JPH1077250A - Production of diphenyl carbonate - Google Patents

Production of diphenyl carbonate

Info

Publication number
JPH1077250A
JPH1077250A JP8250875A JP25087596A JPH1077250A JP H1077250 A JPH1077250 A JP H1077250A JP 8250875 A JP8250875 A JP 8250875A JP 25087596 A JP25087596 A JP 25087596A JP H1077250 A JPH1077250 A JP H1077250A
Authority
JP
Japan
Prior art keywords
phenol
reaction
phosgene
mol
diphenyl carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8250875A
Other languages
Japanese (ja)
Inventor
Michio Higashijima
道夫 東島
Akio Nakanishi
章夫 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP8250875A priority Critical patent/JPH1077250A/en
Publication of JPH1077250A publication Critical patent/JPH1077250A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce diphenyl carbonate of sufficient color phase without development of hydrogen chloride by making phenol with phosgene by using a pyridine compound as a catalyst under specifically controlled conditions, including concentration of the catalyst to the phenol, reaction temperature and reagent composition. SOLUTION: This diphenyl carbonate is produced by reacting 1mol of phenol with 0.5mol or less phosgene at a phenol conversion ratio of 90% by the use of a pyridine compound of formula I (R is H, methyl or methoxy) as a catalyst. The reaction is carried out under the conditions that [C] is 1.2-10mol%, [T] 138-165 deg.C, [X] 1.5-8, where [C]: concentration of the catalyst to phenol (mol%), [T]: reaction temperature ( deg.C), [X]: mol ratio of phenol to phenyl chloroformate present in the reaction system at the end of reaction, and [Y]: mol ratio of phosgene used for the reaction with phenol, and also under conditions that satisfy formulae II and III (A is a constant expressed by formula III; B is a constant expressed by formula IV), thus obtaining the objective compound at a high yield.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ピリジン系化合
物を触媒として用い、フェノールとホスゲンから炭酸ジ
フェニルを製造する方法に関する。炭酸ジフェニルは無
溶剤エステル交換反応によるポリカーボネートの原料と
して重要な化合物である。
The present invention relates to a method for producing diphenyl carbonate from phenol and phosgene using a pyridine compound as a catalyst. Diphenyl carbonate is an important compound as a raw material of polycarbonate by a solventless transesterification reaction.

【0002】[0002]

【従来の技術】炭酸ジフェニルは、ビスフェノールAと
エステル交換反応によって芳香族ポリカーボネートを製
造する原料として多量に用いられている。得られる芳香
族ポリカーボネートは光ディスク基盤等に用いられるた
め、着色の無い高品質のポリカーボネートが求められて
いる。そのため炭酸ジフェニルについても着色物を含ま
ない製造法が望まれている。
2. Description of the Related Art Diphenyl carbonate is used in large quantities as a raw material for producing aromatic polycarbonate by transesterification with bisphenol A. Since the obtained aromatic polycarbonate is used for an optical disk substrate or the like, a high-quality polycarbonate without coloring is required. For this reason, there is a demand for a method for producing diphenyl carbonate that does not contain a coloring matter.

【0003】フェノールとホスゲンとの反応による炭酸
ジフェニルの製造方法としては、古くからカセイソーダ
を用いるフェノールとホスゲンとの量論反応が知られて
いる。しかし、この反応においては、カセイソーダを用
いること、そして副生物として塩化ナトリウムを大量に
生成することから原料コストが高価になり、また排水処
理等の問題がある。
As a method for producing diphenyl carbonate by the reaction between phenol and phosgene, a stoichiometric reaction between phenol and phosgene using caustic soda has been known for a long time. However, in this reaction, the use of caustic soda and the production of a large amount of sodium chloride as a by-product increase the cost of raw materials, and have problems such as wastewater treatment.

【0004】これら問題を解決すべく、フェノールを直
接、触媒存在下でホスゲンと反応させる下記反応式
〔I〕に示される方法が提案されてきた。塩化水素を副
生するこの反応については、塩化水素が有用な化学物質
であり、別途化学プラント内で再利用でき、塩素化物を
プラント外に排出する必要がなく、排水処理に関しても
負担が低減できる。
In order to solve these problems, there has been proposed a method represented by the following reaction formula [I] in which phenol is directly reacted with phosgene in the presence of a catalyst. For this reaction that produces hydrogen chloride, hydrogen chloride is a useful chemical substance and can be reused separately in a chemical plant, eliminating the need to discharge chlorinated substances outside the plant and reducing the burden on wastewater treatment. .

