JPH108076A - Deep-layer hydrothermal reaction processing of organic waste - Google Patents

Deep-layer hydrothermal reaction processing of organic waste

Info

Publication number
JPH108076A
JPH108076A JP8178680A JP17868096A JPH108076A JP H108076 A JPH108076 A JP H108076A JP 8178680 A JP8178680 A JP 8178680A JP 17868096 A JP17868096 A JP 17868096A JP H108076 A JPH108076 A JP H108076A
Authority
JP
Japan
Prior art keywords
slurry
temperature
pressure
reactor
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8178680A
Other languages
Japanese (ja)
Inventor
Tsutomu Higo
勉 肥後
Roberuto Masahiro Serikawa
ロベルト 正浩 芹川
Kazuhiro Kondo
和博 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8178680A priority Critical patent/JPH108076A/en
Publication of JPH108076A publication Critical patent/JPH108076A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PROBLEM TO BE SOLVED: To provide the subject processing method designed both to cool slurry after reaction and raise the temperature of the fed slurry, without the need of any special pump and any heat exchanger. SOLUTION: This hydrothermal reaction processing method is so designed that organic wastes are exposed to a high-temperature and high-pressure atmosphere in such a slurried state as to be suspended as solid fine granules in an aqueous phase to decrease the ratio of oxygen to carbon in the chemical bonds in the organic matter and produce both carbon dioxide and a combustible gas by causing reductive reaction so as to transfer halogen elements containing the chemical bonds into the aqueous phase. In this case, by using a reactor 1 having a difference of altitude in the vertical direction and having a reciprocating flow channel connected to the bottom. the slurry (a) is fed from above the upper part of the forward channel 2 of the reactor, passed through the bottom of the flow channel, discharged through the upper part of the backward channel 3, and treated. At this time, the reactor affords high pressure at the lower part of the flow channel by applying pressure produced by slurry weight due to the pressure difference between feed and discharge on the upper part of the flow channel and the difference of altitude of the flow channel and raises the temperature of the slurry through heat exchange by partitioning the reciprocating flow channel with a metallic partition wall.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機廃棄物の水熱
反応処理方法に係り、特に、都市ごみやし尿や下水汚泥
や固形〜汚泥〜廃液の産業廃棄物など、有機固形分を含
む廃棄物を、水の存在下で高温・高圧で熱処理して燃料
化する水熱反応処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrothermal treatment method for organic waste, and more particularly to waste containing organic solids such as municipal waste, human waste, sewage sludge, and industrial waste of solid to sludge to waste liquid. The present invention relates to a hydrothermal treatment method in which a substance is heat-treated at a high temperature and a high pressure in the presence of water to convert it into a fuel.

【0002】[0002]

【従来の技術】従来、廃棄物の水熱反応による処理は次
のように行っていた。即ち、粗大固形物を主体とする廃
棄物の場合は、細破砕してガラスや瓦礫や金属類などの
無機分をできるかぎり除去し、水を含んで流動性を持っ
たスラリー状態とし、汚泥や廃液などもともと細かくて
破砕の必要がない固形物とか、固形物をほとんど含まな
い廃棄物の場合は、必要に応じて粗大固形物の混入がな
いようにスクリーンを通したスラリーとし、加圧して酸
化剤を断った状態にて、廃棄物の種類によって250〜
350℃の適当な温度に昇温し、通常数十分間保持して
水熱反応を起こさせる。なお、この水熱反応の過程で、
溶存酸素や化学結合をしている酸素が反応し尽して炭酸
ガスが発生し、さらに、化学結合をしている塩素や臭素
などのハロゲン元素も離脱し、水側に移行し若干の還元
性ガスも生成する還元反応が進行する。
2. Description of the Related Art Conventionally, wastes are treated by a hydrothermal reaction as follows. In other words, in the case of waste mainly composed of coarse solids, it is finely crushed to remove inorganic components such as glass, rubble, and metals as much as possible, and is converted into a slurry containing water and having fluidity. In the case of solids that are originally fine and do not need to be crushed, such as waste liquids, or waste that contains almost no solids, if necessary, form a slurry that passes through a screen so that coarse solids are not mixed, and oxidize by pressing. 250% depending on the type of waste with the agent turned off
The temperature is raised to an appropriate temperature of 350 ° C., and usually maintained for several tens minutes to cause a hydrothermal reaction. In the course of this hydrothermal reaction,
Dissolved oxygen and chemically bonded oxygen react to generate carbon dioxide gas, and also release chemically bound halogen elements such as chlorine and bromine, and migrate to the water side to reduce some reducibility. A reduction reaction that also produces gas proceeds.

【0003】このため、含有有機分で、ガスや水溶性成
分に変化せず残ったものも、脱ハロゲン化や脱炭酸化で
チャーと呼ばれる炭化物や油である固形分ないし油分に
変性する。反応後、最終的に大気圧まで減圧するフラッ
シュ操作を行って脱ガスすると同時に温度を下げ、同時
に脱水水洗してハロゲンを除去し、固形分ないし油分を
得る。ここで、この水熱還元反応をおこなわせること
で、固形分ないし油分の発熱量は化学結合をしている酸
素が脱離するなどして、発熱量が高まると同時に脆いも
のとなる。また、水熱還元反応により、分子が分断され
ることで粘性が消失し、脱水が容易となる。従って、得
られた固形分ないし油分は、ハロゲンを除去され含水率
の低い発熱量の高い粉砕しやすいものとすることが出来
る。このようにして、廃棄物を固形分ないし油分の燃料
ないしはCWMなどの燃料の原料とする処理方法が研究
開発途上にある。
[0003] For this reason, the remaining organic components which are not changed to gas or water-soluble components are also modified into solids or oils, which are chars or oils called chars, by dehalogenation or decarboxylation. After the reaction, a flash operation for finally reducing the pressure to atmospheric pressure is carried out to degas and simultaneously lower the temperature, and at the same time, remove the halogen by washing with dehydrated water to obtain a solid content or oil content. Here, by performing the hydrothermal reduction reaction, the calorific value of the solid component or the oil component becomes brittle at the same time as the calorific value increases due to the desorption of oxygen that is chemically bonded. In addition, the molecules are divided by the hydrothermal reduction reaction, the viscosity disappears, and dehydration becomes easy. Therefore, the obtained solid content or oil content can be easily pulverized with a low heat content and a low moisture content from which halogen is removed. In this way, there is a research and development process in which the waste is used as a solid or oil fuel or a raw material for a fuel such as CWM.

