JPH1080872A - Fastening device - Google Patents

Fastening device

Info

Publication number
JPH1080872A
JPH1080872A JP23911496A JP23911496A JPH1080872A JP H1080872 A JPH1080872 A JP H1080872A JP 23911496 A JP23911496 A JP 23911496A JP 23911496 A JP23911496 A JP 23911496A JP H1080872 A JPH1080872 A JP H1080872A
Authority
JP
Japan
Prior art keywords
motor
current
tightening
torque
screw member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23911496A
Other languages
Japanese (ja)
Other versions
JP3707873B2 (en
Inventor
Takashi Eguchi
隆志 江口
Seizo Fukumoto
誠三 福元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giken Kogyo Co Ltd
Toyota Motor Corp
Original Assignee
Giken Kogyo Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giken Kogyo Co Ltd, Toyota Motor Corp filed Critical Giken Kogyo Co Ltd
Priority to JP23911496A priority Critical patent/JP3707873B2/en
Publication of JPH1080872A publication Critical patent/JPH1080872A/en
Application granted granted Critical
Publication of JP3707873B2 publication Critical patent/JP3707873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fastening device which can reduce an overshoot of the fastening torque. SOLUTION: The limit value of a current fed to the motor of a fastening device is decided according to an expression: iL(t)=iT.exp -v(t)/K}. In which, iL(t) is a current limit value at the time t, iT is a current value to generate a target torque, v(t) is the rotational speed of the motor at the time t, and K is a constant. At first, a specific current is fed to the motor, a screw member is rotated at a specific high speed in the no-loading area so as to carry out a temporary fastening, and when the screw member is seated, and the rotational speed v(t) of the motor starts to reduce, the current limit value iL(t) begins to rise gradually according to the expression. As a result, the current value fed to the motor from a current amplifier is increased gradually, accordingly the rotational torque of the motor starts to rise. By increasing the current limit value iL(t) gradually according to the expression, no overshoot is generated, and the screw member is fastened adequately with a specific torque.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ボルトやナット
等のねじ部材の締め付けを自動的に行うナットランナ等
の締め付け装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tightening device such as a nut runner for automatically tightening screw members such as bolts and nuts.

【0002】[0002]

【従来の技術】ボルトやナット等のねじ部材の締め付け
を自動的に行うACサーボナットランナ等の締め付け装
置においては、ねじ部材の締め付けトルクを安定させる
ために、駆動源となるモータのトルク制御が行われる。
トルク制御の方法の一例としてストール方式がある。こ
のストール方式については、例えば特開平2−4814
0号公報に記載されている。ストール方式とは、図4に
示されるように、まずモータに一定電流を供給して無負
荷領域ではねじ部材を一定の高速回転をさせて仮締めを
行い、ねじ部材が着座して回転数が落ちると供給電流を
上昇させ、締め付けトルクを上げて締め付けを行う。そ
して、供給電流が目標締め付けトルクに相当する所定の
ストール電流に達した時点で電流の供給を停止して、モ
ータの回転を停止させる制御方式である。
2. Description of the Related Art In a tightening device such as an AC servo nut runner for automatically tightening a screw member such as a bolt or a nut, torque control of a motor serving as a driving source is performed to stabilize a tightening torque of the screw member. Will be
A stall method is an example of a torque control method. The stall method is described in, for example, Japanese Patent Application Laid-Open No. 2-4814.
No. 0 publication. In the stall method, as shown in FIG. 4, first, a constant current is supplied to a motor, and in a no-load region, a screw member is rotated at a constant high speed and temporarily tightened. When it falls, the supply current is increased and the tightening torque is increased to perform the tightening. Then, when the supply current reaches a predetermined stall current corresponding to the target tightening torque, the supply of the current is stopped to stop the rotation of the motor.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、かかる
ストール方式においては、図4に示されるように、必ず
締め付けトルクのオーバーシュート(締め過ぎ)が発生
してしまう。このオーバーシュートはモータの回転速度
にほぼ比例するもので、供給電流の上昇中は何の制限も
かけず、所定のストール電流に達して始めて制限をかけ
るストール方式では回避することができないものであ
る。特に、締め付け工程の効率化のためにはねじ部材を
高速回転させる必要があることから、オーバーシュート
が大きくなってしまうという問題点があった。そこで、
本発明においては、締め付けトルクのオーバーシュート
を確実に低減することができる締め付け装置を提供する
ことを目的とする。
However, in such a stall system, as shown in FIG. 4, an overshoot (overtightening) of the tightening torque always occurs. This overshoot is almost proportional to the rotation speed of the motor, and cannot be avoided by the stall method in which no limitation is imposed while the supply current is increasing, and the limitation is not reached until a predetermined stall current is reached. . In particular, since the screw member needs to be rotated at a high speed in order to increase the efficiency of the tightening process, there is a problem that the overshoot increases. Therefore,
SUMMARY OF THE INVENTION It is an object of the present invention to provide a tightening device capable of reliably reducing an overshoot of a tightening torque.