【0005】[0005]

【化2】 Embedded image

【0006】不均一触媒を用いた上記反応については多
数の方法が知られているが、それらの方法では炭酸ジフ
ェニルと沸点が極めて近いサリチル酸フェニル等の副生
や、金属成分の溶出等の問題が解決されていない。活性
炭を触媒として用いる方法では金属成分の溶出の問題は
ないが、工業的に有利な反応速度を有していない。均一
触媒の存在下、芳香族モノヒドロキシ化合物とホスゲン
を反応させることにより、炭酸ジフェニルを取得するこ
とができることも知られている。例えばアメリカ合衆国
特許第2,837,555号明細書には、触媒としてハ
ロゲン化テトラメチルアンモニウムの存在下に無溶剤縮
合を行うことが提案されている。しかしながら、この方
法では経済的な反応速度を得るためには、比較的多量の
触媒を必要とし、且つ180〜215℃という比較的高
い温度を用いることが必要であり、それが熱的に不安定
なハロゲン化テトラメチルアンモニウムの分解の恐れを
伴う。加うるに、化学量論的に必要とされる量よりもず
っと高い割合でホスゲンが消費される。
A number of methods are known for the above reaction using a heterogeneous catalyst. However, these methods have problems such as by-products such as phenyl salicylate having a boiling point very close to that of diphenyl carbonate and elution of metal components. Not resolved. The method using activated carbon as a catalyst has no problem of elution of metal components, but does not have an industrially advantageous reaction rate. It is also known that diphenyl carbonate can be obtained by reacting an aromatic monohydroxy compound with phosgene in the presence of a homogeneous catalyst. For example, U.S. Pat. No. 2,837,555 proposes performing solventless condensation in the presence of tetramethylammonium halide as a catalyst. However, this method requires a relatively large amount of catalyst and requires a relatively high temperature of 180 to 215 ° C. in order to obtain an economic reaction rate, which is thermally unstable. With the risk of decomposition of the tetramethylammonium halide. In addition, phosgene is consumed at a much higher rate than required stoichiometrically.

【0007】又、特公昭58−50977号公報には、
芳香族含窒素複素環化合物を触媒として、フェノール等
の芳香族モノヒドロキシ化合物2モルに対し、1モルの
ホスゲンを40〜180℃の温度で、必要により溶媒中
で塩化水素の脱離を伴う反応(以下ホスゲン化反応とい
う。)を行って炭酸ジフェニル等の炭酸ジアリールを製
造する方法が記載され、この方法は、上記米国特許に記
載の方法より低い温度で、且つ、2倍以上の反応速度で
行うことが開示されている。
Also, Japanese Patent Publication No. 58-50977 discloses that
A reaction involving the elimination of hydrogen chloride, if necessary, in a solvent at a temperature of 40 to 180 ° C with respect to 2 moles of an aromatic monohydroxy compound such as phenol, using an aromatic nitrogen-containing heterocyclic compound as a catalyst at a temperature of 40 to 180 ° C. (Hereinafter referred to as a phosgenation reaction) to produce a diaryl carbonate such as diphenyl carbonate, which is carried out at a lower temperature and at least twice as fast as the method described in the above-mentioned U.S. Patent. It is disclosed to do.

【0008】この特公昭58−50977号公報に記載
の方法は、かかる理由から工業的に優れるものである
が、この方法において、炭酸ジフェニルの中間生成物で
あるフェニルクロロホルメート(以下、PCFと略記す
る。)とフェノールとの反応による炭酸ジフェニルの生
成速度がPCFの生成速度に比べて、充分な速度をもっ
ていないため、反応終了時に炭酸ジフェニルとともに、
少量のPCFが残留し着色の原因になると考えられてい
た。
The method described in Japanese Patent Publication No. 50-50977 is industrially excellent for such a reason. In this method, however, phenyl chloroformate (hereinafter referred to as PCF) which is an intermediate product of diphenyl carbonate is used. Abbreviated.) And the reaction rate of phenol with diphenyl carbonate does not have a sufficient rate compared to the rate of PCF formation.
It was thought that a small amount of PCF remained and caused coloring.

【0009】本発明者等は、種々の芳香族含窒素複素環
化合物について、ホスゲン化反応で副生するPCFを抑
制するために、様々な反応条件を検討したところ、前記
一般式(1)で示されるピリジン系化合物のような比較
的単純な6員環芳香族複素環塩基がPCFに対する選択
率が最も低く、同時に工業的な反応速度を有することを
見出した。しかしながら、これらの触媒を用いた反応の
実際は、PCFを反応中間体とする逐次的な反応挙動は
示さず、むしろPCFは炭酸ジフェニル生成と並列的に
副生することが明らかとなった。つまり、実用的な反応
条件において高いフェノール転化率(>90%)まで反
応を押し進めるならば、PCFの生成を少なくとも1%
以下に抑制することはできないことが判明した。次にこ
れらの触媒を用いた場合の着色の原因について検討した
ところ、主たる着色の原因は、PCF自身による着色よ
りもむしろ、触媒であるピリジン系化合物とPCFの付
加体(2)の分解が着色の原因であることを見出した。
The present inventors have studied various reaction conditions for various aromatic nitrogen-containing heterocyclic compounds in order to suppress PCF by-produced in the phosgenation reaction. It has been found that a relatively simple 6-membered aromatic heterocyclic base such as the pyridine-based compound shown has the lowest selectivity to PCF and at the same time has an industrial reaction rate. However, the reaction using these catalysts did not show a sequential reaction behavior using PCF as a reaction intermediate, but rather PCF was found to be by-produced in parallel with the production of diphenyl carbonate. That is, if the reaction is driven to high phenol conversion (> 90%) under practical reaction conditions, PCF formation is reduced by at least 1%.
It turned out that it cannot be suppressed below. Next, the cause of the coloring when these catalysts were used was examined. The main cause of the coloring was not the coloring by the PCF itself, but the decomposition of the adduct (2) of the pyridine compound as a catalyst and the PCF. Was found to be the cause.