【0004】上記において、油分とはヘキサンやジクロ
ルベンゼン等有機溶媒により抽出されるものであり、残
りをろ過して得たケーキが固形分である。油分には、タ
ールやピッチなど常温においては固形化するものや、水
溶性を有するものも含まれる。水熱反応のための細破砕
粒度は、通常、熱伝動や反応生成物質の水側への移行に
支障が無く流路を閉塞する可能性のほとんどなくなる数
mm以下としている。前記の従来の水熱反応による処理
の概略構成図を図2に示す。図2において、廃棄物スラ
リーaは高圧ポンプ20で加圧されて、生成物との熱交
換器21、22を経て、熱媒fによる熱媒ヒータ23で
昇温して反応器24に導入され、熱媒ボイラ25からの
熱媒fにより加熱され、水熱還元反応を進行させる。反
応後、反応生成物は熱交換器22、21で温度を下げ、
フラッシュタンク26で大気圧まで減圧するフラッシュ
操作を行って脱ガスすると同時に温度を下げて、処理ス
ラリーbと排気ガスcに分離する。
[0004] In the above, the oil component is extracted with an organic solvent such as hexane or dichlorobenzene, and the cake obtained by filtering the remainder is a solid component. Oils include those that solidify at room temperature, such as tar and pitch, and those that have water solubility. The finely crushed particle size for the hydrothermal reaction is usually set to several mm or less, which does not hinder the heat transfer and the transfer of the reaction product to the water side and almost eliminates the possibility of closing the flow path. FIG. 2 shows a schematic configuration diagram of the above-described conventional treatment by hydrothermal reaction. In FIG. 2, the waste slurry a is pressurized by a high-pressure pump 20, passes through heat exchangers 21 and 22 with the product, is heated by a heating medium heater 23 using a heating medium f, and is introduced into a reactor 24. Is heated by the heat medium f from the heat medium boiler 25 to cause the hydrothermal reduction reaction to proceed. After the reaction, the temperature of the reaction product is reduced by heat exchangers 22 and 21.
A flash operation for reducing the pressure to the atmospheric pressure in the flash tank 26 is performed to degas, and at the same time, the temperature is lowered to separate the slurry into the processing slurry b and the exhaust gas c.

【0005】なお、下水汚泥の深層水熱反応による酸化
処理という技術が実用化されている。その概略構成図を
図3に示す。図3において、1200〜1500mほど
の深さに金属二重管27を地中に垂直に設置し、内管2
8より処理汚泥gを酸素ガスiを混入しながら供給し、
二重管の底にて反転させて二重管の外側29を通して地
上まで戻す。この間に、混入した酸素ガスで汚泥の有機
物を酸化分解処理するものである。また、該二重管27
を取り巻いて、伝熱流体jを導入する伝熱流体ジャケッ
ト30が設けられている。そして、この装置では、反応
熱によって二重管内で沸騰が起きて逆流等流れの乱れが
生じることを防ぐため、二重管の外面を水冷ジャケット
30で冷却している。しかしながら、前記の水熱反応に
よる処理方法には次の様な問題点があった。即ち、25
0〜350℃でも沸騰させないためには、40〜170
atg以上の圧力が必要であり、特殊な容積式ポンプを
用いて昇圧する必要があり、設備費や運転費が大きなも
のとなっていた。また、昇温や冷却は、大きな熱交換器
を必要とし、かつ化石燃料を用いた熱媒ボイラーによる
加熱が不可欠であった。
[0005] A technique of oxidizing sewage sludge by a deep hydrothermal reaction has been put to practical use. FIG. 3 shows a schematic configuration diagram thereof. In FIG. 3, a metal double pipe 27 is vertically installed underground at a depth of about 1200 to 1500 m, and an inner pipe 2 is provided.
8 to feed the treated sludge while mixing the oxygen gas i;
Invert at the bottom of the double tube and return to the ground through the outside 29 of the double tube. During this time, the organic matter in the sludge is oxidatively decomposed by the mixed oxygen gas. In addition, the double pipe 27
Is provided with a heat transfer fluid jacket 30 for introducing the heat transfer fluid j. In this apparatus, the outer surface of the double pipe is cooled by a water-cooling jacket 30 in order to prevent boiling of the double pipe due to reaction heat and disturbance of flow such as backflow. However, the above-mentioned treatment method by the hydrothermal reaction has the following problems. That is, 25
In order to prevent boiling even at 0 to 350 ° C, 40 to 170
The pressure required was atg or more, and it was necessary to increase the pressure using a special positive displacement pump, which required large equipment and operating costs. In addition, heating and cooling required a large heat exchanger, and heating by a heating medium boiler using fossil fuel was indispensable.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消し、昇圧用の特殊なポンプを必要とせ
ず、熱交換器を用いることなく反応後のスラリーの冷却
と供給スラリーの昇温を行い、さらに、化石燃料を用い
ることなく加熱できる有機廃棄物の深層水熱反応処理方
法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and does not require a special pump for increasing the pressure, cools the slurry after the reaction without using a heat exchanger, and supplies the slurry. It is an object of the present invention to provide a deep hydrothermal treatment method for organic waste that can be heated without using fossil fuel.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、有機廃棄物を、水相に固形細粒を浮遊
させたスラリー状態として高温高圧に曝すことで、有機
物中の化学結合における炭素に対する酸素の含有比率を
減じて、炭酸ガス及び可燃性ガスを生成すると同時に、
含有している化学結合を含むハロゲン元素を、当該水相
に移行する還元反応を起こさせる水熱反応処理方法にお
いて、垂直方向に高低差を有し、底部で接続する往復流
路を有する反応器を用い、前記スラリーを該反応器の往
路上部より供給し、流路底部を通り復路上部より排出し
て処理するに際し、該反応器は、流路上部での供給排出
の圧力差と、流路の高低差によりスラリー重量で発生す
る圧力とが加わることにより、該流路下部に高圧を得る
と共に、前記往復流路を金属隔壁によって仕切ることで
熱交換させてスラリー温度を高温とすることを特徴とす
る有機廃棄物の深層水熱反応処理方法としたものであ
る。前記の深層水熱反応処理方法において、往路のスラ
リーには、酸化剤を添加し、スラリー中の有機物を部分
酸化してスラリーを上昇させることができ、また、該酸
化剤は、その添加量を流路の下部温度を検知して調節す
るのがよい。本発明で用いる反応器は、内管を金属隔壁
とした二重管構造として、該隔壁の外側をスラリーの下
降する往路とし、内側をスラリーの上昇する復路として
用いるのがよい。
In order to solve the above-mentioned problems, in the present invention, chemical waste in an organic substance is exposed by exposing organic waste to a slurry state in which solid fine particles are suspended in an aqueous phase at a high temperature and a high pressure. Reducing the content of oxygen to carbon in the bond to produce carbon dioxide and flammable gas,
In a hydrothermal reaction method for causing a reduction reaction in which a halogen element containing a chemical bond is transferred to the aqueous phase, a reactor having a vertical difference and a reciprocating flow path connected at the bottom When the slurry is supplied from the upper part of the outward path of the reactor and discharged from the upper part of the return path through the bottom of the flow path for processing, the pressure difference between the supply and discharge at the upper part of the flow path and the flow path The pressure generated by the slurry weight due to the difference in height is applied to obtain a high pressure at the lower part of the flow path, and the reciprocating flow path is partitioned by a metal partition wall to perform heat exchange to increase the slurry temperature. The method is a deep hydrothermal treatment method for organic waste. In the above-mentioned deep hydrothermal reaction method, an oxidizing agent can be added to the slurry on the outward path to partially oxidize organic substances in the slurry to raise the slurry, and the amount of the oxidizing agent can be reduced. It is preferable to detect and adjust the lower temperature of the flow path. The reactor used in the present invention preferably has a double pipe structure in which the inner pipe is a metal partition wall, and the outside of the partition wall is used as a forward path where the slurry descends, and the inside is used as a return path where the slurry rises.