【0004】[0004]

【課題を解決するための手段】そこで上記の課題を解決
するために、請求項1に係る発明においては、電動モー
タでソケットを回転させてねじ部材を締め付ける締め付
け装置であって、前記電動モータの回転速度に応じて前
記電動モータの駆動電流の大きさを連続的に制御して締
め付けを行う締め付け装置を創出した。かかる締め付け
装置によれば、ねじ部材が着座してモータの回転速度が
落ちた時点から連続的にモータの駆動電流の大きさが制
御されて、駆動電流の大きさが滑らかに上昇する。この
ように、目標締め付けトルクに相当する所定の駆動電流
の大きさに達するまでモータの駆動電流の大きさが連続
的に制御されるために、目標締め付けトルクの到達時点
においてもオーバーシュートが起こりにくくなる。この
ようにして、本発明においては、電動モータの駆動電流
の大きさの制限値を連続的に変化させることによって、
電動モータの駆動電流の大きさの制限値が一定であった
従来技術の問題点を解決して、締め付けトルクのオーバ
ーシュートを確実に低減することができる締め付け装置
となる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a first aspect of the present invention is a tightening device for rotating a socket by an electric motor to tighten a screw member. A tightening device has been created in which the magnitude of the drive current of the electric motor is continuously controlled in accordance with the rotation speed to perform the tightening. According to such a tightening device, the magnitude of the drive current of the motor is continuously controlled from the point in time when the rotation speed of the motor decreases due to the seating of the screw member, and the magnitude of the drive current smoothly increases. As described above, the magnitude of the drive current of the motor is continuously controlled until the magnitude of the drive current reaches the predetermined magnitude of the drive current corresponding to the target tightening torque. Become. In this way, in the present invention, by continuously changing the limit value of the magnitude of the drive current of the electric motor,
The present invention solves the problem of the related art in which the limit value of the magnitude of the drive current of the electric motor is constant, and provides a tightening device capable of reliably reducing the overshoot of the tightening torque.

【0005】また、請求項2に係る発明においては、流
体圧モータでソケットを回転させてねじ部材を締め付け
る締め付け装置であって、前記流体圧モータの回転速度
に応じて前記流体圧モータの流体の時間当たり流量を連
続的に制御して締め付けを行う締め付け装置を創出し
た。かかる締め付け装置によれば、ねじ部材が着座して
流体圧モータの回転速度が落ちた時点から連続的に流体
圧モータの流体の時間当たり流量が制御されて、時間当
たり流量が滑らかに上昇する。このように、目標締め付
けトルクに相当する所定の流体の時間当たり流量に達す
るまで流体圧モータの流体の時間当たり流量が連続的に
制御されるために、目標締め付けトルクの到達時点にお
いてもオーバーシュートが起こりにくくなる。このよう
にして、本発明においては、エアモータ,油圧モータ等
の流体圧モータを用いた締め付け装置においても、締め
付けトルクのオーバーシュートを確実に低減することが
できる。
According to a second aspect of the present invention, there is provided a tightening device for rotating a socket with a fluid pressure motor to fasten a screw member, wherein a fluid of the fluid pressure motor is changed in accordance with a rotation speed of the fluid pressure motor. We have created a tightening device that performs continuous tightening by controlling the flow rate per hour. According to such a tightening device, the flow rate per hour of the fluid of the fluid pressure motor is continuously controlled from the point in time when the rotation speed of the fluid pressure motor decreases due to the seating of the screw member, and the flow rate per time rises smoothly. As described above, since the flow rate of the fluid of the hydraulic motor is controlled continuously until the flow rate of the predetermined fluid corresponding to the target tightening torque is reached, overshoot occurs even when the target tightening torque is reached. Less likely to happen. Thus, in the present invention, the overshoot of the tightening torque can be reliably reduced even in the tightening device using the fluid pressure motor such as the air motor and the hydraulic motor.