【0010】[0010]

【化3】 Embedded image

【0011】(式中、Rは前記(1)式におけるのと同
様の意義を有する。) Chemical Reviews,1973,vo
l.73,No.1,p77に記載されているように、
ピリジン系化合物はホスゲン雰囲気下では選択的にピリ
ジン系化合物−ホスゲン付加体(3)又は(4)
(In the formula, R has the same meaning as in the above formula (1).) Chemical Reviews, 1973, vo
l. 73, No. 1, as described in p77,
The pyridine-based compound is selectively pyridine-based compound-phosgene adduct (3) or (4) under a phosgene atmosphere.

【0012】[0012]

【化4】 Embedded image

【0013】(式中、Rは前記(1)式におけるのと同
様の意義を有する。)を生じており、これがすばやくフ
ェノールと反応するためにホスゲン化反応中ではピリジ
ン系化合物−PCF付加体の生成蓄積量は実質的に少な
く、これらの分解も無視できる程少ないため、着色の問
題とはならない。しかしながら、ホスゲンが全て反応
し、消失した場合、ピリジン系化合物は速やかにPCF
と付加体を生成し、特定量のフェノールが存在しない場
合には、かかる温度領域において速やかに着色不純物に
変化することが判明した。即ち、従来法による、フェノ
ールとホスゲンとの反応では、反応条件によってPCF
生成及び蓄積を完全には抑制することができず、また反
応液中のホスゲンを完全に反応させようとすれば、ホス
ゲンが消失した時点で触媒であるピリジン系化合物とP
CFの付加体が生成し、速やかに着色物に変化する問題
点があった。
(Wherein R has the same meaning as in the above formula (1)), which quickly reacts with phenol, so that a pyridine compound-PCF adduct is obtained during the phosgenation reaction. The amount of formation and accumulation is substantially small, and their decomposition is negligibly small, so that there is no problem of coloring. However, when all of the phosgene has reacted and disappeared, the pyridine-based compound is rapidly converted into PCF.
It was found that when a specific amount of phenol was not present, it turned into a colored impurity quickly in such a temperature range. That is, in the reaction between phenol and phosgene according to the conventional method, PCF depends on the reaction conditions.
When the phosgene in the reaction solution cannot be completely suppressed and the phosgene in the reaction solution is to be completely reacted, when the phosgene disappears, the catalyst pyridine compound and P
There was a problem that an adduct of CF was formed and quickly changed to a colored product.

【0014】[0014]

【発明が解決しようとする課題】本発明は触媒として前
記一般式(1)で示されるピリジン系化合物を用いるフ
ェノールとホスゲンから炭酸ジフェニルを製造する際
に、ホスゲンを完全に反応させる炭酸ジフェニルの製造
プロセスにおいて、触媒であるピリジン系化合物とPC
Fとの付加体の分解を抑制し、炭酸ジフェニルの着色を
防止する方法について研究を重ね、多くのデータを積み
上げて本発明方法を導き出したものである。
DISCLOSURE OF THE INVENTION The present invention relates to a method for producing diphenyl carbonate by completely reacting phosgene when producing diphenyl carbonate from phenol and phosgene using the pyridine compound represented by the above general formula (1) as a catalyst. In the process, a pyridine compound as a catalyst and PC
The inventors of the present invention have conducted studies on a method for suppressing the decomposition of the adduct with F and preventing the coloring of diphenyl carbonate, and have obtained a large amount of data to derive the method of the present invention.

【0015】[0015]

【課題を解決するための手段】本発明方法は、一般式
(1)
According to the method of the present invention, a compound represented by the general formula (1):

【0016】[0016]

【化5】 Embedded image

【0017】(式中、Rは水素原子、メチル基、又はメ
トキシ基を表わす。)で示されるピリジン系化合物触媒
の存在下、フェノール転化率90%以上でフェノール1
モルに対して0.5モル未満のホスゲンを反応させて炭
酸ジフェニルを製造する方法において、 〔C〕:フェノールに対する触媒濃度(モル%) 〔T〕:反応温度(℃) 〔X〕:反応終了時の反応系中に存在するフェニルクロ
ロホルメートに対するフェノールのモル比 〔Y〕:フェノールに対して反応させるホスゲンのモル
比 とする時、〔C〕が1.2〜10モル%、〔T〕が13
8〜165℃、〔X〕が1.5〜8であって、かつ、次
式(1)及び(2)
(Wherein R represents a hydrogen atom, a methyl group, or a methoxy group) and a phenol conversion ratio of 90% or more in the presence of a pyridine compound catalyst represented by the formula:
In a method for producing diphenyl carbonate by reacting less than 0.5 mol of phosgene with respect to mol, [C]: concentration of catalyst to phenol (mol%) [T]: reaction temperature (° C.) [X]: end of reaction When the molar ratio of phenol to phenyl chloroformate present in the reaction system at the time [Y]: the molar ratio of phosgene reacted to phenol, [C] is 1.2 to 10 mol% and [T] Is 13
8 to 165 ° C., [X] is 1.5 to 8, and the following formulas (1) and (2)

【0018】[0018]

【数7】 log〔C〕≧A−B×T (1)[Expression 7] log [C] ≧ A−B × T (1)

