せた状態のままで後進さ
せるような場合、ドライバの知りたい情報ではない時に
有効に対応することができる。
Display Mode 5 For the front display 21, an area selected by the driver from all of the front and rear areas A to F (for example, a touch switch is previously installed in the instrument panel, and this switch is included in each of the display modes 1 to 3). A mode for displaying the distance of the selected area is added, and the rear display 22 is set in the same manner as in the display modes 1 to 3. With this setting, for example, in the case where the vehicle 20 is moved backward while being brought close to a wall, it is possible to effectively cope with the case where the information is not information that the driver wants to know.

【0030】表示態様6 前方表示器21については位置を表示するLEDの点灯
方法を、最短距離の領域のものについては点滅させ、そ
れ以外で検知しているものについては点灯のみを行なう
ように設定する。
Display mode 6 The LED for displaying the position of the front display 21 is set so that the LED is turned on, and the LED of the shortest distance area is turned on and off, and only the lights detected for other areas are turned on. I do.

【0031】このように設定すると、最短距離だけでな
く、検知している他の領域も認識できるので、最短では
ないが距離が短い領域の物体に車両20をぶつけること
を未然に防止できる。なお、上記各表示態様1〜6にお
ける距離表示の一例は図4に示す通りである。
With this setting, not only the shortest distance but also other detected areas can be recognized, so that it is possible to prevent the vehicle 20 from hitting an object in an area that is not the shortest but has a short distance. An example of the distance display in each of the display modes 1 to 6 is as shown in FIG.

【0032】一方、前述の距離測定装置1で測距された
距離の大、中、小(最短距離)により警報音(ブザー
音、電子音など)を発する警報手段を設け、障害物を検
知した距離のうち距離大の時は長間隔の断続音を発し、
距離中の時は短間隔の断続音を発し、距離小の時は断続
を禁止した連続音を発するように構成してもよい。
On the other hand, there is provided an alarm means for generating an alarm sound (buzzer sound, electronic sound, etc.) depending on the distance measured by the above-mentioned distance measuring device 1, large, medium, and small (shortest distance) to detect an obstacle. When the distance is large in the distance, a long intermittent sound is emitted,
It may be configured such that when the distance is short, an intermittent sound is emitted at short intervals, and when the distance is short, a continuous sound in which intermittent is prohibited is emitted.

【0033】さらに他の実施例として図1に示す距離測
定装置1を作動、作動停止させる手動操作用のON、O
FFスイッチに加えて、システム側において同装置1を
自動的にON、OFFさせるモードを設け、手動操作用
のON、OFFスイッチの入れ忘れや、誤警報を発生さ
せる頻度の低減を図ると共に、手動操作用のON、OF
Fスイッチの切り忘れによりトランスジューサ4の寿命
低下を防止すべく構成してもよい。
As still another embodiment, ON and O for manual operation for operating and stopping the operation of the distance measuring device 1 shown in FIG.
In addition to the FF switch, the system has a mode for automatically turning on and off the device 1 to reduce the frequency of forgetting to turn on the ON / OFF switch for manual operation and the frequency of false alarms. ON, OF for
A configuration may be adopted to prevent the life of the transducer 4 from being shortened due to forgetting to turn off the F switch.

【0034】ここで、上述のシステムを自動的に作動
(ON)させる条件は、エンジンスタート時やバックギ
ヤが選択された時である。エンジンスタート時には一般
的に車両20が車庫からでる場合、路上駐車から動く場
合などのようにセンサ作動が必要なことが多いのでシス
テムON条件とする。またバックギヤが選択された時は
殆どが車庫入れ、方向転換などのシステムの作動が必要
なことが多いのでシステムON条件とし、これらエンジ
ンスタート時とバックギヤ選択時とのOR論理によりシ
ステムを自動的に作動させると有効である。
Here, the conditions for automatically operating (ON) the above-mentioned system are when the engine is started or when the reverse gear is selected. In general, when the engine is started, a sensor operation is often required when the vehicle 20 is out of the garage or when the vehicle is moved from parking on the road. Also, when the reverse gear is selected, it is often necessary to operate the system such as entering the garage and changing directions, so the system is turned on. The system is automatically operated by the OR logic between the start of the engine and the selection of the reverse gear. It is effective when activated.