【0008】[0008]

【発明の実施の形態】本発明の有機廃棄物の深層水熱反
応処理方法において、スラリーは、反応器を下降して深
いところに移動してゆくことで、増加するスラリー自身
の重力で圧力が上昇してゆき、同時に反応器の下降側と
上昇側をへだてている金属流路壁を介して、上昇してく
る反応後の高温スラリーと熱交換し、昇温してゆく。な
お、圧力上昇は、ほぼ10m深くなる毎に、1気圧であ
るが、スラリーのかさ密度に比例して増減するので、気
泡が混じる場合は小さくなる。また、この往きと戻りの
スラリー同士の熱交換だけでは反応後のスラリーの持ち
出しの熱量の方が多くなるため、スラリーの反応温度が
維持できなくなる。そこで、熱量を足してやらねばなら
ない。これには、供給スラリーを予め反応後のスラリー
から分離して得た蒸気を直接吹き込む等で予熱したり、
ヒーターでスラリー流路外部から加温したりする方法が
ある。また、供給スラリーに酸化剤を添加してスラリー
中に酸化反応を起こさせ、その反応熱により昇温する方
法もあり、これは特に熱源を必要とせず、最終的なスラ
リー温度は添加する酸化剤の量によって左右される。
BEST MODE FOR CARRYING OUT THE INVENTION In the deep-water hydrothermal treatment method for organic waste of the present invention, the slurry moves down the reactor to a deeper position, whereby the pressure of the slurry increases due to the increasing gravity of the slurry itself. At the same time, heat is exchanged with the rising high-temperature slurry after the reaction via the metal flow channel wall extending on the falling side and the rising side of the reactor, and the temperature is raised. The pressure rise is 1 atm every 10 m deeper, but increases or decreases in proportion to the bulk density of the slurry, and therefore becomes smaller when bubbles are mixed. In addition, the heat exchange between the forward and return slurries alone increases the calorific value of the brought-out slurry after the reaction, so that the reaction temperature of the slurry cannot be maintained. So we have to add the heat. For this, pre-heating is performed by directly blowing steam obtained by separating the feed slurry from the slurry after the reaction in advance,
There is a method in which a heater is used to heat the slurry flow path from outside. There is also a method in which an oxidizing agent is added to the supplied slurry to cause an oxidation reaction in the slurry, and the temperature is raised by the reaction heat. This method does not particularly require a heat source, and the final slurry temperature is determined by the oxidizing agent to be added. Depends on the amount of