【0019】[0019]

【数8】 −0.302−0.0828×log〔X〕+0.0448 ×〔log〔X〕〕2 ≦log〔Y〕≦−0.303+0.0055 ×log〔X〕−0.0386×〔log〔X〕〕2 (2)−0.302−0.0828 × log [X] + 0.0448 × [log [X]] 2 ≦ log [Y] ≦ −0.303 + 0.0055 × log [X] −0.0386 × [Log [X]] 2 (2)

【0020】(但し上記式中(1)A及びB値は各々X
の関数式(3)及び式(4)
(Where (1) A and B values in the above formula are each X
(3) and (4)

【0021】[0021]

【数9】 A=5.35+0.132×X−6.68×10-3×X2 (3)A = 5.35 + 0.132 × X−6.68 × 10 −3 × X 2 (3)

【0022】[0022]

【数10】 B=0.0336−6.7×10-4×X−4.433×10-5×X2 (4)B = 0.0336-6.7 × 10 -4 × X-4.433 × 10 -5 × X 2 (4)

【0023】で表わされる定数である。)を満足させる
条件の下に、反応させることを特徴とする炭酸ジフェニ
ルの製造方法である。
Is a constant represented by A method for producing diphenyl carbonate, characterized in that the reaction is carried out under the conditions satisfying (3).

【0024】[0024]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

<触媒>本発明で用いられる触媒としてはピリジン、メ
チルピリジン(2−メチルピリジン、3−メチルピリジ
ン、4−メチルピリジン)または、混合ピコリン(3−
メチルピリジン、4−メチルピリジンの混合物)、メト
キシピリジン(2−メトキシピリジン、3−メトキシピ
リジン、4−メトキシピリジン)、またはそれらの塩酸
塩等を用いることができる。
<Catalyst> As the catalyst used in the present invention, pyridine, methylpyridine (2-methylpyridine, 3-methylpyridine, 4-methylpyridine) or mixed picoline (3-methylpyridine)
Methylpyridine, a mixture of 4-methylpyridine), methoxypyridine (2-methoxypyridine, 3-methoxypyridine, 4-methoxypyridine), or a hydrochloride thereof can be used.

【0025】<フェノール>ホスゲンを効率的に反応さ
せるためには、無水のフェノールを用いることが好まし
い。 <ホスゲン>ホスゲンはできるだけ純粋のものが好まし
く、不純物の四塩化炭素や塩化メチレンを含有しないも
のがよい。ホスゲンの反応量は、フェノール1モルに対
し0.5モル未満、好ましくは0.450〜0.499
モルである。 <触媒濃度、反応温度、及びホスゲン反応量>触媒濃度
を増加し、反応温度を高め、反応温度に対する触媒濃度
を前記(1)式のように、しかも反応させるホスゲン量
を前記(2)式により限定することで、ピリジン系化合
物−PCF付加体の分解着色を抑制することができるこ
とで相乗的にPCFへの選択率が低減できる。実際には
全ての供給ホスゲンが完全に反応する条件が好ましい。
<Phenol> For efficient reaction of phosgene, it is preferable to use anhydrous phenol. <Phosgene> Phosgene is preferably as pure as possible, and preferably does not contain impurities such as carbon tetrachloride and methylene chloride. The reaction amount of phosgene is less than 0.5 mol, preferably 0.450 to 0.499, per mol of phenol.
Is a mole. <Catalyst concentration, reaction temperature, and phosgene reaction amount> The catalyst concentration is increased, the reaction temperature is increased, and the catalyst concentration with respect to the reaction temperature is calculated as in the above formula (1). By limiting, the decomposition and coloring of the pyridine-based compound-PCF adduct can be suppressed, so that the selectivity to PCF can be reduced synergistically. Practically, conditions under which all the supplied phosgene completely reacts are preferable.

【0026】なお、〔C〕の値が1.2モル%未満の対
フェノール触媒濃度では90%以上のフェノール転化率
を得るには165℃を越える高温条件を必要とすること
から、付加体の分解によるとみられる目的生成物の着色
の問題が避けられない。また、10モル%を越える濃度
では目的生成物の分離、精製の負担が過度に大きくなる
ため望ましくない。更に、反応終了時点まで確実にフェ
ノールを過剰に反応系に存在させることから、PCFに
対するフェノールのモル比は1.5(モル比)以上とす
るが、8(モル比)を越える条件では未反応フェノール
が多量に反応系に残存することとなり、工業的に極めて
不利となる。165℃を越える温度では実質的に生成し
たPCFとピリジン系化合物との反応が無視できない程
度に起こり、これが分解してしまうことから、反応中で
あっても着色を伴う。また、138℃未満の温度ではP
CFの生成を抑えるために触媒濃度を極めて高濃度とす
る必要があるため前述の如く目的生成物の分離、精製の
負担が過度に大きくなるため望ましくない。従って、炭
酸ジフェニルの着色抑制の観点から、138〜165℃
以下の反応温度とする。より好ましくは150〜160
℃の温度である。但しA及びB値はX(1.5≦X≦
8)の2次関数式(3)及び(4)
When the value of [C] is less than 1.2 mol% with respect to the phenol catalyst concentration, a high temperature condition exceeding 165 ° C. is required to obtain a phenol conversion of 90% or more. The problem of coloration of the target product, which may be due to decomposition, is inevitable. On the other hand, if the concentration exceeds 10 mol%, the burden of separation and purification of the target product becomes excessively large, which is not desirable. Further, since the phenol is surely present in an excess amount in the reaction system until the end of the reaction, the molar ratio of phenol to PCF is set to 1.5 (molar ratio) or more. A large amount of phenol remains in the reaction system, which is extremely disadvantageous industrially. At a temperature exceeding 165 ° C., the reaction between the substantially generated PCF and the pyridine-based compound occurs to a non-negligible extent, and this is decomposed. At temperatures below 138 ° C, P
Since the catalyst concentration must be extremely high in order to suppress the formation of CF, the burden of separating and purifying the target product is undesirably increased as described above. Therefore, from the viewpoint of suppressing coloring of diphenyl carbonate, 138 to 165 ° C
The following reaction temperature is used. More preferably 150 to 160
It is a temperature of ° C. However, the A and B values are X (1.5 ≦ X ≦
8) quadratic function expressions (3) and (4)