【0006】さらに、請求項3に係る発明においては、
請求項1に記載の締め付け装置であって、前記モータの
回転速度の減少に対して前記電動モータの駆動電流が指
数部が負であり該指数部に前記モータの回転速度を含む
指数関数的に上昇するように前記電動モータの駆動電流
の大きさを制御することを特徴とする締め付け装置を創
出した。このように、モータの駆動電流の大きさが指数
部が負であり該指数部に前記モータの回転速度を含む指
数関数的に上昇させられることによって、上昇の初期に
は駆動電流の大きさが急激に上昇するため締め付けトル
クもそれに追従して急激に上昇する。そして、目標締め
付けトルクに相当する所定の駆動電流の大きさに近づく
につれて駆動電流の大きさの上昇が緩やかになるため、
締め付けトルクも緩やかに上昇し、目標締め付けトルク
を越えることなく目標締め付けトルクに緩やかに到達す
る。これによって、締め付けトルクのオーバーシュート
をより確実に低減することができる締め付け装置とな
る。
Further, in the invention according to claim 3,
2. The tightening device according to claim 1, wherein the drive current of the electric motor has a negative exponential portion with respect to a decrease in the rotational speed of the motor, and the exponential portion includes the rotational speed of the motor. A tightening device characterized by controlling the magnitude of the drive current of the electric motor so as to rise. In this manner, the magnitude of the drive current of the motor is exponentially increased in the exponential part including the rotation speed of the motor, and the magnitude of the drive current is initially reduced. Since it rises sharply, the tightening torque also rises sharply following it. Then, the magnitude of the drive current gradually increases as approaching the magnitude of the predetermined drive current corresponding to the target tightening torque,
The tightening torque also gradually increases, and reaches the target tightening torque gradually without exceeding the target tightening torque. Thus, the tightening device can more reliably reduce the overshoot of the tightening torque.

【0007】[0007]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

第1の実施形態 次に、本発明を具現化した第1の実施形態について、図
1乃び図2を参照して説明する。まず、本実施形態にお
いて用いられる締め付け装置の全体構成について、図1
を参照して説明する。図1に示されるように、本実施形
態の締め付け装置1は、ナットランナ2とその制御装置
によって構成されている。ナットランナ2はボルト,ナ
ット等のねじ部材に嵌合するソケット4を有しており、
このソケット4の回転軸6は減速機構8を介してモータ
10に接続されている。モータ10には回転速度を測定
するための速度検知部12が設けられており、モータ1
0を回転させるための駆動電流は電流アンプ14から供
給される。
First Embodiment Next, a first embodiment of the present invention will be described with reference to FIGS. First, an overall configuration of a tightening device used in the present embodiment will be described with reference to FIG.
This will be described with reference to FIG. As shown in FIG. 1, a tightening device 1 of the present embodiment includes a nut runner 2 and a control device thereof. The nut runner 2 has a socket 4 to be fitted to a screw member such as a bolt or a nut.
The rotation shaft 6 of the socket 4 is connected to a motor 10 via a speed reduction mechanism 8. The motor 10 is provided with a speed detecting unit 12 for measuring a rotation speed.
The drive current for rotating 0 is supplied from the current amplifier 14.