【0009】酸化剤は、過酸化水素が好ましいが、酸素
ガスないしは酸素ガスを含んだ例えば空気などの気体
を、気泡にしてスラリーに添加するのでもよい。この場
合、気泡はスラリーが含む固形分に移動を妨げられて、
スラリーと共に下降してゆき、汚泥や廃液の場合のよう
に、気泡同士がまとまって浮上して、スラリーと分離し
てしまうことは起こりにくく、スラリーに同伴されて深
い所へと運ばれてゆく。そして、深くなるにつれて増加
する圧力で水に溶けて、湿式酸化反応しやすい形態とな
る。添加位置は、常圧又はそれに近い圧力では気泡容積
が大きなものとなるため、スラリーの液圧が4〜5気圧
位の、容易にガス圧が得られ、かつ問題とならぬ程度に
ガス容積が圧縮された圧力の所とすべきである。酸化剤
の添加量が多すぎると、発生熱量が過大となって水蒸気
の泡が生成し、最深部においても消えない状態となり、
その分スラリーの高温高圧下における滞留時間が減少す
るので好ましくない。これを防止するためには、下部近
傍の最終的なスラリー温度を検出して、温度が最深部に
おいての圧力に対し、それを下まわる飽和水蒸気圧とな
る温度となるように、酸化剤の添加量を調節することが
望ましい。
The oxidizing agent is preferably hydrogen peroxide, but oxygen gas or a gas containing oxygen gas such as air may be added to the slurry in the form of air bubbles. In this case, the bubbles are prevented from moving by the solid content contained in the slurry,
It descends together with the slurry, and unlike the case of sludge or waste liquid, it is unlikely that bubbles will collectively float and separate from the slurry, and they will be carried deep into the space together with the slurry. Then, it is dissolved in water at a pressure that increases as it becomes deeper, and becomes a form that easily undergoes a wet oxidation reaction. At the addition position, since the bubble volume becomes large at normal pressure or a pressure close to the normal pressure, the gas pressure is easily obtained at a liquid pressure of the slurry of about 4 to 5 atm, and the gas volume is increased to a degree that does not cause a problem. Should be at a compressed pressure. If the amount of the oxidizing agent is too large, the amount of generated heat becomes excessive, bubbles of steam are generated, and the state is not erased even at the deepest part,
This is not preferable because the residence time of the slurry under high temperature and pressure is reduced. In order to prevent this, the final slurry temperature near the lower part is detected, and the oxidizing agent is added so that the temperature at the deepest part becomes lower than the saturated steam pressure. It is desirable to adjust the amount.

【0010】地中深くは、一般的に温度が高い。地温が
高ければ反応器や流路は、特に保温や外部加熱をしない
ですむ。特に地熱の高いところでは、地熱の流入により
スラリーの予熱や加温や酸化剤添加量はわずかですむ。
運転開始では、装置を昇温して定常運転に入るため、反
応器に導入するスラリーを十分予熱したり、酸化剤を十
分に加えたりしたうえ、スラリー流量を抑え、温度が上
昇していくのを待つ。一旦温度が上昇してしまえば、後
は酸化剤の添加量調節で温度を容易に調節できる。こ
の、反応が温度律則から酸化剤律則となるための温度
は、廃棄物によって200〜350℃程度の巾がある。
この温度は、紙・活性汚泥・食物残渣などセルロース・
糖類・蛋白質を含むものでは低く、油・有機酸類・プラ
スチック類は一般に高い。油・有機酸類・プラスチック
類は、紙・活性汚泥・食物残渣などセルロース・糖類・
蛋白質を含む廃棄物と一緒にして処理してやると、低
温、ひいては低圧で酸化剤律則にて温度調節できるよう
になる。また、廃棄物の組成変動に対して、安定的に酸
化剤律則で反応させるには、少なくとも250〜350
℃以上とすることが望ましい。
Generally, the temperature is high deep underground. If the soil temperature is high, the reactors and flow paths do not need to be particularly heated or externally heated. In particular, where geothermal energy is high, the amount of preheating, heating, and the amount of oxidizing agent added to the slurry are small due to the inflow of geothermal energy.
At the start of operation, the equipment is heated up to start steady operation.Therefore, the slurry to be introduced into the reactor is sufficiently preheated, the oxidizing agent is sufficiently added, the slurry flow rate is reduced, and the temperature rises. Wait for. Once the temperature rises, the temperature can be easily adjusted by adjusting the amount of the oxidizing agent. The temperature at which the reaction changes from the temperature rule to the oxidant rule has a range of about 200 to 350 ° C. depending on the waste.
This temperature is high for cellulose, such as paper, activated sludge, and food residues.
Those containing sugars and proteins are low, and those of oils, organic acids and plastics are generally high. Oils, organic acids and plastics include cellulose, sugars, such as paper, activated sludge, and food residues.
When processed together with protein-containing waste, it becomes possible to control the temperature at a low temperature and thus at a low pressure according to the oxidizing agent rule. Further, in order to stably react to the composition fluctuation of the waste in accordance with the oxidant rule, at least 250 to 350
It is desirable that the temperature be equal to or higher than ° C.

【0011】なお、流路の深さは、少くとも500m、
好ましくは1000〜1500m程度とするのがよい。
深い程、圧力が高まるために沸騰が抑えられて昇温可能
温度が高くなる。具体的には、昇温可能な温度は、深さ
500mで約260℃、1000mで約310℃、15
00mで約340℃である。流路断面積は、掘削孔に収
納する関係から全路ほぼ均一とするか、往路(下降路)
に対し、復路(上昇路)を広くし、往路や復路は各々上
から下までほぼ均一とするのがよい。復路を広くするこ
とで、高温後の滞留時間を多くとれると同時に往路で混
入気体がスラリーに同伴し易いように流速を高めるとい
う効果が得られる。流速は、反応温度300℃で滞留時
間が0.5〜1.5時間となるように、平均で0.3〜
1.2m/sとなる程度にすることが適当である。ま
た、当然高温にするほど滞留時間は少なくてすみ、かつ
流路が長くなるため流速を上げられる。深さ500mで
は250℃位までの昇温で、滞留時間を1〜3時間前後
とするように往復の平均流速を0.08〜0.3m/s
まで下げなければならないが、深さ1500mでは33
0℃位までの昇温とし滞留時間が1時間を切る往復の平
均流速1m/s以上まで上げることができる。具体的に
は、例えば、深さ500mの場合、廃棄物400トン/
日の処理を5倍に水で希釈して処理するから、往復平均
流速を0.1m/sとした場合の往路と復路の断面積合
計は0.463m2 となり、これは内外二重管構造とし
た反応器とすると、径は0.8m弱ですむ。深さ100
0mとして0.5m/sとした場合は径は0.35m弱
ですむ。
The depth of the flow path is at least 500 m,
Preferably, it is good to be about 1000 to 1500 m.
The deeper, the higher the pressure, the lower the boiling, and the higher the temperature that can be raised. Specifically, the temperature at which the temperature can be raised is about 260 ° C. at a depth of 500 m, about 310 ° C. at a depth of 1000 m, and 15 ° C.
It is about 340 ° C at 00m. The cross-sectional area of the flow passage should be almost uniform on all roads because it is stored in the borehole,
On the other hand, it is preferable to widen the return path (ascending path) and make the outward path and the return path substantially uniform from top to bottom. By widening the return path, it is possible to obtain a longer residence time after the high temperature, and at the same time, it is possible to obtain an effect of increasing the flow velocity so that the mixed gas easily accompanies the slurry in the forward path. The flow rate is 0.3 to an average so that the residence time is 0.5 to 1.5 hours at a reaction temperature of 300 ° C.
It is appropriate to set it to about 1.2 m / s. Naturally, the higher the temperature, the shorter the residence time, and the longer the flow path, so that the flow velocity can be increased. At a depth of 500 m, the average flow rate of reciprocation is 0.08 to 0.3 m / s so that the residence time is about 1 to 3 hours at a temperature rise to about 250 ° C.
It must be lowered to 1500 m, but at a depth of 1500 m 33
By raising the temperature to about 0 ° C., the average flow rate of reciprocation in which the residence time is less than 1 hour can be increased to 1 m / s or more. Specifically, for example, when the depth is 500 m, the waste 400 tons /
Since the daily treatment is diluted five times with water, the total cross-sectional area of the outward and return paths is 0.463 m 2 when the average reciprocating flow velocity is 0.1 m / s. In this case, the diameter is less than 0.8 m. Depth 100
If 0.5 m / s is set as 0 m, the diameter may be less than 0.35 m.

