JPH1082426A - Rolling bearing - Google Patents

Rolling bearing

Info

Publication number
JPH1082426A
JPH1082426A JP23608696A JP23608696A JPH1082426A JP H1082426 A JPH1082426 A JP H1082426A JP 23608696 A JP23608696 A JP 23608696A JP 23608696 A JP23608696 A JP 23608696A JP H1082426 A JPH1082426 A JP H1082426A
Authority
JP
Japan
Prior art keywords
rolling
raceway
rolling bearing
silicon carbide
corrosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23608696A
Other languages
Japanese (ja)
Inventor
Shin Niizeki
心 新関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP23608696A priority Critical patent/JPH1082426A/en
Publication of JPH1082426A publication Critical patent/JPH1082426A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure a sufficient durability even in a corrosive solution. SOLUTION: An outer race 3, inner race 5 and rolling body 6 are made of the seramic of silicon carbide and a retainer 7 is made of a fluorine resin. A dynamic equivalent load added at the using time is made to 5% or less of a dynamic rated load. Sufficient durability can be ensured even in a corrosive solution by that the silicon carbide seramic provides excellent anti-corrosive property and the fluorine resin provides excellent lubricant property.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明に係る転がり軸受
は、化学繊維、フィルム等の製造装置の回転支持部を構
成し、当該製造装置の使用時に、酸又はアルカリ等の腐
食性水溶液中若しくはこの液体(腐食性水溶液)が掛か
る部分、或はこれらの腐食性水溶液が蒸発する事により
発生した蒸気等の腐食性気体中等の、腐食性環境で使用
される転がり軸受の改良に関する。特に本発明は、油、
グリース等の従来の潤滑剤が使用できない様な環境下で
使用される転がり軸受の、耐久性向上を図るものであ
る。
BACKGROUND OF THE INVENTION A rolling bearing according to the present invention constitutes a rotation support portion of a manufacturing apparatus for chemical fibers, films, etc., and is used in a corrosive aqueous solution such as an acid or an alkali or when the manufacturing apparatus is used. The present invention relates to an improvement in a rolling bearing used in a corrosive environment such as a portion to which (corrosive aqueous solution) is applied or in a corrosive gas such as steam generated by evaporation of the corrosive aqueous solution. In particular, the invention relates to oils,
It is intended to improve the durability of a rolling bearing used in an environment where conventional lubricants such as grease cannot be used.

【0002】[0002]

【従来の技術】各種回転支持部分に組み込む転がり軸受
として、図1に示す様な構造のものが広く使用されてい
る。この転がり軸受1は、内周面に外輪軌道2を有する
外輪3と、外周面に内輪軌道4を有する内輪5と、これ
ら外輪軌道2と内輪軌道4との間に転動自在に設けられ
た複数の転動体6と、これら複数の転動体6を転動自在
に保持する保持器7とから成る。この様な転がり軸受1
は、例えば上記外輪3を図示しないハウジングに内嵌固
定し、上記内輪5をやはり図示しない回転軸に外嵌固定
する事により、この回転軸を上記ハウジングに対して回
転自在に支持する。
2. Description of the Related Art Rolling bearings having a structure as shown in FIG. The rolling bearing 1 is provided so as to be able to roll freely between an outer race 3 having an outer raceway 2 on an inner peripheral surface, an inner race 5 having an inner raceway 4 on an outer peripheral surface, and between these outer raceways 2 and the inner raceway 4. It comprises a plurality of rolling elements 6 and a retainer 7 which holds the plurality of rolling elements 6 so as to freely roll. Such a rolling bearing 1
For example, the outer ring 3 is internally fixed to a housing (not shown), and the inner ring 5 is externally fixed to a rotating shaft (not shown), so that the rotating shaft is rotatably supported with respect to the housing.