【0027】[0027]

【数11】 A=5.35+0.132×X−6.68×10-3×X2 (3)A = 5.35 + 0.132 × X−6.68 × 10 −3 × X 2 (3)

【0028】[0028]

【数12】 B=0.0336−6.7×10-4×X−4.433×10-5×X2 (4)B = 0.0336-6.7 × 10 −4 × X-4.433 × 10 −5 × X 2 (4)

【0029】で表わされるが〔X〕としては2〜5が好
ましく、この範囲では近似的にX(2≦X≦5)の関数
式(5)及び(6)で表される定数である。
[X] is preferably 2 to 5, and in this range, it is a constant approximately expressed by the functional formulas (5) and (6) of X (2 ≦ X ≦ 5).

【0030】[0030]

【数13】 A=5.22+0.241×X−0.0259×X2 、 (5)A = 5.22 + 0.241 × X−0.0259 × X 2 (5)

【0031】[0031]

【数14】 B=0.0335−4.47×10-4×X (6)B = 0.0335−4.47 × 10 −4 × X (6)

【0032】ホスゲン化反応終了時に反応液に対して素
早く不活性ガス(例えば窒素、アルゴン)気流下で行な
い、反応液中の塩化水素を強制的に除去し、好ましくな
い副反応を抑制しながら、更に反応させることで、副生
PCFとフェノールとの反応〔II〕を行い、副生PCF
を効果的に減少させることも可能であり工業的にも有利
である。
At the end of the phosgenation reaction, the reaction solution is quickly subjected to an inert gas (eg, nitrogen, argon) stream to remove hydrogen chloride in the reaction solution and suppress undesired side reactions. By further reacting, a reaction [II] between the by-product PCF and phenol is performed, and the by-product PCF
Can be effectively reduced, which is industrially advantageous.

【0033】[0033]

【化6】 Embedded image

【0034】<反応装置>撹拌装置の付いた気−液反応
装置が通常用いられる。管型のガス吹き込み管や細孔を
有するガス吹き込み管等を使用し、溶融状態の基質に直
接吹き込む。特に微細孔を有するガス吹き込み管を使用
することが、反応を効率良く進行させるために好まれ
る。また撹拌装置のない気泡塔反応装置を用いることも
可能である。反応圧力は、通常、常圧で行なわれるが、
必要に応じて加圧下または減圧下で行なうことが可能で
ある。 <炭酸ジフェニルの分離>触媒の分離に関しては、第2
工程後に触媒を塩酸塩の形態で液体(炭酸ジフェニル)
−固体(ピリジン系化合物塩酸塩)熱ろ過分離、溶媒を
用いる抽出分離、ピリジン系化合物塩酸塩を直接蒸留分
離する等の方法が可能である。得られた粗炭酸ジフェニ
ルは蒸留、晶析等で更なる精製を行なってもよい。
<Reactor> A gas-liquid reactor equipped with a stirrer is usually used. Using a tubular gas blow-in tube or a gas blow-in tube having pores, the gas is blown directly into the molten substrate. In particular, it is preferable to use a gas injection tube having micropores in order to allow the reaction to proceed efficiently. It is also possible to use a bubble column reactor without a stirrer. The reaction pressure is usually carried out at normal pressure,
It can be carried out under pressure or under reduced pressure as necessary. <Separation of diphenyl carbonate>
Liquid catalyst in the form of hydrochloride after the process (diphenyl carbonate)
-Solid (pyridine compound hydrochloride) methods such as hot filtration separation, extraction separation using a solvent, and direct distillation separation of the pyridine compound hydrochloride are possible. The obtained crude diphenyl carbonate may be further purified by distillation, crystallization, or the like.