【0008】速度検知部12で測定されたモータ10の
回転速度のデータは全体指令部22へ入力され、全体指
令部22では、後述するようにこの入力データに基づい
て電流制限部18に電流制限値を出力する。速度指令部
20は、無負荷領域における所定のモータ10の回転速
度の値を指令速度信号として電流指令部16へ出力す
る。電流指令部16ではこの回転速度の値に対応する電
流値を算出して、この大きさの電流を電流アンプ14を
介してモータ10に供給する。電流制限部18では、電
流アンプ14から実際にモータ10に供給される電流値
を常に監視して、全体指令部22から電流制限部18に
入力される電流制限値を越えないように、電流指令部1
6に対して割り込み制御をかけている。
The rotation speed data of the motor 10 measured by the speed detection unit 12 is input to an overall command unit 22. The overall command unit 22 limits the current to a current limiting unit 18 based on the input data as described later. Output the value. The speed command unit 20 outputs the value of the predetermined rotation speed of the motor 10 in the no-load region to the current command unit 16 as a command speed signal. The current command unit 16 calculates a current value corresponding to the value of the rotation speed, and supplies a current of this magnitude to the motor 10 via the current amplifier 14. The current limiter 18 constantly monitors the current value actually supplied from the current amplifier 14 to the motor 10 and adjusts the current command value so as not to exceed the current limit value input from the overall command unit 22 to the current limiter 18. Part 1
6 is interrupted.

【0009】次に、かかる構成を有する締め付け装置1
によるねじ締め付けの具体例について、図1及び図2を
参照して説明する。図2は、本実施形態におけるねじ締
め付けの具体例を示すグラフであり、縦軸はモータ10
の回転トルク,モータ10に供給される電流の制限値及
びモータ10の回転速度を示し、横軸は時間の経過を示
している。本実施形態における電流制限部18による電
流の制限値は、図2中にも示されている次式(1)によ
って決定される。 iL(t)=iT・exp{−v(t)/K} … (1) ここで、iL(t)は時刻tにおける電流制限値であ
り、iTは目標トルクを発生させるための電流値、v
(t)は時刻tにおけるモータの回転速度、そしてKは
定数である。定数Kの値は、モータ10の特性及び締め
付けられるねじ部材の特性に応じて、適切な値が選択さ
れる。
Next, the tightening device 1 having such a configuration will be described.
A specific example of screw tightening according to the first embodiment will be described with reference to FIGS. FIG. 2 is a graph showing a specific example of screw tightening in the present embodiment.
, The limit value of the current supplied to the motor 10 and the rotation speed of the motor 10, and the horizontal axis indicates the passage of time. The current limiting value by the current limiting unit 18 in the present embodiment is determined by the following equation (1) also shown in FIG. iL (t) = iT.exp {-v (t) / K} (1) where iL (t) is a current limit value at time t, iT is a current value for generating a target torque, v
(T) is the rotation speed of the motor at time t, and K is a constant. As the value of the constant K, an appropriate value is selected according to the characteristics of the motor 10 and the characteristics of the screw member to be tightened.

【0010】さて、本実施形態におけるねじ締め付けに
おいては、まずモータ10に一定電流が供給されて、無
負荷領域ではねじ部材を一定の高速回転をさせて仮締め
が行われる。このとき、速度検知部12で測定されたモ
ータ10の回転速度v(t)のデータは全体指令部22
へ入力され、全体指令部22ではこの回転速度v(t)
のデータに基づいて式(1)に従って電流制限値iL
(t)を算出する。算出された電流制限値iL(t)の
データは、電流制限部18に入力され、電流制限部18
では、電流アンプ14から実際にモータ10に供給され
る電流値を常に監視して、電流制限値iL(t)を越え
ないように、電流指令部16に対して割り込み制御をか
ける。ねじ部材が着座してモータの回転速度v(t)が
減少し始めると、電流制限値iL(t)は式(1)に従
って次第に上昇し始める。この結果、電流アンプ14か
らモータ10に供給される電流値も次第に増加して、モ
ータ10の回転トルクも上昇し始める。
In the screw tightening according to the present embodiment, first, a constant current is supplied to the motor 10, and in a no-load region, the screw member is rotated at a constant high speed to perform temporary tightening. At this time, the data of the rotation speed v (t) of the motor 10 measured by the speed detection unit 12
The rotation speed v (t)
And the current limit value iL according to equation (1) based on the data
(T) is calculated. The data of the calculated current limit value iL (t) is input to the current limiter 18 and the current limiter 18
Then, the current value actually supplied to the motor 10 from the current amplifier 14 is constantly monitored, and interrupt control is performed on the current command unit 16 so as not to exceed the current limit value iL (t). When the screw member is seated and the rotation speed v (t) of the motor starts to decrease, the current limit value iL (t) starts to gradually increase according to the equation (1). As a result, the current value supplied from the current amplifier 14 to the motor 10 gradually increases, and the rotational torque of the motor 10 also starts to increase.