【0035】一方、上述のシステムを自動的に停止(O
FF)させる条件は、システムがONした後に一定時間
(例えば1〜10分程度)経過後である。つまり、一般
的に車庫入れなどに要する時間は長くても3分程度であ
り、10分以上連続で動作が必要な場合は殆どないと思
われる。また電源を自動的に切っても、運転後車庫入れ
する場合などは、通常はバックから駐車するのでシステ
ムがONされ、何等問題は生じない。一方、フロントか
ら駐車する場合もあるが、この場合は駐車スペースに余
裕があるか或は駐車スペースにまっすぐに入れる場合が
殆どであるためシステムが作動しなくても何等問題は生
じない。このように、システムのON/OFFを制御す
ることにより、必要時にシステムが自動作動し、走行中
などの不必要時には電源OFF制御することができる。
On the other hand, the above system is automatically stopped (O
The condition for FF) is after a certain time (for example, about 1 to 10 minutes) has elapsed after the system is turned on. In other words, generally, the time required for garage storage is about 3 minutes at the longest, and it is considered that there is almost no case where the operation needs to be continuously performed for 10 minutes or more. Further, even if the power is automatically turned off, when the vehicle is put in the garage after driving, the vehicle is normally parked from the back, so that the system is turned on, and no problem occurs. On the other hand, there is a case where the vehicle is parked from the front. In this case, however, there is no problem when the system does not operate because the parking space has ample space or the vehicle is almost straight into the parking space. As described above, by controlling the ON / OFF of the system, the system is automatically operated when necessary, and the power OFF control can be performed when the system is not needed, such as during traveling.

【0036】この発明の構成と、上述の実施例との対応
において、この発明の波動は、実施例の超音波に対応
し、以下同様に、所定検知方向は、被検物体6の方向に
対応し、送波装置は、送波部5に対応し、受波装置は、
受波部7に対応し、ピーク検出回路および微分型ピーク
検出回路は、微分器11に対応するも、この発明は、上
述の実施例の構成のみに限定されるものではない。例え
ば、波動としては超音波に代えて電磁波やレーザ等の他
の波動を用いてもよい。
In the correspondence between the configuration of the present invention and the above-described embodiment, the wave of the present invention corresponds to the ultrasonic wave of the embodiment, and similarly, the predetermined detection direction corresponds to the direction of the test object 6. The wave transmitting device corresponds to the wave transmitting unit 5, and the wave receiving device is
The peak detection circuit and the differential peak detection circuit corresponding to the wave receiving unit 7 correspond to the differentiator 11, but the present invention is not limited to the configuration of the above-described embodiment. For example, another wave such as an electromagnetic wave or a laser may be used instead of the ultrasonic wave.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 発明の距離測定装置を示すブロック図。FIG. 1 is a block diagram showing a distance measuring device according to the present invention.

【図2】 同装置の作用を示すタイムチャート。FIG. 2 is a time chart showing the operation of the device.

【図3】 センサおよび表示器の取付け位置を示す概略
平面図。
FIG. 3 is a schematic plan view showing a mounting position of a sensor and a display.

【図4】 距離表示の一例を示す説明図。FIG. 4 is an explanatory diagram showing an example of distance display.

【図5】 従来の距離測定装置を示すブロック図。FIG. 5 is a block diagram showing a conventional distance measuring device.

【図6】 被検物体の一例を示す説明図。FIG. 6 is an explanatory diagram illustrating an example of a test object.

【図7】 被検物体の他の例を示す説明図。FIG. 7 is an explanatory view showing another example of the test object.