【0003】又、酸又はアルカリ等の水溶液中若しくは
この液体が掛かる部分、或はこれらの腐食性水溶液が蒸
発する事により発生した蒸気中等の腐食性環境で使用す
る転がり軸受として従来から、特開昭62−56620
号公報、或は特開平7−174143号公報に記載され
たものが知られている。このうち、特開昭62−566
20号公報に記載された転がり軸受は、外輪と内輪と転
動体とのうちの少なくとも1個の部品を炭化珪素のセラ
ミック製とし、残りの部品を窒化珪素のセラミック製と
するものである。これに対して特開平7−174143
号公報に記載された転がり軸受は窒化珪素系のセラミッ
クにより構成各部材を造ったものである。
A rolling bearing used in a corrosive environment, such as in an aqueous solution of an acid or an alkali or a part to which the liquid is applied, or in steam generated by evaporation of the corrosive aqueous solution, has conventionally been disclosed in Japanese Patent Application Laid-Open (JP-A) Nos. 10-26191 and 11-213873. 62-56620
And Japanese Patent Application Laid-Open No. 7-174143 are known. Of these, Japanese Patent Application Laid-Open No. Sho 62-566
In the rolling bearing described in Japanese Patent Publication No. 20, at least one of the outer ring, the inner ring, and the rolling elements is made of a ceramic of silicon carbide, and the remaining parts are made of a ceramic of silicon nitride. On the other hand, Japanese Patent Laid-Open No. 7-174143
In the rolling bearing described in Japanese Patent Application Laid-Open Publication No. H10-209, each constituent member is made of a silicon nitride-based ceramic.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記特開平
7−174143号公報に示されている様な窒化珪素系
のセラミックにより造った転がり軸受では、強酸或は強
アルカリによって窒化珪素系セラミックの粒界が腐食さ
れる。又、高温・高圧の水中では、窒化珪素自身が溶出
するので、表面の硬さや強度が低下したり、転がり接触
により構成部品に摩耗やクラックが生じてしまう。この
結果、転がり軸受の耐久性を十分に確保できない。又、
特開昭62−56620号公報に記載された、炭化珪素
のセラミック製部品と窒化珪素のセラミック製部品とを
組み合わせた転がり軸受は、そのままでは十分な潤滑性
能を得られず、実際の使用条件の下では、摩耗の進行が
著しくなったり、或はクラックや剥離が発生し易くなる
等、やはり十分な耐久性を確保できない。本発明の転が
り軸受は、この様な事情に鑑みて、腐食環境下でも十分
な耐食性を確保し、しかも必要とする潤滑性を確保する
事により、十分な耐久性を確保する事を目的に考えたも
のである。
However, in a rolling bearing made of a silicon nitride-based ceramic as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 7-174143, the particles of the silicon nitride-based ceramic are treated with a strong acid or a strong alkali. The field is corroded. In addition, since silicon nitride itself elutes in high-temperature and high-pressure water, the hardness and strength of the surface are reduced, and abrasion and cracks occur in components due to rolling contact. As a result, the durability of the rolling bearing cannot be sufficiently ensured. or,
The rolling bearing described in Japanese Patent Application Laid-Open No. Sho 62-56620, in which a ceramic component made of silicon carbide and a ceramic component made of silicon nitride are combined, cannot provide sufficient lubricating performance as it is, and is not suitable for actual use conditions. Below, sufficient durability cannot be ensured, for example, the progress of abrasion becomes remarkable, or cracks and peeling are likely to occur. In view of such circumstances, the rolling bearing of the present invention is intended for securing sufficient corrosion resistance even in a corrosive environment, and for securing sufficient durability by securing required lubricity. It is a thing.

【0005】[0005]

【課題を解決するための手段】本発明の転がり軸受は、
前述した従来の転がり軸受と同様に、内周面に外輪軌道
を有する外輪と、外周面に内輪軌道を有する内輪と、こ
れら外輪軌道と内輪軌道との間に転動自在に設けられた
複数の転動体と、これら複数の転動体を転動自在に保持
する保持器とを備える。又、本発明の転がり軸受は、水
を含む腐食性液体中若しくはこの液体が掛かる部分、又
は水蒸気を含む腐食性気体中で使用される。特に、本発
明の転がり軸受に於いては、上記外輪と内輪と転動体と
をそれぞれ炭化珪素のセラミック製とし、上記保持器と
して、少なくとも表面が弗素樹脂製のものを組み込んで
いる。そして、使用時に加わる動等価荷重を動定格荷重
の5%以下とする条件で使用する。
According to the present invention, there is provided a rolling bearing comprising:
Similarly to the above-described conventional rolling bearing, an outer ring having an outer ring raceway on the inner peripheral surface, an inner ring having an inner ring raceway on the outer peripheral surface, and a plurality of rollers provided rotatably between the outer ring raceway and the inner ring raceway. A rolling element; and a retainer for rotatably holding the plurality of rolling elements. Further, the rolling bearing of the present invention is used in a corrosive liquid containing water or a part to which the liquid is splashed, or in a corrosive gas containing water vapor. In particular, in the rolling bearing of the present invention, the outer ring, the inner ring, and the rolling elements are each made of silicon carbide ceramic, and at least the surface of the cage is made of a fluorine resin. And it is used under the condition that the dynamic equivalent load applied during use is 5% or less of the dynamic rated load.

【0006】[0006]