【0035】[0035]

【実施例】本発明を、以下の実施例、比較例により説明
するが、本発明は以下の実施例に限定されるものではな
い。 実施例1 フェノール0.5モル(47g)に混合ピコリン0.0
25モル(2.34g、フェノールに対して5モル%)
を添加し、G2グラスフィルター製ガス吹き込み管を用
いて連続的にホスゲンを0.3g/分の供給速度で供給
し、84分間150℃で反応させた〔ホスゲンの供給量
は24.6g(約0.2493モル)〕。この反応の終
了時、反応液の組成は0.04モルの未反応フェノール
が残存し、0.027モルのPCF、0.217モルの
炭酸ジフェニルが生成していた。この時のフェノール転
化率は92%であり、実ホスゲン反応量(フェノール1
モルに対するモル数)は0.487であった。フェノー
ルとPCFのモル比は1.5であった。反応液を冷却し
て固化したものは白色を呈していた。なお、フェノール
1モルに対し、反応したホスゲンの量は0.487モル
に相当する。
EXAMPLES The present invention will be described with reference to the following examples and comparative examples, but the present invention is not limited to the following examples. Example 1 Mixed picolin 0.0 in 0.5 mol (47 g) of phenol
25 mol (2.34 g, 5 mol% based on phenol)
Was added, and phosgene was continuously supplied at a supply rate of 0.3 g / min using a G2 glass filter gas injection tube, and reacted at 150 ° C. for 84 minutes [The supply amount of phosgene was 24.6 g (approx. 0.2493 mol)]. At the end of the reaction, the composition of the reaction solution was such that 0.04 mol of unreacted phenol remained, and 0.027 mol of PCF and 0.217 mol of diphenyl carbonate were formed. The phenol conversion at this time was 92%, and the actual phosgene reaction amount (phenol 1
Mole per mole) was 0.487. The molar ratio of phenol to PCF was 1.5. The solid that was cooled and solidified had a white color. In addition, the amount of reacted phosgene was equivalent to 0.487 mol with respect to 1 mol of phenol.

【0036】比較例1 フェノール0.5モル(47g)に混合ピコリン0.0
25モル(2.34g、フェノールに対して5モル%)
を添加し、G2グラスフィルター製ガス吹き込み管を用
いて連続的にホスゲンを0.3g/分の供給速度で供給
し、90分間150℃で反応させた〔ホスゲンの供給量
は27g(約0.273モル)〕。この反応の終了時、
反応液の組成は0.012モルの未反応フェノールが残
存し、0.028モルのPCF、0.23モルの炭酸ジ
フェニルが生成していた。生成するPCF及び炭酸ジフ
ェニル量から求められる実ホスゲン反応量(フェノール
1モルに対するモル数)は0.516であり、フェノー
ルとPCFのモル比は0.43であった。反応液は冷却
する過程において、速やかに黒色に変化した。
COMPARATIVE EXAMPLE 1 Mixed picolin 0.0 in 0.5 mol (47 g) of phenol
25 mol (2.34 g, 5 mol% based on phenol)
Was added, and phosgene was continuously supplied at a supply rate of 0.3 g / min using a gas injection tube made of a G2 glass filter, and reacted at 150 ° C. for 90 minutes [The supply amount of phosgene was 27 g (approximately 0. 273 mol)]. At the end of this reaction,
The composition of the reaction solution was such that 0.012 mol of unreacted phenol remained, and 0.028 mol of PCF and 0.23 mol of diphenyl carbonate were formed. The actual phosgene reaction amount (the number of moles per mole of phenol) determined from the amounts of PCF and diphenyl carbonate generated was 0.516, and the molar ratio of phenol to PCF was 0.43. The reaction solution quickly turned black in the course of cooling.

【0037】比較例2 実施例1と同様に反応を実施し、フェノールとPCFの
モル比が1になるところで反応を終了した。この反応液
についても冷却する過程において、反応液は茶色に変化
した。 比較例3、6 触媒濃度を2モル%として、ホスゲン供給速度あるい
は、反応時間の条件を変更した以外は実施例1と同様に
反応を実施した。ホスゲン化反応の終了時、フェノール
とPCFのモル比は各々1.5、2.39となり、反応
液の着色は見られなかったが、この条件ではフェノール
転化率が各々約83%、87%であり、90%に達しな
い。
Comparative Example 2 A reaction was carried out in the same manner as in Example 1, and the reaction was terminated when the molar ratio of phenol to PCF became 1. In the course of cooling this reaction solution, the reaction solution turned brown. Comparative Examples 3 and 6 The reaction was carried out in the same manner as in Example 1 except that the catalyst concentration was 2 mol% and the conditions of the phosgene supply rate and the reaction time were changed. At the end of the phosgenation reaction, the molar ratios of phenol and PCF were 1.5 and 2.39, respectively, and no coloring of the reaction solution was observed. However, under these conditions, the phenol conversion rates were about 83% and 87%, respectively. Yes, less than 90%.

【0038】実施例2 触媒にピリジンを用いて濃度を8モル%、ホスゲン供給
速度0.4g/分、反応時間68分間の条件以外〔ホス
ゲンの供給量は27.2g(約0.275モル)〕は実
施例1と同様に反応を実施した。この反応の終了時、反
応液の組成は0.035モルの未反応フェノールが残存
し、0.0171モルのPCF、0.224モルの炭酸
ジフェニルが生成していた。フェノール転化率は約93
%であった。この条件ではフェノールとPCFのモル比
は2.05となり、冷却過程においても反応液の着色は
見られなかった。
Example 2 Except that the concentration was 8 mol% using pyridine as a catalyst, the phosgene supply rate was 0.4 g / min, and the reaction time was 68 minutes [The supply amount of phosgene was 27.2 g (about 0.275 mol). ] Was carried out in the same manner as in Example 1. At the end of the reaction, the composition of the reaction solution was such that 0.035 mol of unreacted phenol remained, and 0.0171 mol of PCF and 0.224 mol of diphenyl carbonate were formed. Phenol conversion is about 93
%Met. Under these conditions, the molar ratio of phenol to PCF was 2.05, and no coloring of the reaction solution was observed even during the cooling process.