【0012】反応器を下降し昇温して行ったスラリー
は、酸化剤を加えた場合も含め、やがて酸化剤の水熱酸
化反応による消費とともに反応熱の発生による昇温は鈍
化し、酸化剤を消費し尽して、水熱還元反応を進行させ
ながら最深部で反転し、下降してくるスラリーと金属隔
壁を介して熱交換することで、温度を減じながら上昇し
てゆき、圧力を減じてゆく。水熱還元反応は十分に温度
が降下して進行できなくなるまで続く。ここで、熱交換
には温度勾配が必要であるために、下降側の往路よりも
上昇側の復路のほうが温度は高い。そのため、途中でス
ラリーの温度における飽和蒸気圧がスラリーの圧力より
も高くなり、その分スラリー中の水分が沸騰して、スラ
リーの圧力がほぼ飽和蒸気圧である温度まで降下するよ
うになり、上昇するに従って減温しつつ含有ガス量を増
加させてゆく。上昇スラリーは、発生した飽和水蒸気を
含むガスにより、固気液三相流となって下降スラリーよ
りも重量を減じて浮力が生じて、下降スラリーを吸引す
る力が発生するため、スラリーの下降上昇のための動力
は、特に必要としない。逆に、スラリー供給部が過剰不
圧とならないよう、スラリー排出部にて排出を制限して
圧力を持たせるのが好ましい。この圧力は、スラリー供
給部の圧力によって制御してやるとよい。
[0012] The slurry, which is cooled by lowering the reactor and heated, gradually consumes the oxidant by the hydrothermal oxidation reaction, including the case where the oxidant is added, and the temperature rise due to generation of reaction heat slows down. Exhaustion, the hydrothermal reduction reaction proceeds, the reversal occurs at the deepest point, and the heat exchanges with the descending slurry through the metal partition walls, thereby increasing the temperature while decreasing the temperature and reducing the pressure. Go on. The hydrothermal reduction reaction continues until the temperature drops sufficiently to make it impossible to proceed. Here, since a temperature gradient is required for heat exchange, the temperature of the return path on the ascending side is higher than that of the outward path on the descending side. Therefore, the saturated vapor pressure at the temperature of the slurry becomes higher than the pressure of the slurry on the way, and the water in the slurry boils by that amount, so that the pressure of the slurry falls to a temperature at which the saturated vapor pressure is almost saturated, and rises. As the temperature decreases, the gas content is increased while the temperature is reduced. The ascending slurry becomes a solid-gas-liquid three-phase flow due to the generated gas containing saturated steam, and loses weight as compared to the descending slurry to generate buoyancy, thereby generating a force for sucking the descending slurry. No special power is required. Conversely, it is preferable to restrict the discharge at the slurry discharge section so that the slurry supply section does not become excessively unpressurized so as to have a pressure. This pressure may be controlled by the pressure of the slurry supply unit.

【0013】酸化剤に酸素ガスや空気などの気体を用い
る場合には、添加気体容積を小さくしかつ溶解を促進す
るため、設定圧を高めとすることが望ましい。もちろ
ん、高圧とすることでスラリー中の気体容積を小さなも
のとして、スラリーの上昇や下降の流路断面を小さなも
のとすることができる。一般的に、スラリー供給部圧力
を2〜3気圧程度とするのが望ましい。このように、有
機廃棄物を水相に固形細粒を浮遊させたスラリー状態と
して、高圧及びその圧力以下の飽和水蒸気圧にある高温
下で反応させることで、酸化剤消費後は、有機物中の化
学結合における炭素に対する酸素の含有比率を減じて、
炭酸ガス及び可燃性ガスを生成すると同時に、含有して
いる化学結合を含むハロゲン元素を当該水相に移行する
水熱還元反応が進行する。これを、100℃以下まで冷
却して脱水し、油分、固形分を分離すれば、含水率の低
い、脆い、発熱量の高い固体を得ることができる。これ
は、そのまま燃料として使用することもでき、また水中
微粉砕のうえ表面活性剤によってエマルジョン状態で安
定化し、CWMと同様の液体燃料類似のものとすること
も可能である。
When a gas such as oxygen gas or air is used as the oxidizing agent, it is desirable to increase the set pressure in order to reduce the volume of added gas and promote dissolution. Of course, by setting the pressure to be high, the gas volume in the slurry can be made small, and the cross section of the flow path for raising or lowering the slurry can be made small. Generally, it is desirable that the pressure of the slurry supply unit be about 2 to 3 atm. As described above, the organic waste is converted into a slurry state in which solid fine particles are suspended in an aqueous phase, and is reacted at a high pressure and a high temperature at a saturated steam pressure equal to or lower than the high pressure. By reducing the content of oxygen to carbon in the chemical bond,
At the same time that the carbon dioxide gas and the combustible gas are generated, a hydrothermal reduction reaction in which the contained halogen element containing a chemical bond is transferred to the aqueous phase proceeds. If this is cooled to 100 ° C. or lower and dehydrated to separate an oil component and a solid component, a brittle solid having a low moisture content and a high calorific value can be obtained. It can be used as a fuel as it is, or it can be pulverized in water and stabilized in an emulsion state by a surfactant to make it similar to a liquid fuel similar to CWM.