【作用】本発明の転がり軸受の場合には、外輪と内輪と
複数の転動体とを構成する炭化珪素、並びに保持器を構
成する弗素樹脂の何れもが、酸、アルカリに対する耐食
性が優れているので、転がり軸受全体としての耐食性も
優れている。又、転がり軸受の運転時、外輪と内輪との
相対回転に伴う転動体の転動に伴って、保持器を構成す
る弗素樹脂の一部が、この保持器に設けたポケットの内
面から上記複数の転動体の転動面に移着する。弗素樹脂
は摩擦係数が低く、転動面に付着した状態ではこの転動
面と外輪軌道及び内輪軌道との転がり接触部の潤滑剤と
して機能する。この結果、上記転がり接触部の潤滑状態
を良好に保つ事ができる。又、使用時に加わる動等価荷
重を、転がり軸受の動定格荷重の5%以下に限定してい
る為、上記転がり接触部に過大な応力が加わる事がな
く、この転がり接触部を構成する上記転動面及び外輪、
内輪両軌道にクラック等の損傷が生じる事を防止でき
る。更に、転がり軸受の使用状態を、水を含む腐食性液
体中若しくはこの液体が掛かる部分、或は水蒸気を含む
腐食性気体中、即ち、水環境での使用に限定しているの
で、上記転がり接触部の潤滑状態をより良好に保てる。
即ち、転がり軸受の運転時には、上記転がり接触部位に
水分子を噛み込む結果、この転がり接触部で炭化珪素と
水とが反応し、反応膜を形成する。そして、この反応膜
が上記転がり接触部の潤滑に寄与する。この結果、上記
弗素樹脂が転動面に移着する事と相まって、油やグリー
ス等の油系の潤滑剤がなくても、良好な潤滑状態を保つ
事ができる。
In the case of the rolling bearing of the present invention, all of the silicon carbide forming the outer ring, the inner ring and the plurality of rolling elements, and the fluororesin forming the cage have excellent corrosion resistance to acids and alkalis. Therefore, the corrosion resistance of the rolling bearing as a whole is also excellent. In addition, during operation of the rolling bearing, with the rolling of the rolling element accompanying the relative rotation between the outer ring and the inner ring, a part of the fluororesin forming the retainer is removed from the inner surface of the pocket provided in the retainer. To the rolling surface of the rolling element. Fluororesin has a low coefficient of friction and, when adhered to the rolling surface, functions as a lubricant for a rolling contact portion between the rolling surface and the outer raceway and the inner raceway. As a result, the lubrication state of the rolling contact portion can be kept good. In addition, since the dynamic equivalent load applied during use is limited to 5% or less of the dynamic rated load of the rolling bearing, excessive stress is not applied to the rolling contact portion, and the rolling contact forming the rolling contact portion is not applied. Running surface and outer ring,
Damage such as cracks can be prevented from occurring on both inner raceways. Further, the use condition of the rolling bearing is limited to the use in a corrosive liquid containing water or a part to which the liquid is splashed, or in a corrosive gas containing water vapor, that is, in a water environment. The lubrication state of the part can be kept better.
That is, during the operation of the rolling bearing, water molecules bite into the rolling contact portion, so that silicon carbide and water react at the rolling contact portion to form a reaction film. Then, the reaction film contributes to lubrication of the rolling contact portion. As a result, in combination with the transfer of the fluororesin to the rolling surface, a good lubricating state can be maintained without an oil-based lubricant such as oil or grease.

【0007】[0007]

【実施例】本発明の効果を確認する為、本発明者が行な
った実験に就いて説明する。図2は、実験に使用した試
験機の概略を示している。この試験機8は、上下1対の
深溝型の玉軸受9a、9b{呼び番号:6002=内径
15mm、外径32mm、幅9mm)}により、固定のハウジ
ング10の内側に回転軸11を、回転自在に支持してい
る。そして、上記1対の玉軸受9a、9bのうち、下側
の玉軸受9aのみを、貯液槽12内に貯溜した腐食性水
溶液13中に浸漬し、上記回転軸11を介して内輪を回
転させる。又、試験軸受となる上記下側の玉軸受9aに
は、ナット14の緊締により圧縮されるばね15によ
り、所定のアキシャル荷重を付加している。
EXAMPLES Experiments performed by the present inventors to confirm the effects of the present invention will be described. FIG. 2 shows an outline of a test machine used for the experiment. The testing machine 8 rotates the rotating shaft 11 inside the fixed housing 10 by a pair of upper and lower deep groove type ball bearings 9a and 9b (nominal number: 6002 = inner diameter 15 mm, outer diameter 32 mm, width 9 mm)}. It is freely supported. Then, of the pair of ball bearings 9a and 9b, only the lower ball bearing 9a is immersed in the corrosive aqueous solution 13 stored in the liquid storage tank 12, and the inner ring is rotated via the rotary shaft 11. Let it. Further, a predetermined axial load is applied to the lower ball bearing 9a serving as a test bearing by a spring 15 compressed by tightening of the nut 14.

【0008】即ち、上記1対の玉軸受9a、9bを構成
する外輪同士の間に間座16を挟持し、上記回転軸11
の下端部に支持した座板17の上面を、上記下側の玉軸
受9aを構成する内輪の下端面に当接させている。又、
上記ばね15は、上記回転軸11の上部に設けた雄ねじ
部18に螺着したナット14の下面と、上側の玉軸受9
bを構成する内輪の上端面との間に設けている。従っ
て、上記ばね15は、上記1対の玉軸受9a、9bの内
輪を互いに近づけ合う方向に押圧し、これら両玉軸受9
a、9bのアキシャル荷重を付与する。このアキシャル
荷重の大きさは、上記ナット14の位置を変え、上記ば
ね15の圧縮量を変える事により調節自在である。又、
上記回転軸11の上部には図示しない従動プーリを支持
し、この従動プーリと、やはり図示しない電動モータの
回転軸に固定した駆動プーリとの間にベルトを掛け渡す
事により、上記回転軸11を所望の回転速度により回転
駆動する。試験軸受である下側の玉軸受9aの異常は、
上記ハウジング10に付設した振動加速度ピックアップ
19により検出する。そして、この振動加速度ピックア
ップ19が検出する振動加速度の値が、初期値の3倍に
達した時点を、その試験軸受(玉軸受9a)の寿命と判
断した。
That is, a spacer 16 is sandwiched between outer rings constituting the pair of ball bearings 9a and 9b, and the rotating shaft 11
The upper surface of the seat plate 17 supported on the lower end of the inner ball abuts against the lower end surface of the inner race constituting the lower ball bearing 9a. or,
The spring 15 includes a lower surface of a nut 14 screwed to a male screw portion 18 provided on an upper portion of the rotating shaft 11 and an upper ball bearing 9.
b is provided between the inner ring and the upper end surface of the inner ring. Accordingly, the spring 15 presses the inner rings of the pair of ball bearings 9a and 9b in a direction approaching each other, and these two ball bearings 9a and 9b are pressed.
The axial loads a and 9b are applied. The magnitude of the axial load is adjustable by changing the position of the nut 14 and changing the amount of compression of the spring 15. or,
A driven pulley (not shown) is supported on the upper part of the rotating shaft 11, and a belt is stretched between the driven pulley and a driving pulley also fixed to the rotating shaft of an electric motor (not shown), thereby rotating the rotating shaft 11. It is driven to rotate at a desired rotation speed. The abnormality of the lower ball bearing 9a, which is the test bearing,
It is detected by a vibration acceleration pickup 19 attached to the housing 10. When the value of the vibration acceleration detected by the vibration acceleration pickup 19 reached three times the initial value, the life of the test bearing (the ball bearing 9a) was determined.