【0039】比較例4、5 触媒濃度を8及び5モル%、反応温度を各々150、1
30℃としてフェノールとPCFのモル比が0.50−
0.55となるまで反応を行った。この場合、反応終了
後の冷却過程において、反応液はゆっくりと茶色に変化
した。 比較例7 反応温度170℃で実施例1と同様に反応を行った。こ
のとき、反応中に既に茶色に着色が観察された。従って
170℃の温度は着色を考慮した場合反応温度として適
していない。
Comparative Examples 4 and 5 The catalyst concentrations were 8 and 5 mol%, and the reaction temperatures were 150 and 1, respectively.
At 30 ° C, the molar ratio of phenol to PCF is 0.50-
The reaction was carried out until it reached 0.55. In this case, the reaction solution slowly turned brown during the cooling process after the completion of the reaction. Comparative Example 7 A reaction was carried out at a reaction temperature of 170 ° C. in the same manner as in Example 1. At this time, brown coloration was already observed during the reaction. Therefore, a temperature of 170 ° C. is not suitable as a reaction temperature in consideration of coloring.

【0040】実施例3 反応温度165℃で実施例1と同様に反応を行った。こ
の時、170℃の反応中に認められた反応液の着色は観
察されなかった。 実施例4、5 実施例1、2と同様に反応を実施し、ホスゲン供給を停
止した後に更に、20分間同温度で窒素パージ(200
ml/分)を行ったところ、フェノール転化率は97.
3、96.4%に及び、PCFはガスクロマトグラフで
は検出されなかった。また反応液の着色も認められなか
った。以上の実施例、比較例について条件ならびに結果
を表1、図1及び図2にまとめた。
Example 3 A reaction was carried out at a reaction temperature of 165 ° C. in the same manner as in Example 1. At this time, no coloring of the reaction solution observed during the reaction at 170 ° C. was observed. Examples 4 and 5 The reaction was carried out in the same manner as in Examples 1 and 2. After stopping the supply of phosgene, the mixture was further purged with nitrogen (200 hours) at the same temperature for 20 minutes.
ml / min), the phenol conversion was 97.
At 3,96.4%, PCF was not detected by gas chromatography. No coloring of the reaction solution was observed. The conditions and results of the above Examples and Comparative Examples are summarized in Table 1, FIG. 1 and FIG.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】ピリジン系化合物を触媒として用いてフ
ェノールとホスゲンとを反応させる本発明の方法によれ
ば、高いフェノール転化率が得られるとともに、ピリジ
ン誘導体−フェニルクロロホルメート付加体の分解が抑
制され、色相の改善された炭酸ジフェニルが得られる。
According to the method of the present invention in which phenol and phosgene are reacted using a pyridine compound as a catalyst, a high phenol conversion rate is obtained and the decomposition of the pyridine derivative-phenylchloroformate adduct is suppressed. Thus, diphenyl carbonate having an improved hue is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるフェノールに対する触媒濃度と
反応温度との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a catalyst concentration for phenol and a reaction temperature in the present invention.