【0014】反応器のスラリーで下降及び上昇を行う流
路は、公知の汚泥の深層水熱酸化処理とは逆の二重管構
造として、内管を金属隔壁とし、その外側を往路の下降
側とし、内側を復路の上昇側とするのがよい。これは、
各流路壁における水平方向での温度分布をほとんど無く
すことで、温度差に起因する熱膨張差による流路の歪や
曲がりや応力発生を防ぐと共に、粘性や含有固形スラリ
ーの作用で、スラリー内部での混合が起こりにくく含有
ガス量も少ない往路のスラリー下降側を、中抜き円形の
流路断面側とし、含有ガス量の高い粘性の低い復路のス
ラリー上昇側を、単純な円形断面として、気液固混相流
における流路断面方向における逆流や流れの停滞を抑え
るためである。また、外側に低温側のスラリーを持って
くることで、熱放散を抑え、地熱流入量を高め、火傷防
止、などさまざまな優位性を持つ。さらに、酸化反応に
よる温度上昇は、スラリー下降側で起こるため、酸化剤
添加や温度制御や反応進行計測のための温度検出も、ス
ラリー下降側を外側としたほうが容易である。
The flow path for descending and ascending with the slurry of the reactor has a double-pipe structure reverse to the known deep-water hydrothermal oxidation of sludge, the inner pipe is a metal partition wall, and the outside is the descending side of the outward path. It is good to set the inside as the rising side of the return path. this is,
Eliminating the horizontal temperature distribution in each channel wall almost eliminates the distortion, bending, and stress generation of the channel due to the difference in thermal expansion due to the temperature difference, and the action of the viscous and solid slurry contained inside the slurry The slurry descending side of the outward path, in which mixing is less likely to occur and the content of gas is small, is defined as a hollow circular flow path cross section, and the slurry rising side of the low viscosity return path, which has a high content of gas, is defined as a simple circular cross section. This is to suppress backflow and stagnation of the flow in the cross-sectional direction of the liquid-solid multiphase flow. In addition, by bringing the slurry on the low temperature side to the outside, it has various advantages such as suppressing heat dissipation, increasing the amount of geothermal inflow, and preventing burns. Further, since the temperature rise due to the oxidation reaction occurs on the lower side of the slurry, it is easier to detect the temperature for adding the oxidizing agent, control the temperature, and measure the progress of the reaction by setting the lower side of the slurry to the outside.

【0015】なお、酸化反応の進行が速くて、スラリー
が深い部分に到達する前にスラリー温度が上昇しても、
沸騰により蒸発潜熱の形で熱が奪われて、その深度にお
ける圧力に応じた飽和水蒸気圧の温度に留まり、反応を
制御する方向に動く。また、発生した蒸気は、スラリー
中に含まれる固形分によって移動をはばまれるために、
分離したり浮上したりせずにスラリー中に保持されてお
り、深部にゆくにつれて高まる圧力で、その蒸発潜熱を
放出しながら水蒸気は凝縮して、再び水に戻ってしまう
のであまり問題とならない。反応器のスラリー出口にお
いて、同伴してきた水蒸気を含むガスは、反応後のスラ
リーより分離のうえ、供給スラリーに吹き込み、水蒸気
などの凝縮によって量を減ずると同時に供給スラリーの
予熱が行われる。
[0015] Even if the temperature of the slurry rises before the slurry reaches a deep portion because the oxidation reaction proceeds rapidly,
Boiling removes heat in the form of latent heat of vaporization, stays at a temperature of saturated steam pressure corresponding to the pressure at that depth, and moves in a direction to control the reaction. In addition, the generated steam is stopped by the solid content contained in the slurry,
It is held in the slurry without being separated or floated, and at a pressure increasing as it goes deeper, the steam condenses while releasing its latent heat of vaporization and returns to water again, so this is not a problem. At the slurry outlet of the reactor, the entrained gas containing water vapor is separated from the slurry after the reaction, and then blown into the supply slurry to reduce the amount by condensation of water vapor and the like, and at the same time, preheat the supply slurry.

【0016】次に、図面を用いて本発明の処理方法を具
体的に説明する。図1に、本発明の深層水熱反応処理方
法に用いる装置の概略構成図を示す。図1において、反
応器1は外管2と内管3を有し、内管3には上部に気液
分離タンク6が配備されており、また、外管2の中途に
は空気ヘッダ4が設けられて酸化剤としての圧縮空気d
と接続されている。廃棄物スラリーaは、予熱タンク5
に導入されて、気液分離タンク6で分離された蒸気eに
より余熱されると共に、スラリー供給部の圧力が2〜3
気圧となるように、圧力調節器10により調整弁8を制
御している。また、予熱タンク5には、レベル調節器1
2が設けられており、排気ガスcの排出量を調整弁9で
制御することにより、タンク5内の流量を調節してい
る。
Next, the processing method of the present invention will be specifically described with reference to the drawings. FIG. 1 shows a schematic configuration diagram of an apparatus used in the deep hydrothermal reaction method of the present invention. In FIG. 1, a reactor 1 has an outer pipe 2 and an inner pipe 3, a gas-liquid separation tank 6 is provided on the upper part of the inner pipe 3, and an air header 4 is provided in the middle of the outer pipe 2. Compressed air d provided as oxidant
Is connected to Waste slurry a is supplied to the preheating tank 5
And is preheated by the steam e separated in the gas-liquid separation tank 6, and the pressure of the slurry supply unit is 2 to 3
The regulating valve 8 is controlled by the pressure regulator 10 so that the pressure becomes the atmospheric pressure. The preheat tank 5 has a level controller 1
2 is provided, and the flow rate in the tank 5 is adjusted by controlling the discharge amount of the exhaust gas c by the adjustment valve 9.