【0009】実験は、次の表1に示す様な、本発明の技
術的範囲に属する4種類の玉軸受(実施例1〜4)と、
本発明の技術的範囲から外れる6種類の玉軸受(比較例
1〜6)との、合計10種類の玉軸受に就いて行なっ
た。尚、次の表1は、各玉軸受を構成する外輪と内輪と
転動体と保持器との材質を、それぞれ表している。尚、
各玉軸受とも、外輪と内輪と転動体とは同じ材質により
造った。これら各玉軸受を構成する外輪の内周面或は内
輪の外周面に形成した外輪軌道及び内輪軌道の断面の曲
率半径が玉の直径に対する割合である溝曲率{=(軌道
の曲率半径/玉直径)×100%}は、総ての試料に就
いて、外輪軌道に関しては53%、内輪軌道に関しては
51%とした。
Experiments were conducted on four types of ball bearings (Examples 1 to 4) belonging to the technical scope of the present invention as shown in Table 1 below.
The test was performed on a total of 10 types of ball bearings, including 6 types of ball bearings (Comparative Examples 1 to 6) that are out of the technical scope of the present invention. Table 1 below shows the materials of the outer ring, the inner ring, the rolling elements, and the retainers that constitute each ball bearing. still,
In each of the ball bearings, the outer ring, the inner ring, and the rolling elements were made of the same material. Groove curvature あ る = (radius of curvature of raceway / ball) where the radius of curvature of the cross section of the outer raceway and the inner raceway formed on the inner peripheral surface of the outer race or the outer peripheral surface of the inner race that constitutes each of the ball bearings is a ratio to the diameter of the ball. (Diameter) × 100%} is 53% for the outer raceway and 51% for the inner raceway for all the samples.

【0010】[0010]

【表1】 [Table 1]

【0011】これら表1に示した10種類の玉軸受に就
いて、次の条件で回転試験を行なった。 アキシャル荷重 : 98N 回転速度 : 1000rpm 腐食溶液種類 : 20%硫酸溶液 液温 : 室温 尚、呼び番号が6002である玉軸受は、外輪、内輪、
転動体が軸受鋼製の場合、動定格荷重Cr は5590N
である。又、上記試験条件での動等価荷重Pは、JIS
B1518により算出できる。即ち、上記試験条件で
の動等価荷重Pは、動定格荷重Cr の4.6%に相当す
る。
Rotation tests were performed on the ten types of ball bearings shown in Table 1 under the following conditions. Axial load: 98N Rotational speed: 1000 rpm Corrosion solution type: 20% sulfuric acid solution Liquid temperature: room temperature Ball bearings with the nominal number of 6002 are the outer ring, inner ring,
When the rolling elements are made of bearing steel, the dynamic load rating Cr is 5590 N
It is. The dynamic equivalent load P under the above test conditions is JIS
B1518. That is, the dynamic equivalent load P under the above test conditions corresponds to 4.6% of the dynamic rated load Cr.

【0012】この様にして、上記表1に示した10種類
の玉軸受のそれぞれに就いて行なった回転試験の結果
を、次の表2に示す。尚、この表2の右欄に記載した摩
耗量とは、各玉軸受のアキシャル隙間の増加量を示して
いる。
The results of the rotation tests performed on each of the ten types of ball bearings shown in Table 1 above are shown in Table 2 below. Incidentally, the wear amount described in the right column of Table 2 indicates an increase amount of the axial clearance of each ball bearing.

【0013】[0013]

【表2】 [Table 2]