【符号の説明】[Explanation of symbols]

5…送波部 6…被検物体 7…受波部 11…微分器 5: transmitting section 6: object to be tested 7: receiving section 11: differentiator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森岡 里志 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Satoshi Morioka 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】波動を所定検知方向に向けてパルス状に送
波装置で送波し、被検物体で反射された上記波動を受波
装置にて受波して電気信号に変換し、送波と受波との時
間差に基づいて被検物体までの距離を測定する距離測定
装置であって、送波直接波と受波との各々の波形のピー
クをピーク検出回路で検出し、直接波のピークを送波時
刻、受波のピークを受波時刻として、これら両者時間差
に基づいて測距する距離測定装置。
1. A wave transmitting device in which a wave is directed in a predetermined detection direction in a pulse form by a wave transmitting device, and the wave reflected by a test object is received by a wave receiving device, converted into an electric signal, and transmitted. A distance measuring device for measuring a distance to a test object based on a time difference between a wave and a received wave, wherein a peak detection circuit detects a peak of each of the transmitted direct wave and the received wave by a peak detection circuit, and A distance measuring device that measures a distance based on a time difference between the peak of the transmission time and the peak of the reception as the transmission time and the reception time.
【請求項2】上記ピーク検出回路を微分型ピーク検出回
路に設定した請求項1記載の距離測定装置。
2. The distance measuring apparatus according to claim 1, wherein said peak detecting circuit is set as a differential peak detecting circuit.
【請求項3】上記波動を超音波に設定した請求項1もし
くは2記載の距離測定装置。
3. The distance measuring apparatus according to claim 1, wherein the wave is set to an ultrasonic wave.
JP25781296A 1996-09-05 1996-09-05 Distance measuring equipment Pending JPH1082856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25781296A JPH1082856A (en) 1996-09-05 1996-09-05 Distance measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25781296A JPH1082856A (en) 1996-09-05 1996-09-05 Distance measuring equipment

Publications (1)

Publication Number Publication Date
JPH1082856A true JPH1082856A (en) 1998-03-31

Family

ID=17311470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25781296A Pending JPH1082856A (en) 1996-09-05 1996-09-05 Distance measuring equipment

Country Status (1)

Country Link
JP (1) JPH1082856A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078371A (en) * 2004-09-10 2006-03-23 Keyence Corp Ranging sensor and setting method therefor
JP2006078370A (en) * 2004-09-10 2006-03-23 Keyence Corp Range sensor and its setting method
US7075477B2 (en) 2003-06-04 2006-07-11 Fujitsu Ten Limited Radar
JP2009166654A (en) * 2008-01-16 2009-07-30 Nissan Motor Co Ltd Information display device and information display method for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075477B2 (en) 2003-06-04 2006-07-11 Fujitsu Ten Limited Radar
JP2006078371A (en) * 2004-09-10 2006-03-23 Keyence Corp Ranging sensor and setting method therefor
JP2006078370A (en) * 2004-09-10 2006-03-23 Keyence Corp Range sensor and its setting method
JP2009166654A (en) * 2008-01-16 2009-07-30 Nissan Motor Co Ltd Information display device and information display method for vehicle

Similar Documents

Publication Publication Date Title
US4240152A (en) Object indicator for moving vehicles
US9162620B2 (en) Method and apparatus of determining position of obstacle, and parking assist method and system
US5701122A (en) Electronic curb feeler
CN204915505U (en) Two dimension radar system that backs a car based on ultrasonic ranging
JPH07198828A (en) Method and device for operating ultrasonic sensor
KR20000062430A (en) Method for determining the vertical distance between an object and a device with a variable position
KR20180028330A (en) Apparatus and method for driving ultrasonic sensor
GB2170907A (en) Improvements relating to distance measuring devices
JP2002131417A (en) Obstruction detecting device
JPH1082856A (en) Distance measuring equipment
CN104656087A (en) Ultrasonic automobile collision avoidance system adopting pulse counting
GB2112520A (en) Vehicle manoeuvring aid
JP2555562Y2 (en) Obstacle detection device
JPH1090407A (en) Distance measuring instrument
JPH041511Y2 (en)
JPS6217738Y2 (en)
JPS58185352A (en) Detector of obstacle in the vicinity of automobile
JPH08188102A (en) Ultrasonic distance measuring equipment
JPS62170868A (en) Monitoring device for periphery of vehicle
CN2287586Y (en) Voice type computer distance measuring and warning instrument for automobile
JPS5850484A (en) Guiding device for backing of automobile
JPH08292257A (en) Ultrasonic sensor
JPH07191140A (en) Obstacle detecting device for vehicle
KR930005851B1 (en) Near substance monitoring device for vehicle
KR950008250A (en) Vehicle collision prevention device using ultrasonic wave and its method