【0017】次いで、スラリーは予熱タンク5から、反
応器1の外管2の上部に導入され、外管2を降下して行
き、温度と圧力を上げながら水熱還元反応を進行してい
く。その際、外管下部に配備された監視用温度計15に
より、スラリー温度を測定しており、スラリー温度が所
定の温度に上昇しない場合は温度制御計器14の指令に
より圧縮空気dの調整弁13を開き、外管の圧力が4〜
5気圧の位置に空気ヘッダ4から空気dを導入する。そ
れによりスラリー温度は上昇し、所定の温度に達する。
そして、スラリーは反応器1の最下端において所定の温
度と圧力に達し、反転して内管3から上昇し、下降する
スラリーと熱交換しながら温度を下げ、気液分離タンク
6に達する。気液分離タンク6では、水熱還元反応処理
されたスラリーが、レベル調節器11の信号により調整
弁7を制御しながら抜き出され、一方、排出する蒸気は
予熱タンク5で供給スラリーの予熱に利用される。ま
た、抜き出された処理スラリーは、冷却して固液分離さ
れ、燃料等で利用される。
Next, the slurry is introduced from the preheating tank 5 into the upper portion of the outer tube 2 of the reactor 1, descends the outer tube 2, and proceeds with the hydrothermal reduction reaction while increasing the temperature and pressure. At this time, the temperature of the slurry is measured by a monitoring thermometer 15 arranged at the lower part of the outer tube. If the slurry temperature does not rise to a predetermined temperature, the adjustment valve 13 of the compressed air d is controlled by a command from the temperature control instrument 14. Open the outer tube pressure is 4 ~
Air d is introduced from the air header 4 at a position of 5 atm. Thereby, the slurry temperature rises and reaches a predetermined temperature.
Then, the slurry reaches a predetermined temperature and pressure at the lowermost end of the reactor 1, reverses, rises from the inner tube 3, lowers the temperature while exchanging heat with the slurry that descends, and reaches the gas-liquid separation tank 6. In the gas-liquid separation tank 6, the slurry subjected to the hydrothermal reduction reaction is extracted while controlling the regulating valve 7 based on a signal from the level controller 11, while the discharged steam is used for preheating the supplied slurry in the preheating tank 5. Used. The extracted processing slurry is cooled and separated into solid and liquid, and is used as fuel or the like.

【0018】[0018]

【発明の効果】本発明によれば、特に高圧ポンプを用い
ることなく高圧を得、特に熱交換器を用いることなく反
応後のスラリーを冷却すると同時にその熱を供給スラリ
ーの昇温に利用し、空気など酸化剤を供給スラリーに添
加するのみで不足の熱量を補うことが可能となる。従っ
て、廃棄物の水熱反応処理の設備を簡素なものとし、エ
ネルギー収支を大幅に改善するものである。
According to the present invention, a high pressure is obtained without using a high-pressure pump, and the heat of the slurry after the reaction is cooled without using a heat exchanger, and at the same time, the heat is used to raise the temperature of the supplied slurry. The shortage of heat can be compensated only by adding an oxidizing agent such as air to the supply slurry. Therefore, the facility for the hydrothermal treatment of waste is simplified and the energy balance is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の深層水熱反応処理方法に用いる装置の
一例を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing an example of an apparatus used for a deep hydrothermal reaction method of the present invention.

【図2】従来の水熱還元反応処理装置の概略構成図。FIG. 2 is a schematic configuration diagram of a conventional hydrothermal reduction reaction processing apparatus.

【図3】公知の汚泥の水熱酸化反応処理装置の概略構成
図。
FIG. 3 is a schematic configuration diagram of a known sludge hydrothermal oxidation treatment apparatus.

【符号の説明】[Explanation of symbols]

1:深層水熱反応器、2:外管、3:内管、4:空気ヘ
ッダ、5:予熱タンク、6:気液分離タンク、7,8,
9:調整弁、10:圧力調節器、11,12:レベル調
節器、13:調整弁、14:温度制御計器、15:監視
用温度計、a:廃棄物スラリー、b:処理スラリー、
c:排気ガス、d:圧縮空気、e:水蒸気、
1: deep-water hydrothermal reactor, 2: outer tube, 3: inner tube, 4: air header, 5: preheating tank, 6: gas-liquid separation tank, 7, 8,
9: regulating valve, 10: pressure regulator, 11, 12: level regulator, 13: regulating valve, 14: temperature control instrument, 15: monitoring thermometer, a: waste slurry, b: treated slurry,
c: exhaust gas, d: compressed air, e: steam,