【0014】この表2に示した、回転試験の結果から、
次の事が分る。本発明の技術的範囲に属する玉軸受であ
る、実施例1〜4に関しては、外輪、内輪、転動体が何
れも炭化珪素セラミック製で、保持器が弗素樹脂により
造られているので、硫酸溶液による腐食が見られない。
又、転がり接触部に水が介在しており、内輪の回転に伴
う転がり接触により、上記転がり接触部に反応膜を形成
するので、滑らかな摩耗が生じたものの、クラック、剥
離等の損傷は見られなかった。この様な低摩耗性及び耐
久性の確保は、炭化珪素の結晶構造がα型であるかβ型
であるかに拘らず実現できた。又、特に実施例は示さな
いが、燒結助剤の種類が、表中の硼素(B)、炭素
(C)系と異なる、B−C−Al 系の場合や、燒結方法
がHIPや常圧燒結等、異なる場合であっても、炭化珪
素のセラミックの物理的・化学的性質は殆ど変化しな
い。従って、この様な燒結助剤や燒結方法により造られ
た炭化珪素系セラミックにより外輪、内輪、転動体を構
成した場合も、上記実施例1〜4と同様の効果を期待で
きると考えられる。更に、外輪、内輪、転動体のそれぞ
れが完全に同じ炭化珪素系セラミックにより造られる必
要はない。即ち、これら各部材が、異なる結晶構造(α
型やβ型)のもの、異なる燒結助剤によるもの、異なる
燒結方法によるであったとしても、効果は変らないと考
えられる。
From the results of the rotation test shown in Table 2,
You can see the following. Regarding Examples 1 to 4, which are ball bearings belonging to the technical scope of the present invention, since the outer ring, the inner ring, and the rolling elements are all made of silicon carbide ceramic and the retainer is made of fluorine resin, the sulfuric acid solution is used. No corrosion due to water.
In addition, water is interposed in the rolling contact portion, and the rolling contact caused by the rotation of the inner ring forms a reaction film on the rolling contact portion. Thus, although smooth abrasion occurred, damage such as cracks and peeling was observed. I couldn't. Such low abrasion and durability can be ensured irrespective of whether the crystal structure of silicon carbide is α-type or β-type. Further, although not particularly shown in the Examples, the type of the sintering aid is different from the boron (B) or carbon (C) type shown in the table, and is the case of BC-Al type, or the sintering method is HIP or normal pressure. Even in different cases such as sintering, the physical and chemical properties of the silicon carbide ceramic hardly change. Therefore, even when the outer ring, the inner ring, and the rolling elements are made of the silicon carbide-based ceramic made by such a sintering aid or the sintering method, it is considered that the same effects as those of the first to fourth embodiments can be expected. Further, it is not necessary that each of the outer ring, the inner ring, and the rolling elements be made entirely of the same silicon carbide ceramic. That is, these members have different crystal structures (α
It is considered that the effect is the same even if the sintering agent is of the type (β type), of different sintering aids, or of different sintering methods.

【0015】これに対して比較例1〜3は、外輪、内
輪、転動体が炭化珪素のセラミックにより造られている
が、保持器の材質が弗素樹脂ではないので、硫酸溶液に
対する耐食性や転がり接触に寄与する潤滑性に乏しい。
そして、保持器自身に腐食や損傷が発生した結果、転が
り軸受の回転性能に悪影響を及ぼした。即ち、保持器の
損傷に基づく振動により、外輪、内輪両軌道並びに玉の
転動面が荒っぽく摩耗し、更にはこれら外輪、内輪両軌
道並びに玉の転動面にクラックや剥離を引き起こす原因
になった。但し、例えばプレス形式の金属製保持器に、
ポリ四弗化エチレン(PTFE)をコーティングしたも
のでも、弗素樹脂保持器と同等な効果を得られると考え
られる。
On the other hand, in Comparative Examples 1 to 3, the outer race, the inner race and the rolling elements are made of ceramics of silicon carbide. However, since the material of the cage is not a fluororesin, the corrosion resistance to the sulfuric acid solution and the rolling contact are reduced. Poor lubricity that contributes to
As a result of the corrosion and damage of the cage itself, the rotation performance of the rolling bearing was adversely affected. That is, the vibrations caused by the damage to the retainer cause the outer races, the inner races and the rolling surfaces of the balls to be roughly worn, and further cause the outer races, the inner races and the rolling surfaces of the balls to be cracked or separated. Was. However, for example, in a press type metal cage,
It is considered that an effect equivalent to that of a fluororesin retainer can be obtained even with a coating of polytetrafluoroethylene (PTFE).

【0016】又、比較例4〜6は、保持器に弗素樹脂製
のものを使ってはいるが、外輪、内輪、転動体の材質
が、炭化珪素よりも耐食性が劣る窒化珪素である為、寿
命時間及び摩耗量の実験結果が何れも悪かった。この理
由は、窒化珪素のセラミックの耐食性が炭化珪素のセラ
ミックよりも劣るという、材料本来の性質によるもので
ある。即ち、窒化珪素を燒結してセラミックとする際に
添加する燒結助剤が酸に腐食され易く、燒結助剤が侵食
された窒化珪素のセラミックは結合強度が低下し、転が
り接触による繰り返し応力で結晶粒が脱落してしまう。
その結果、摩耗が早く進み、耐久寿命が短くなる。
In Comparative Examples 4 to 6, although the cage is made of fluorine resin, the material of the outer ring, the inner ring, and the rolling elements is silicon nitride, which has lower corrosion resistance than silicon carbide. The experimental results of the life time and the amount of wear were all poor. This is due to the intrinsic properties of the material, in that the corrosion resistance of the silicon nitride ceramic is inferior to that of the silicon carbide ceramic. That is, the sintering aid added when sintering silicon nitride into a ceramic is easily corroded by acid, and the silicon nitride ceramic eroded by the sintering aid has a reduced bonding strength, and is subjected to repetitive stress caused by rolling contact. The grains fall off.
As a result, the abrasion proceeds quickly and the durable life is shortened.