【0011】このように、式(1)に従って電流制限値
iL(t)を次第に増加させることによって、図2に示
されるように、上昇の初期には駆動電流の大きさが急激
に上昇するため締め付けトルクもそれに追従して急激に
上昇する。そして、目標締め付けトルクに相当する所定
の駆動電流の大きさに近づくにつれて駆動電流の大きさ
の上昇が緩やかになるため、締め付けトルクも緩やかに
上昇し、目標締め付けトルクを越えることなく目標締め
付けトルクに緩やかに到達する。すなわち、モータ10
の回転トルクがオーバーシュートを起こすことなく、ね
じ部材が所定のトルクで適切に締め付けられる。これに
よって、締め付けトルクのオーバーシュートを確実に低
減することができる締め付け装置となる。
As described above, by gradually increasing the current limit value iL (t) according to the equation (1), as shown in FIG. 2, the magnitude of the drive current sharply increases at the beginning of the rise. The tightening torque also follows this and rises sharply. Then, as the magnitude of the drive current gradually increases as the magnitude of the drive current approaches the magnitude of the predetermined drive current corresponding to the target tightening torque, the tightening torque also increases gradually, and the target tightening torque does not exceed the target tightening torque. Reach slowly. That is, the motor 10
The screw member is properly tightened with a predetermined torque without causing the rotation torque of the screw member to overshoot. Thus, the tightening device can reliably reduce the overshoot of the tightening torque.

【0012】本実施形態においては、式(1)に基づい
てモータの回転速度v(t)から電流制限値iL(t)
を算出してモータの回転を制御しているが、式(1)に
限られることはなく、その他の適切な関係式を用いるこ
ともできる。
In the present embodiment, the current limit value iL (t) is calculated from the rotation speed v (t) of the motor based on the equation (1).
Is calculated to control the rotation of the motor. However, the present invention is not limited to Expression (1), and any other appropriate relational expression may be used.

【0013】第2の実施形態 次に、本発明を具現化した第2の実施形態について、図
1乃び図3を参照して説明する。本実施形態において用
いられる締め付け装置の全体構成は第1の実施形態と同
様であるので、図1を参照して説明を省略する。本実施
形態においては、電流制限値をファジィ制御することに
よって、締め付け装置の制御を行うものである。図3
に、ファジィ制御に用いられるメンバーシップ関数の具
体例を示す。このようなメンバーシップ関数を全体指令
部22に入力して電流制限値をファジィ制御することに
よって、モータ10の回転トルクがオーバーシュートを
起こすことなく目標トルクに到達する。これによって、
ねじ部材が所定のトルクで適切に締め付けられる。
Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIGS. Since the entire configuration of the tightening device used in the present embodiment is the same as that of the first embodiment, the description will be omitted with reference to FIG. In the present embodiment, the fastening device is controlled by fuzzy controlling the current limit value. FIG.
FIG. 7 shows a specific example of a membership function used for fuzzy control. By inputting such a membership function to the overall command section 22 and performing fuzzy control of the current limit value, the rotational torque of the motor 10 reaches the target torque without causing overshoot. by this,
The screw member is properly tightened with a predetermined torque.