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機廃棄物を、水相に固形細粒を浮遊さ
せたスラリー状態として高温高圧に曝すことで、有機物
中の化学結合における炭素に対する酸素の含有比率を減
じて、炭酸ガス及び可燃性ガスを生成すると同時に、含
有している化学結合を含むハロゲン元素を、当該水相に
移行する還元反応を起こさせる水熱反応処理方法におい
て、垂直方向に高低差を有し、底部で接続する往復流路
を有する反応器を用い、前記スラリーを該反応器の往路
上部より供給し、流路底部を通り復路上部より排出して
処理するに際し、該反応器は、流路上部での供給排出の
圧力差と、流路の高低差によりスラリー重量で発生する
圧力とが加わることにより、該流路下部に高圧を得ると
共に、前記往復流路を金属隔壁によって仕切ることで熱
交換させてスラリー温度を高温とすることを特徴とする
有機廃棄物の深層水熱反応処理方法。
An organic waste is exposed to a high temperature and a high pressure in a slurry state in which solid fine particles are suspended in an aqueous phase to reduce the content ratio of oxygen to carbon in a chemical bond in an organic substance, thereby reducing carbon dioxide and combustible gas. In a hydrothermal treatment method in which a reactive gas is generated and a halogen element containing a chemical bond contained therein is transferred to the aqueous phase to cause a reduction reaction, the liquid has a vertical difference in height and is connected at the bottom. In a reactor having a reciprocating flow path, the slurry is supplied from the upper part of the outward path of the reactor, and is discharged from the upper part of the return path through the bottom part of the flow path for processing. And the pressure generated by the weight of the slurry due to the height difference of the flow path, thereby obtaining a high pressure at the lower part of the flow path and performing heat exchange by partitioning the reciprocating flow path by a metal partition wall. A deep hydrothermal treatment method for organic waste, characterized in that the temperature is raised to a high temperature.
【請求項2】 前記往路のスラリーには、酸化剤を添加
し、スラリー中の有機物を部分酸化してスラリー温度を
上昇させることを特徴とする請求項1記載の有機廃棄物
の深層水熱反応処理方法。
2. The deep hydrothermal reaction of organic waste according to claim 1, wherein an oxidizing agent is added to the slurry on the outward path to partially oxidize organic substances in the slurry to raise the temperature of the slurry. Processing method.
【請求項3】 前記酸化剤は、その添加量を流路の下部
温度を検知して調節することを特徴とする請求項2記載
の有機廃棄物の深層水熱反応処理方法。
3. The deep hydrothermal treatment method for organic waste according to claim 2, wherein the amount of the oxidizing agent is adjusted by detecting the lower temperature of the flow path.
【請求項4】 前記反応器は、内管を金属隔壁とした二
重管構造として、該隔壁の外側をスラリーの下降する往
路とし、内側をスラリーの上昇する復路としたことを特
徴とする請求項1又は2記載の有機廃棄物の深層水熱反
応処理方法。
4. The reactor according to claim 1, wherein the reactor has a double pipe structure in which an inner pipe is a metal partition wall, the outside of the partition wall is a forward path where slurry descends, and the inside is a return path where slurry rises. Item 3. The method for treating a deep hydrothermal reaction of organic waste according to item 1 or 2.
JP8178680A 1996-06-20 1996-06-20 Deep-layer hydrothermal reaction processing of organic waste Pending JPH108076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8178680A JPH108076A (en) 1996-06-20 1996-06-20 Deep-layer hydrothermal reaction processing of organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8178680A JPH108076A (en) 1996-06-20 1996-06-20 Deep-layer hydrothermal reaction processing of organic waste

Publications (1)

Publication Number Publication Date
JPH108076A true JPH108076A (en) 1998-01-13

Family

ID=16052684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8178680A Pending JPH108076A (en) 1996-06-20 1996-06-20 Deep-layer hydrothermal reaction processing of organic waste

Country Status (1)

Country Link
JP (1) JPH108076A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507673A (en) * 2007-09-03 2011-03-10 ピーエムシー コリア カンパニー リミテッド Sludge treatment apparatus and method
CN103555388A (en) * 2013-10-26 2014-02-05 叶绍朋 Synthetic technology for preparing low calorific value anthracite and catalyst thereof from municipal solid wastes
JP2021508589A (en) * 2017-12-21 2021-03-11 シー − グリーン テクノロジー エービー Oxidation of sludge and subsequent hydrothermal carbonization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507673A (en) * 2007-09-03 2011-03-10 ピーエムシー コリア カンパニー リミテッド Sludge treatment apparatus and method
CN103555388A (en) * 2013-10-26 2014-02-05 叶绍朋 Synthetic technology for preparing low calorific value anthracite and catalyst thereof from municipal solid wastes
JP2021508589A (en) * 2017-12-21 2021-03-11 シー − グリーン テクノロジー エービー Oxidation of sludge and subsequent hydrothermal carbonization

Similar Documents

Publication Publication Date Title
US6149880A (en) Method and apparatus for treating aqueous medium containing organic matter
US3606999A (en) Method of and apparatus for carrying out a chemical or physical process
US4792408A (en) Method and apparatus for enhancing chemical reactions at supercritical conditions
JP2729744B2 (en) Sewage sludge treatment method
US4869810A (en) Method of recovering evaporable liquids from mud comprising fine grained particles and the evaporable liquids
CA2074947C (en) Process for oxidation of materials in water at supercritical temperatures
JPS5944347B2 (en) Method and apparatus for heat treating organic carbonaceous materials under pressure
US20100088952A1 (en) High pressure extraction
JPH0532326B2 (en)
CN105293856A (en) Supercritical water oxidation treatment system and supercritical water oxidation treatment system process for high-concentration dyeing sludge
CN106630526A (en) Sludge hydrothermal oxidization reaction system and method with function of product reflux pretreatment
EP0739313A1 (en) Method for the supercritical water oxidation of organic compounds
RU2173727C2 (en) Method of preparing metals such as aluminium, magnesium silicon of the like from metal oxide compounds
Hsieh et al. Alkaline pre-treatment of rice hulls for hydrothermal production of acetic acid
JPH108076A (en) Deep-layer hydrothermal reaction processing of organic waste
CN108996868B (en) Method and system for improving operation reliability of supercritical water oxidation system
US3122421A (en) Apparatus and method of operating a chemical recovery furnace
CN106315885A (en) System and method for simultaneously performing circulation utilization on sewage, sludge and domestic garbage
CA1115496A (en) Method and apparatus for effecting subsurface, controlled, accelerated chemical reactions
JP2004131560A (en) Method for recovering energy by supercritical water treatment of organic material and apparatus therefor
JPH055560B2 (en)
JP2905864B2 (en) Oil treatment of organic sludge
JP2003081628A (en) Continuous production apparatus and continuous production method for artificial zeolite
JP2008133370A (en) Device for modifying heavy oil
US4391228A (en) Falling shot heating method and apparatus