【0017】次に、前記10種類の玉軸受の耐食性に関
して、これら各玉軸受を80℃の酸性水溶液(10%硫
酸水溶液)、80℃のアルカリ性水溶液(20%水酸化
カリウム水溶液)、及び200℃の高圧水中に24時間
浸漬した後、硬さ、強度、成分変化、溶出量、寸法変
化、ミクロ組織について測定を行なった。その結果を、
次の表3に示す。
Next, regarding the corrosion resistance of the ten types of ball bearings, each of these ball bearings was subjected to an acidic aqueous solution (10% sulfuric acid aqueous solution) at 80 ° C., an alkaline aqueous solution (80% potassium hydroxide aqueous solution) at 80 ° C., and 200 ° C. After being immersed in high-pressure water for 24 hours, hardness, strength, component change, elution amount, dimensional change, and microstructure were measured. The result is
The results are shown in Table 3 below.

【0018】[0018]

【表3】 [Table 3]

【0019】尚、この表3中、符号「○」は、硬さ、強
度、成分変化、溶出量、寸法変化、ミクロ組織の何れの
項目に就いても、腐食が原因と思われる変化が全く見ら
れなかった事を示している。これに対して、符号「×」
は、上記各項目のうち少なくとも一つの項目で腐食が原
因と思われる変化が見られた事を示している。この様な
表3に示した結果からも、各種炭化珪素のセラミック
は、酸性水溶液、アルカリ性水溶液及び高圧水の何れに
対しても、十分な耐食性を備えている事が分る。
In Table 3, the symbol "○" indicates that no change considered to be caused by corrosion is found in any of the items of hardness, strength, component change, elution amount, dimensional change, and microstructure. Indicates that it could not be seen. On the other hand, the sign "x"
Indicates that a change attributable to corrosion was observed in at least one of the above items. From the results shown in Table 3, it can be seen that various silicon carbide ceramics have sufficient corrosion resistance to any of an acidic aqueous solution, an alkaline aqueous solution, and high-pressure water.

【0020】次に、実施例1の試験片を用いて、使用可
能な荷重条件を確認する試験を行なった。アキシャル荷
重以外の諸条件は、前述した回転試験の条件と同じであ
る。この結果を、次の表4に示す。
Next, using the test piece of Example 1, a test was conducted to confirm usable load conditions. Various conditions other than the axial load are the same as the conditions of the rotation test described above. The results are shown in Table 4 below.

【0021】[0021]

【表4】 [Table 4]

【0022】この表4に示した実験結果から、前記表1
に実施例1として記載した玉軸受は、動定格荷重Crの
5%以下の動等価荷重Pであれば、腐食溶液中でも長期
間に亙って良好な回転性能を得られる事が確認できた。
これに対して、上記動等価荷重Pが動定格荷重Crの5
%を越えると、寿命時間が低下する。この理由は、動等
価荷重Pが動定格荷重Crの5%を越える様な使用条件
下では、転がり接触面で発生する繰り返し応力に炭化珪
素のセラミックの強度が耐えられないからである。逆に
動定格荷重Crの5%以下の動等価荷重P程度の軽荷重
ならば、炭化珪素のセラミックの強度が耐える事ができ
る。又、炭化珪素のセラミックが腐食溶液中であっても
十分な耐食性を有し、更に水が介在するので転がり接触
面での反応膜の形成と保持器から玉の転動面への弗素樹
脂の移着による潤滑効果とが相まって、外輪、内輪量軌
道及び玉の転動面が滑らかに摩耗しながら、クラック、
剥離等の損傷の起こらない状態で、良好な回転性能を保
つ事が可能となる。
From the experimental results shown in Table 4, Table 1
It was confirmed that the ball bearing described as Example 1 could obtain good rotational performance over a long period of time even in a corrosive solution if the dynamic equivalent load P was 5% or less of the dynamic rated load Cr.
On the other hand, the dynamic equivalent load P is 5 times the dynamic rated load Cr.
%, The life time decreases. The reason for this is that the strength of the silicon carbide ceramic cannot withstand the repetitive stress generated at the rolling contact surface under a use condition in which the dynamic equivalent load P exceeds 5% of the dynamic rated load Cr. Conversely, if the load is a light equivalent of a dynamic equivalent load P of 5% or less of the dynamic rated load Cr, the strength of the silicon carbide ceramic can endure. Moreover, even if the silicon carbide ceramic is in a corrosive solution, it has sufficient corrosion resistance, and since water intervenes, a reaction film is formed on the rolling contact surface and the fluorine resin is transferred from the cage to the ball rolling surface. Combined with the lubrication effect of the transfer, the outer ring, inner ring amount raceway and the rolling surface of the ball wear smoothly, crack,
Good rotation performance can be maintained in a state where damage such as peeling does not occur.

【0023】尚、上記転がり接触面に発生する繰り返し
応力は、外部荷重が同一であっても、軸受内部の設計内
容、即ち外輪軌道、内輪軌道の断面の曲率半径(溝半
径)によって変える事ができる。この様な観点から、こ
れら各軌道の溝半径が異なる複数種類の玉軸受に就い
て、この溝半径が摩耗量に及ぼす影響に就いて調べる為
に、回転性能に関する実験を行なった。この場合、外輪
と内輪と玉との材質は、前記実施例1の場合と同様に、
何れもB−C系炭化珪素のセラミックとし、保持器材質
はPTFEとした。又、回転性能試験の条件は、前記回
転試験と同じ条件とした。その結果を、次の表5に示
す。
The repetitive stress generated on the rolling contact surface can be changed depending on the design content inside the bearing, that is, the radius of curvature (groove radius) of the cross section of the outer raceway and the inner raceway even if the external load is the same. it can. From this point of view, experiments were conducted on the rotational performance of a plurality of types of ball bearings having different raceway groove radii in order to examine the effect of the groove radius on the wear amount. In this case, the material of the outer ring, the inner ring, and the ball is the same as in the first embodiment,
All were made of BC silicon carbide ceramic, and the material of the retainer was PTFE. The conditions for the rotation performance test were the same as those for the rotation test. The results are shown in Table 5 below.