【図2】本発明におけるフェノールに対し反応させるホ
スゲンのモル比と反応終了時の反応系に存在するフェニ
ルクロロホルメートに対するフェノールのモル比の関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the molar ratio of phosgene to be reacted with phenol and the molar ratio of phenol to phenyl chloroformate present in the reaction system at the end of the reaction in the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式(1) 【化1】 (式中、Rは水素原子、メチル基又はメトキシ基を表わ
す。)にて示されるピリジン系化合物を触媒とし、フェ
ノール転化率90%以上でフェノール1モルに対して
0.5モル未満のホスゲンを反応させて炭酸ジフェニル
を製造する方法において、 〔C〕:フェノールに対する触媒濃度(モル%) 〔T〕:反応温度(℃) 〔X〕:反応終了時の反応系に存在するフェニルクロロ
ホルメートに対するフェノールのモル比 〔Y〕:フェノールに対して反応させるホスゲンのモル
比 とする時、〔C〕が1.2〜10モル%、〔T〕が13
8〜165℃、〔X〕が1.5〜8であって、且つ、次
式(1)及び(2) 【数1】 log〔C〕≧A−B×T (1) 【数2】 −0.302−0.0828×log〔X〕+0.0448 ×〔log〔X〕〕2 ≦log〔Y〕≦−0.303+0.0055 ×log〔X〕−0.0386×〔log〔X〕〕2 (2) (但し上記(1)式中A及びB値は各々Xの関数式
(3)及び式(4) 【数3】 A=5.35+0.132×X−6.68×10-3×X2 (3) 【数4】 B=0.0336−6.7×10-4×X−4.433×10-5×X2 (4) で表わされる定数である。)を満足させる条件の下に、
反応させることを特徴とする炭酸ジフェニルの製造法。
1. A compound of the general formula (1) (Wherein, R represents a hydrogen atom, a methyl group or a methoxy group) using a pyridine-based compound as a catalyst, and converting phosgene less than 0.5 mol per mol of phenol at a phenol conversion rate of 90% or more. In the method of producing diphenyl carbonate by reacting, [C]: a catalyst concentration (mol%) with respect to phenol [T]: a reaction temperature (° C.) [X]: with respect to phenyl chloroformate present in the reaction system at the end of the reaction When the molar ratio of phenol [Y]: the molar ratio of phosgene to be reacted with phenol, [C] is 1.2 to 10 mol% and [T] is 13
8 to 165 ° C., [X] is 1.5 to 8, and the following equations (1) and (2): log [C] ≧ AB × T (1) −0.302−0.0828 × log [X] + 0.0448 × [log [X]] 2 ≦ log [Y] ≦ −0.303 + 0.0055 × log [X] −0.0386 × [log [X ] 2 (2) (where A and B values in the above formula (1) are the functional formulas (3) and (4) of X, respectively) A = 5.35 + 0.132 × X−6.68 × 10 −3 × X 2 (3) B = 0.0336−6.7 × 10 −4 × X−4.433 × 10 −5 × X 2 (4) This is a constant.) Under the conditions that satisfy
A method for producing diphenyl carbonate, characterized by reacting.
【請求項2】 請求項1に記載の炭酸ジフェニルの製造
方法に於て、〔X〕が2〜5の範囲にあって、A及びB
値が式(5)及び式(6)で表わされる定数であるとこ
ろの方法。 【数5】 A=5.22+0.241×X−0.0259×X2 (5) 【数6】 B=0.0335−4.47×10-4×X (6) 但し、2.0≦X≦5.0
2. The method for producing diphenyl carbonate according to claim 1, wherein [X] is in the range of 2 to 5, and A and B
The method wherein the value is a constant represented by equations (5) and (6). A = 5.22 + 0.241 × X−0.0259 × X 2 (5) B = 0.0335−4.47 × 10 −4 × X (6) where 2.0 ≤X≤5.0
【請求項3】 請求項1に記載の炭酸ジフェニルの製造
方法に於て、ホスゲン吹き込み終了後、不活性ガス気流
下、反応液中のフェニルクロロホルメート組成を実質的
に1モル%以下になるまで反応させることを特徴とする
方法。
3. The process for producing diphenyl carbonate according to claim 1, wherein after the phosgene blowing is completed, the phenyl chloroformate composition in the reaction solution is reduced to substantially 1 mol% or less under an inert gas stream. The method characterized by reacting until.
JP8250875A 1996-09-03 1996-09-03 Production of diphenyl carbonate Withdrawn JPH1077250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8250875A JPH1077250A (en) 1996-09-03 1996-09-03 Production of diphenyl carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8250875A JPH1077250A (en) 1996-09-03 1996-09-03 Production of diphenyl carbonate

Publications (1)

Publication Number Publication Date
JPH1077250A true JPH1077250A (en) 1998-03-24

Family

ID=17214319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8250875A Withdrawn JPH1077250A (en) 1996-09-03 1996-09-03 Production of diphenyl carbonate

Country Status (1)

Country Link
JP (1) JPH1077250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169775A1 (en) 2014-05-09 2015-11-12 Covestro Deutschland Ag Method for producing diaryl carbonates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169775A1 (en) 2014-05-09 2015-11-12 Covestro Deutschland Ag Method for producing diaryl carbonates

Similar Documents

Publication Publication Date Title
KR960006550B1 (en) Procedure for the production of alkyl carbonates
EP1777215B1 (en) Method for producing 2-amino-5-iodobenzoic acid
JPS5850977B2 (en) Tansanjiari-Runoseizouhouhou
JPH0959238A (en) Synthesis of ketazine
JP3755834B2 (en) Method for producing aryl carbonate
EP0372635B1 (en) Method of preparing dialkyl and diallyl dicarbonates
EP0256559A2 (en) Process for producing di-tertiary-butyl dicarbonate
JPH1017529A (en) Continuous production of aryl carbonate
JPH1077250A (en) Production of diphenyl carbonate
JPH10158238A (en) Production of n-methyl-2-pyrrolidone
JPH08239348A (en) Production of aryl carbonate
JP3282372B2 (en) Piperonal manufacturing method
JP3143598B2 (en) Method for producing high-purity phthalic anhydride
JPH09278714A (en) Production of diaryl carbonate
JPH0247990B2 (en)
JP3546100B2 (en) Method for producing diaryl carbonate
JP3531298B2 (en) Catalyst for diaryl carbonate production
US4698438A (en) Process for the preparation of methyl carbamates and thioimidates
JPH1112230A (en) Purification of diphenyl carbonate
JPS611662A (en) Manufacture of (trifluoromethyl)pyridine
JPH09202750A (en) Production of dicarbonate
JP2003040854A (en) Method for chlorosulfonyl isocyanate production
JP3164284B2 (en) Method for producing 2-chloro-4-trifluoromethylbenzal chloride
JPS63162662A (en) Production of isophorone diisocyanate
JPH06321933A (en) Production of alkylene carbonate

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040303