【0014】上記の各実施形態においては、電動モータ
を制御の対象にしているが、本発明はエアモータ,油圧
モータ等の流体圧モータに対しても適用することが可能
である。すなわち、図2に示されるように、締め付けト
ルクが上昇の初期には急激に上昇し、目標締め付けトル
クに近づくにつれて締め付けトルクが緩やかに上昇し
て、目標締め付けトルクを越えることなく目標締め付け
トルクに緩やかに到達するように、流体圧モータの流体
の時間当たり流量を制御することによって、オーバーシ
ュートを起こすことなくねじ部材を所定のトルクで適切
に締め付けることができる。締め付け装置のその他の部
分の構成,数,接続関係等についても、上記の各実施形
態に限定されるものではない。
In each of the above embodiments, the electric motor is controlled, but the present invention is also applicable to a fluid pressure motor such as an air motor or a hydraulic motor. That is, as shown in FIG. 2, the tightening torque rapidly increases in the initial stage of the increase, gradually increases as the tightening torque approaches the target tightening torque, and gradually increases to the target tightening torque without exceeding the target tightening torque. By controlling the flow rate per hour of the fluid of the fluid pressure motor so as to reach the above value, the screw member can be properly tightened with a predetermined torque without causing overshoot. The configuration, number, connection relationship, and the like of other parts of the fastening device are not limited to the above embodiments.

【0015】[0015]

【発明の効果】請求項1乃至請求項3に係る発明におい
ては、締め付けトルクのオーバーシュートを確実に低減
することができる。
According to the first to third aspects of the present invention, the overshoot of the tightening torque can be reliably reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る締め付け装置の第1及び第2の実
施形態に用いられる締め付け装置の全体構成を示すブロ
ック図である。
FIG. 1 is a block diagram showing an overall configuration of a fastening device used in first and second embodiments of the fastening device according to the present invention.

【図2】締め付け装置の第1の実施形態におけるねじ締
め付けの具体例を示すグラフである。
FIG. 2 is a graph showing a specific example of screw fastening in the first embodiment of the fastening device.

【図3】締め付け装置の第2の実施形態におけるメンバ
ーシップ関数の具体例を示すグラフである。
FIG. 3 is a graph showing a specific example of a membership function in a second embodiment of the fastening device.

【図4】従来の締め付け装置におけるねじ締め付けの具
体例を示すグラフである。
FIG. 4 is a graph showing a specific example of screw tightening in a conventional tightening device.

【符号の説明】[Explanation of symbols]

1 締め付け装置 4 ソケット 10 モータ DESCRIPTION OF SYMBOLS 1 Tightening device 4 Socket 10 Motor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電動モータでソケットを回転させてねじ
部材を締め付ける締め付け装置であって、 前記電動モータの回転速度に応じて前記電動モータの駆
動電流の大きさを連続的に制御して締め付けを行う締め
付け装置。
1. A fastening device for tightening a screw member by rotating a socket with an electric motor, wherein the magnitude of a drive current of the electric motor is continuously controlled according to a rotation speed of the electric motor to perform the tightening. Performing tightening device.
【請求項2】 流体圧モータでソケットを回転させてね
じ部材を締め付ける締め付け装置であって、 前記流体圧モータの回転速度に応じて前記流体圧モータ
の流体の時間当たり流量を連続的に制御して締め付けを
行う締め付け装置。
2. A fastening device for fastening a screw member by rotating a socket with a fluid pressure motor, wherein a fluid flow rate per hour of the fluid pressure motor is continuously controlled according to a rotation speed of the fluid pressure motor. A tightening device that performs tightening.
【請求項3】 請求項1に記載の締め付け装置であっ
て、 前記モータの回転速度の減少に対して前記電動モータの
駆動電流が指数部が負であり該指数部に前記モータの回
転速度を含む指数関数的に上昇するように前記電動モー
タの駆動電流の大きさを制御することを特徴とする締め
付け装置。
3. The fastening device according to claim 1, wherein the drive current of the electric motor has a negative value in an exponential portion with respect to a decrease in the rotational speed of the motor, and the rotational speed of the motor is provided in the exponent portion. A tightening device, wherein the magnitude of the drive current of the electric motor is controlled so as to increase exponentially.
JP23911496A 1996-09-10 1996-09-10 Tightening device Expired - Fee Related JP3707873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23911496A JP3707873B2 (en) 1996-09-10 1996-09-10 Tightening device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23911496A JP3707873B2 (en) 1996-09-10 1996-09-10 Tightening device

Publications (2)