【0024】[0024]

【表5】 [Table 5]

【0025】上記溝半径が摩耗量に及ぼす影響に就いて
知る為に行なった、回転性能に関する実験の結果、何れ
の試験片も500時間良好に回転したが、摩耗量に差が
見られた。即ち、実施例1、5〜8に就いては、各玉軸
受のアキシャル隙間の増加量で表した摩耗量が30μm
以下で、長寿命である事を確認できた。これに対して、
準実施例1〜4に就いては、上記摩耗量が30〜80μ
mであり、実施例1、5〜8よりは多い摩耗であった
が、次述する比較例7〜9よりは少なかった。これに対
して、比較例7〜9に関しては、上記摩耗量が80〜1
50μmと、多くなった。尚、実施例1、5〜8、準実
施例1〜4の9種類の玉軸受に関しては、何れの場合も
摩耗は非常に円滑に進行し、振動加速度の上昇は見られ
ず、良好な回転を得られる。この事から、外輪溝曲率が
55%以下で、且つ内輪溝曲率が54%以下であれば、
或る程度の長寿命は期待できる(準実施例を含む)事が
分る。更に、より長い耐久性を望む場合には、外輪溝曲
率が54%以下で、且つ内輪溝曲率が54%以下である
事が望ましい(実施例のみ)事が分る。この理由は、溝
曲率が大きくなると接触面圧が高くなり、転がり接触部
に加わる面圧が高くなる為である。尚、上記溝曲率の下
限は、溝曲率が玉径と同じになる50%とする。この様
な溝曲率が50%の場合も、寿命時間の面からは長寿命
であると考えられる。
As a result of an experiment on rotational performance conducted to find out the influence of the groove radius on the amount of wear, all the test pieces successfully rotated for 500 hours, but a difference was observed in the amount of wear. That is, in Examples 1 to 5 to 8, the wear amount represented by the increase in the axial clearance of each ball bearing was 30 μm.
In the following, it was confirmed that the life was long. On the contrary,
For the semi-embodiments 1-4, the wear amount was 30-80 μm.
m, which was greater than in Examples 1 and 5 to 8, but less than in Comparative Examples 7 to 9 described below. On the other hand, in Comparative Examples 7 to 9, the wear amount was 80 to 1
It increased to 50 μm. In each of the nine types of ball bearings of Examples 1, 5 to 8, and Sub-Examples 1 to 4, wear progressed very smoothly, no increase in vibration acceleration was observed, and good rotation was observed. Can be obtained. From this, if the outer ring groove curvature is 55% or less and the inner ring groove curvature is 54% or less,
It can be seen that a certain long life can be expected (including the sub-embodiments). Further, when longer durability is desired, it is understood that the outer ring groove curvature is preferably 54% or less and the inner ring groove curvature is preferably 54% or less (only in the embodiment). The reason is that as the groove curvature increases, the contact surface pressure increases, and the surface pressure applied to the rolling contact portion increases. The lower limit of the groove curvature is set to 50% at which the groove curvature becomes the same as the ball diameter. Even when such a groove curvature is 50%, it is considered that the life is long in terms of the life time.

【0026】尚、外輪軌道、内輪軌道(軌道に関して
は、玉軸受用、ころ軸受用を含む。)及び円筒ころの転
動面の表面粗さは、0.01〜3.2μmRa に規制す
る事が望ましい。上限を3.2μmRa にするのは、表
面粗さが3.2μmRa を越えると、振動の原因になっ
たりクラックが入り易くなり、寿命の低下を引き起こす
為である。これに対して、下限を0.01μmRa とし
たのは、表面粗さを0.01μmRa 未満にしても、製
造コストが嵩むのみで、それ以上の性能向上が望めない
為である。これに対して、転動体が玉である場合に、玉
の形状精度は、振動の原因や寿命の低下に支障ない程度
とすべく、JIS B1501規格の等級100よりも
良い精度のものを用いる事が望ましい。
The surface roughness of the rolling surface of the outer raceway, inner raceway (including raceways for ball bearings and roller bearings) and cylindrical rollers must be regulated to 0.01 to 3.2 μmRa. Is desirable. The upper limit is set to 3.2 μmRa because, when the surface roughness exceeds 3.2 μmRa, vibrations and cracks are easily caused and the life is shortened. On the other hand, the reason why the lower limit is set to 0.01 μmRa is that even if the surface roughness is less than 0.01 μmRa, the production cost is increased and no further improvement in performance can be expected. On the other hand, when the rolling element is a ball, the shape accuracy of the ball should be better than JIS B1501 grade 100, so as not to cause vibration or shorten the life. Is desirable.

【0027】[0027]

【発明の効果】この発明の転がり軸受は、以上に述べた
通り構成され作用して、窒化珪素製の転がり軸受では十
分な耐久性を望めない様な、水を含む腐食性環境に於い
て、優れた耐久性を発揮する。
The rolling bearing of the present invention is constructed and operated as described above, and in a corrosive environment containing water, which cannot be expected to have sufficient durability with a rolling bearing made of silicon nitride, Demonstrate excellent durability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の対象となる転がり軸受の部分断面図。FIG. 1 is a partial cross-sectional view of a rolling bearing to which the present invention is applied.

【図2】本発明の効果を確認する為の実験に使用した試
験装置の概略断面図。
FIG. 2 is a schematic sectional view of a test apparatus used in an experiment for confirming the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 転がり軸受 2 外輪軌道 3 外輪 4 内輪軌道 5 内輪 6 転動体 7 保持器 8 試験機 9a、9b 玉軸受 10 ハウジング 11 回転軸 12 貯液槽 13 腐食性水溶液 14 ナット 15 ばね 16 間座 17 座板 18 雄ねじ部 19 振動加速度ピックアップ DESCRIPTION OF SYMBOLS 1 Rolling bearing 2 Outer raceway 3 Outer raceway 4 Inner raceway 5 Inner raceway 6 Rolling element 7 Cage 8 Testing machine 9a, 9b Ball bearing 10 Housing 11 Rotary shaft 12 Storage tank 13 Corrosive aqueous solution 14 Nut 15 Spring 16 Spacer 17 Seat plate 18 Male thread 19 Vibration acceleration pickup

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内周面に外輪軌道を有する外輪と、外周
面に内輪軌道を有する内輪と、これら外輪軌道と内輪軌
道との間に転動自在に設けられた複数の転動体と、これ
ら複数の転動体を転動自在に保持する保持器とを備え、
水を含む腐食性液体中若しくはこの液体が掛かる部分、
又は水蒸気を含む腐食性気体中で使用される転がり軸受
に於いて、上記外輪と内輪と転動体とをそれぞれ炭化珪
素のセラミック製とし、上記保持器として、少なくとも
表面が弗素樹脂製のものを組み込み、使用時に加わる動
等価荷重を動定格荷重の5%以下とする条件で使用する
事を特徴とする転がり軸受。
1. An outer ring having an outer raceway on an inner peripheral surface, an inner racer having an inner raceway on an outer peripheral surface, a plurality of rolling elements rotatably provided between the outer raceway and the inner raceway, A retainer that holds a plurality of rolling elements so as to freely roll,
In or on which corrosive liquids containing water
Alternatively, in a rolling bearing used in a corrosive gas containing water vapor, the outer ring, the inner ring, and the rolling elements are each made of ceramics of silicon carbide, and the retainer has at least a surface made of a fluorine resin. A rolling bearing characterized in that it is used under the condition that a dynamic equivalent load applied during use is 5% or less of a dynamic rated load.
JP23608696A 1996-09-06 1996-09-06 Rolling bearing Pending JPH1082426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23608696A JPH1082426A (en) 1996-09-06 1996-09-06 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23608696A JPH1082426A (en) 1996-09-06 1996-09-06 Rolling bearing

Publications (1)

Publication Number Publication Date
JPH1082426A true JPH1082426A (en) 1998-03-31

Family

ID=16995520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23608696A Pending JPH1082426A (en) 1996-09-06 1996-09-06 Rolling bearing

Country Status (1)

Country Link
JP (1) JPH1082426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6874942B2 (en) 2001-03-02 2005-04-05 Nsk Ltd. Rolling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6874942B2 (en) 2001-03-02 2005-04-05 Nsk Ltd. Rolling device

Similar Documents

Publication Publication Date Title
WO2006003793A1 (en) Tapered roller bearing
CN110005702B (en) Hybrid rolling bearing, in particular for a refrigerant compressor
KR100281621B1 (en) Non-retainer type rolling bearing
JP6833330B2 (en) Rolling device and rolling bearing
JP2017150597A (en) Rolling bearing, rolling device and manufacturing method of rolling device
JPH07119750A (en) Rolling bearing
JP2006329265A (en) Rolling bearing
JP2008180374A (en) Rolling bearing
JPH1082426A (en) Rolling bearing
JP2008032052A (en) Thrust roller bearing
JP2004239443A (en) Rolling bearing
JP4640003B2 (en) Rotating support with thrust needle bearing
Niizeki Ceramic bearing for special environments
CN109989996B (en) Hybrid ball bearing, in particular for a refrigerant compressor
JP2008019965A (en) Planetary gear device and rolling bearing
JP2003202026A (en) Rolling bearing device
JP2001248708A (en) Rolling device
JP2007056940A (en) Thrust needle roller bearing
JP2006266405A (en) Rolling bearing and its manufacturing method
JP2007146889A (en) Rolling support device
JP2004076928A (en) Rolling bearing cage made of synthetic resin and rolling bearing
WO2023021786A1 (en) Rolling bearing
JP2017133685A (en) Rolling bearing, rolling device, and manufacturing method of rolling device
JP2004052966A (en) Roller bearing for belt type continuously variable transmission
JP2005024025A (en) Rolling device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20031211

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040113

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

A02 Decision of refusal

Effective date: 20040525

Free format text: JAPANESE INTERMEDIATE CODE: A02