Publication Number Publication Date
JPH1080872A true JPH1080872A (en) 1998-03-31
JP3707873B2 JP3707873B2 (en) 2005-10-19

Family

ID=17040011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23911496A Expired - Fee Related JP3707873B2 (en) 1996-09-10 1996-09-10 Tightening device

Country Status (1)

Country Link
JP (1) JP3707873B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093792A (en) * 2006-10-12 2008-04-24 Kurashiki Kako Co Ltd Automatic tightening device
JP2008161048A (en) * 2006-12-22 2008-07-10 Andreas Stihl Ag & Co Kg Portable drive mechanism for work machines
JPWO2009001678A1 (en) * 2007-06-26 2010-08-26 株式会社安川電機 Torque control device and control method thereof
JP2016213991A (en) * 2015-05-11 2016-12-15 ミネベア株式会社 Motor drive control device, electronic apparatus and method for controlling motor drive control device
WO2018230140A1 (en) * 2017-06-16 2018-12-20 パナソニックIpマネジメント株式会社 Power tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093792A (en) * 2006-10-12 2008-04-24 Kurashiki Kako Co Ltd Automatic tightening device
JP2008161048A (en) * 2006-12-22 2008-07-10 Andreas Stihl Ag & Co Kg Portable drive mechanism for work machines
JPWO2009001678A1 (en) * 2007-06-26 2010-08-26 株式会社安川電機 Torque control device and control method thereof
US8089226B2 (en) 2007-06-26 2012-01-03 Kabushiki Kaisha Yaskawa Denki Torque control device and method for controlling the same
JP5120790B2 (en) * 2007-06-26 2013-01-16 株式会社安川電機 Torque control device and control method thereof
JP2016213991A (en) * 2015-05-11 2016-12-15 ミネベア株式会社 Motor drive control device, electronic apparatus and method for controlling motor drive control device
WO2018230140A1 (en) * 2017-06-16 2018-12-20 パナソニックIpマネジメント株式会社 Power tool
CN110769981A (en) * 2017-06-16 2020-02-07 松下知识产权经营株式会社 Electric tool
JPWO2018230140A1 (en) * 2017-06-16 2020-04-02 パナソニックIpマネジメント株式会社 Electric tool
US11396092B2 (en) 2017-06-16 2022-07-26 Panasonic Intellectual Property Management Co., Ltd. Electric power tool provided with motor controller controlling motor including limiter for limitting current contributing to torque generation

Also Published As

Publication number Publication date
JP3707873B2 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
US4908926A (en) Method of and apparatus for controlling nut runner
US5062491A (en) Apparatus for controlling nut runner
US5315501A (en) Power tool compensator for torque overshoot
JP3456949B2 (en) Method and apparatus for controlling screw tightening device
JP2936506B2 (en) Optimal time bolt tightening method
JPH0624894B2 (en) Traction control device and wheel spin limiting method
JPH1134892A (en) Electric power steering device
JPH1080872A (en) Fastening device
US5152046A (en) Fastener tightening method
US7588422B2 (en) Pump driving method and device therefor
JPH0569844A (en) Power steering system controller
JPH05131377A (en) Tightening method for ac nut runner
JPS5856146Y2 (en) Simultaneous tightening device for multiple screws
JPH08140381A (en) Servo controller for motor and control method
JP3675186B2 (en) Control method of electric propulsion device
JPH08281567A (en) Sinusoidal wave drive nut runner
JPH08336290A (en) Torque preference output limiter/controller for servo motor
JP2658487B2 (en) Screw tightening method
JPS6339772A (en) Ac nut runner
JP3004022B2 (en) Motor control device for vacuum pump
JPH11287195A (en) Characteristic control device for variable speed driven turbo type pump
JPH04208002A (en) Overload alarm
JP2999884B2 (en) Method and apparatus for controlling turbine for feeding water pump
JPH0248181A (en) Screw tightening with nut runner
JPH06262452A (en) Automatic screw tightening device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Effective date: 20040420

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040615

A02 Decision of refusal

Effective date: 20041012

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20041209

Free format text: JAPANESE INTERMEDIATE CODE: A523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050802

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100812

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100812

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110812

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees