JPH1074984A - Thermoelectric material and its manufacture - Google Patents

Thermoelectric material and its manufacture

Info

Publication number
JPH1074984A
JPH1074984A JP9146944A JP14694497A JPH1074984A JP H1074984 A JPH1074984 A JP H1074984A JP 9146944 A JP9146944 A JP 9146944A JP 14694497 A JP14694497 A JP 14694497A JP H1074984 A JPH1074984 A JP H1074984A
Authority
JP
Japan
Prior art keywords
group
element selected
thermoelectric material
less
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9146944A
Other languages
Japanese (ja)
Other versions
JP3319338B2 (en
Inventor
Yuuma Horio
裕磨 堀尾
Hiroyuki Yamashita
博之 山下
Toshiharu Hoshi
星  俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP14694497A priority Critical patent/JP3319338B2/en
Publication of JPH1074984A publication Critical patent/JPH1074984A/en
Application granted granted Critical
Publication of JP3319338B2 publication Critical patent/JP3319338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric material which has a high performance index of 4.0×10<-3> (1/K) or more and its manufacture. SOLUTION: Thermoelectric material is of P-type containing at least one element selected from a group of elements composed of Bi and Sb and at least one element selected from a group of elements composed of Te and Se. In this case, the average diameter of the crystal grain is limited to 50μm or less and oxygen content, 1500wt.ppm or less. A thin film is manufactured from the material containing, at least one element selected from a group of elements composed of Bi and Sb and at least one element selected from a group of elements composed of Te and Se, by liquid quenching, the thin film is powdered, and the powder is reduced by hydrogen gas to be solidified under the condition that the crystal grain does not roughen, and the thermoelectric material is manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱電発電及び及び熱
電冷却等に応用される熱電変換素子及びその製造方法に
関し、特に、性能指数を向上させることができる熱電材
料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion element applied to thermoelectric power generation and thermoelectric cooling, and a method of manufacturing the same, and more particularly, to a thermoelectric material capable of improving a figure of merit and a method of manufacturing the same.

【0002】[0002]

【従来の技術】熱電材料の製造方法として、液体急冷法
を使用して熱電材料の溶湯を薄膜化し、これを粉末化し
た後、焼結法により粉末化された原料を固化成形する方
法がある。このようにして製造された熱電材料は、熱電
材料の溶湯を急冷する時又は熱電材料の薄膜を粉末化す
る時に、粉末の表面が酸化して、固化成形時にこの粉末
間の界面に酸化膜が形成される。
2. Description of the Related Art As a method for manufacturing a thermoelectric material, there is a method in which a molten metal of a thermoelectric material is thinned using a liquid quenching method, and then the raw material is solidified and formed by sintering. . When the thermoelectric material manufactured in this way is quenched in the melt of the thermoelectric material or when a thin film of the thermoelectric material is powdered, the surface of the powder is oxidized, and an oxide film is formed at the interface between the powders during solidification molding. It is formed.

【0003】ところで、熱電材料の特性は、そのゼーベ
ック係数をα(μ・V/K)、比抵抗をρ(Ω・m)、
熱伝導率をκ(W/m・K)としたとき、下記数式1に
示す性能指数Zによって評価することができる。即ち、
性能指数Zの値が大きいほど、熱電材料の特性は優れて
いる。
The properties of a thermoelectric material include a Seebeck coefficient α (μ · V / K), a specific resistance ρ (Ω · m),
When the thermal conductivity is κ (W / m · K), the thermal conductivity can be evaluated by the performance index Z shown in the following equation 1. That is,
The larger the figure of merit Z, the better the properties of the thermoelectric material.

【0004】[0004]

【数1】Z=α2/(ρ×κ)。## EQU1 ## Z = α 2 / (ρ × κ).

【0005】上記数式1に示すように、熱電材料の特性
を向上させるためには、比抵抗ρ又は熱伝導率κを小さ
くすることが必要である。
[0005] As shown in the above formula 1, it is necessary to reduce the specific resistance ρ or the thermal conductivity κ in order to improve the properties of the thermoelectric material.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
方法により熱電材料を製造すると、粉末の表面に形成さ
れた酸化膜により、熱電材料の比抵抗ρが大きくなって
しまうという問題点がある。従って、従来の熱電材料は
その性能指数に限界があり、例えば、4.0×10
-3(1/K)未満であった。
However, when a thermoelectric material is manufactured by a conventional method, there is a problem that the resistivity ρ of the thermoelectric material increases due to an oxide film formed on the surface of the powder. Therefore, the conventional thermoelectric material has a limited figure of merit, for example, 4.0 × 10
-3 (1 / K).

【0007】本発明はかかる問題点に鑑みてなされたも
のであって、4.0×10-3(1/K)以上の高い性能
指数を得ることができる熱電材料及びその製造方法を提
供することを目的とする。
The present invention has been made in view of the above problems, and provides a thermoelectric material capable of obtaining a high figure of merit of 4.0 × 10 −3 (1 / K) or more, and a method of manufacturing the same. The purpose is to:

【0008】[0008]

【課題を解決するための手段】本発明に係る熱電材料
は、Bi及びSbからなる群から選択された少なくとも
1種の元素と、Te及びSeからなる群から選択された
少なくとも1種の元素とを含有するP型の熱電材料にお
いて、結晶粒の平均粒径が50μm以下、酸素含有量が
1500重量ppm以下に規制されていることを特徴と
する。
The thermoelectric material according to the present invention comprises at least one element selected from the group consisting of Bi and Sb, and at least one element selected from the group consisting of Te and Se. In the P-type thermoelectric material containing, the average grain size of the crystal grains is regulated to 50 μm or less, and the oxygen content is regulated to 1500 ppm by weight or less.

【0009】また、本発明に係る他の熱電材料は、Bi
及びSbからなる群から選択された少なくとも1種の元
素と、Te及びSeからなる群から選択された少なくと
も1種の元素と、I、Cl、Hg、Br、Ag及びCu
からなる群から選択された少なくとも1種の元素とを含
有するN型の熱電材料において、結晶粒の平均粒径が5
0μm以下、酸素含有量が1500重量ppm以下に規
制されていることを特徴とする。
Another thermoelectric material according to the present invention is Bi thermoelectric material.
And at least one element selected from the group consisting of Te and Se, at least one element selected from the group consisting of Te and Se, and I, Cl, Hg, Br, Ag, and Cu.
In an N-type thermoelectric material containing at least one element selected from the group consisting of:
It is characterized in that it is regulated to 0 μm or less and the oxygen content to 1500 ppm by weight or less.

【0010】本発明に係る熱電材料の製造方法は、Bi
及びSbからなる群から選択された少なくとも1種の元
素と、Te及びSeからなる群から選択された少なくと
も1種の元素とを含有する原料を液体急冷法により薄膜
状にして、更に粉末化する第1工程と、この第1工程に
より得られた粉末を水素ガスにより還元する第2工程
と、この第2工程により還元された粉末を結晶粒が粗大
化しない条件で固化成形する第3工程と、を有し、結晶
粒の平均粒径が50μm以下、酸素含有量が1500重
量ppm以下に規制された熱電材料を得ることを特徴と
する。
[0010] The method for producing a thermoelectric material according to the present invention comprises the steps of:
And a raw material containing at least one element selected from the group consisting of Te and Se and at least one element selected from the group consisting of Te and Se are formed into a thin film by a liquid quenching method, and further powdered. A first step, a second step of reducing the powder obtained in the first step with hydrogen gas, and a third step of solidifying and forming the powder reduced in the second step under the condition that the crystal grains do not become coarse. And obtaining a thermoelectric material in which the average grain size of the crystal grains is regulated to 50 μm or less and the oxygen content is regulated to 1500 wt ppm or less.

【0011】また、本発明に係る他の熱電材料の製造方
法は、Bi及びSbからなる群から選択された少なくと
も1種の元素と、Te及びSeからなる群から選択され
た少なくとも1種の元素とを含有する原料を液体急冷法
により薄膜状にして、更に粉末化する第1工程と、この
第1工程により得られた粉末を真空度が1×10-2To
rr以下になるまで真空引きした後に、水素ガス雰囲気
下で、温度を200乃至500℃として10乃至50時
間加熱することにより前記粉末を還元する第2工程と、
この第2工程により還元された粉末を結晶粒が粗大化し
ない条件で固化成形する第3工程と、を有することを特
徴とする。
[0011] Further, another method for producing a thermoelectric material according to the present invention is characterized in that at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se Step of forming a raw material containing the following into a thin film by a liquid quenching method, and further pulverizing the raw material; and obtaining a powder having a degree of vacuum of 1 × 10 -2 To
a second step of reducing the powder by heating at a temperature of 200 to 500 ° C. in a hydrogen gas atmosphere for 10 to 50 hours after evacuating to rr or less,
And a third step of solidifying and forming the powder reduced in the second step under the condition that the crystal grains do not become coarse.

【0012】本発明に係る更に他の熱電材料の製造方法
は、Bi及びSbからなる群から選択された少なくとも
1種の元素と、Te及びSeからなる群から選択された
少なくとも1種の元素と、I、Cl、Hg、Br、Ag
及びCuからなる群から選択された少なくとも1種の元
素とを含有する原料を液体急冷法により薄膜状にして、
更に粉末化する第1工程と、この第1工程により得られ
た粉末を水素ガスにより還元する第2工程と、この第2
工程により還元された粉末を結晶粒が粗大化しない条件
で固化成形する第3工程と、を有し、結晶粒の平均粒径
が50μm以下、酸素含有量が1500重量ppm以下
に規制された熱電材料を得ることを特徴とする。
[0012] Still another method for producing a thermoelectric material according to the present invention is a method for producing at least one element selected from the group consisting of Bi and Sb, and at least one element selected from the group consisting of Te and Se. , I, Cl, Hg, Br, Ag
And a raw material containing at least one element selected from the group consisting of Cu and a thin film by a liquid quenching method,
A first step of further pulverizing; a second step of reducing the powder obtained in the first step with hydrogen gas;
A third step of solidifying and molding the powder reduced in the step under conditions that do not coarsen the crystal grains, wherein the average particle diameter of the crystal grains is 50 μm or less and the oxygen content is regulated to 1500 wt ppm or less. It is characterized by obtaining a material.

【0013】本発明に係る更に他の熱電材料の製造方法
は、Bi及びSbからなる群から選択された少なくとも
1種の元素と、Te及びSeからなる群から選択された
少なくとも1種の元素と、I、Cl、Hg、Br、Ag
及びCuからなる群から選択された少なくとも1種の元
素とを含有する原料を液体急冷法により薄膜状にして、
更に粉末化する第1工程と、この第1工程により得られ
た粉末を真空度が1×10-2Torr以下になるまで真
空引きした後に、水素ガス雰囲気下で、温度を200乃
至500℃として10乃至50時間加熱することにより
前記粉末を還元する第2工程と、この第2工程により還
元された粉末を結晶粒が粗大化しない条件で固化成形す
る第3工程と、を有することを特徴とする。
[0013] Still another method for producing a thermoelectric material according to the present invention is a method for producing at least one element selected from the group consisting of Bi and Sb, and at least one element selected from the group consisting of Te and Se. , I, Cl, Hg, Br, Ag
And a raw material containing at least one element selected from the group consisting of Cu and a thin film by a liquid quenching method,
A first step of further pulverizing, and after evacuation of the powder obtained in the first step until the degree of vacuum becomes 1 × 10 −2 Torr or less, the temperature is set to 200 to 500 ° C. in a hydrogen gas atmosphere. A second step of reducing the powder by heating for 10 to 50 hours, and a third step of solidifying and forming the powder reduced by the second step under a condition that crystal grains do not become coarse. I do.

【0014】[0014]

【発明の実施の形態】本願発明者等が前記課題を解決す
るために鋭意実験研究を重ねた結果、熱電材料の製造時
において、粉末の粒界に形成される酸化膜を還元により
除去することによって、熱電材料の比抵抗ρが小さくな
り、熱電材料の性能指数Zを向上させることができるこ
とを見い出した。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of intensive experiments and research conducted by the present inventors to solve the above-mentioned problems, it has been found that an oxide film formed at a grain boundary of powder is removed by reduction during the production of a thermoelectric material. As a result, it has been found that the specific resistance ρ of the thermoelectric material is reduced, and the figure of merit Z of the thermoelectric material can be improved.

【0015】先ず、本発明に係る熱電材料の製造方法に
おける還元処理条件の限定理由について、以下に説明す
る。
First, the reasons for limiting the conditions for the reduction treatment in the method for producing a thermoelectric material according to the present invention will be described below.

【0016】還元処理温度:200乃至500℃ 還元処理時における温度が200℃未満であると、粉末
表面の酸化物の還元が不十分となるので、比抵抗ρが減
少せず、性能指数Zを向上させることができない。一
方、還元処理温度が500℃を超えると、Te又はSe
等の低沸点元素が離脱することによって空孔が増加し
て、抵抗(比抵抗ρ)が増加すると共に、組成のずれに
よって熱起電力(ゼーベック係数α)が低下する。
Reduction treatment temperature: 200 to 500 ° C. If the temperature during the reduction treatment is less than 200 ° C., the reduction of the oxide on the powder surface becomes insufficient, so that the specific resistance ρ does not decrease and the performance index Z is reduced. Can't improve. On the other hand, if the reduction treatment temperature exceeds 500 ° C., Te or Se
And the like, the vacancies increase, the resistance (specific resistance ρ) increases, and the thermal electromotive force (Seebeck coefficient α) decreases due to the composition shift.

【0017】図1は横軸に還元処理温度をとり、縦軸に
比抵抗をとって、還元処理温度と比抵抗との関係を示す
グラフ図である。これは、Bi2Te2.85Se0.15の組
成物に0.2重量%のSbI3を添加して得られた母合
金を液体急冷して厚みが10μm未満の薄片状の粉末を
作製し、これを真空引きした後に、内部が水素ガスによ
って置換されたパイレックス管に封入し、加熱還元処理
を施した後、ホットプレスすることにより固化成形した
熱電材料について測定した結果である。但し、還元処理
時間を10時間とし、ホットプレス時の加熱温度を42
5℃、圧力を4(tonf/cm2)、加熱時間を60分間とし
ている。図1に示すように、還元処理温度が200乃至
500℃の範囲において、比抵抗は低下する。なお、比
抵抗が低下する温度範囲は、原料の組成に拘わらず同様
である。従って、還元処理時における処理温度は200
乃至500℃とする。
FIG. 1 is a graph showing the relationship between the reduction processing temperature and the specific resistance, with the horizontal axis representing the reduction processing temperature and the vertical axis representing the specific resistance. This is because a master alloy obtained by adding 0.2% by weight of SbI 3 to a composition of Bi 2 Te 2.85 Se 0.15 is quenched by liquid to produce a flaky powder having a thickness of less than 10 μm. It is a result of measuring a thermoelectric material solidified and formed by evacuation, enclosing in a Pyrex tube whose inside has been replaced with hydrogen gas, performing a heat reduction treatment, and then hot pressing. However, the reduction treatment time was 10 hours, and the heating temperature during hot pressing was 42 hours.
The temperature was 5 ° C., the pressure was 4 (tonf / cm 2 ), and the heating time was 60 minutes. As shown in FIG. 1, when the reduction temperature is in the range of 200 to 500 ° C., the specific resistance decreases. The temperature range in which the specific resistance decreases is the same regardless of the composition of the raw material. Therefore, the processing temperature during the reduction processing is 200
To 500 ° C.

【0018】還元処理時間:10乃至50時間 還元処理時における時間が10時間未満であると、粉末
表面の酸化物の還元が不十分となるので、比抵抗ρが減
少せず、性能指数Zを向上させることができない。一
方、還元処理時間が50時間を超えると、Te又はSe
等の低沸点元素が離脱することによって空孔が増加し
て、抵抗(比抵抗ρ)が増加すると共に、組成のずれに
よって熱起電力(ゼーベック係数α)が低下する。
Reduction treatment time: 10 to 50 hours If the time during the reduction treatment is less than 10 hours, the reduction of the oxide on the powder surface becomes insufficient, so that the specific resistance ρ does not decrease and the performance index Z is reduced. Can't improve. On the other hand, if the reduction processing time exceeds 50 hours, Te or Se
And the like, the vacancies increase, the resistance (specific resistance ρ) increases, and the thermal electromotive force (Seebeck coefficient α) decreases due to the composition shift.

【0019】図2は横軸に還元処理時間をとり、縦軸に
比抵抗をとって、還元処理時間と比抵抗との関係を示す
グラフ図である。これは、Bi0.5Sb1.5Te3の組成
物に1.5重量%のTeを添加して得られた母合金を液
体急冷して粉末を作製し、これをパイレックス管に入れ
て真空引きした後に、管内部を水素ガスによって置換し
て封入し、加熱還元処理を施した後、ホットプレスする
ことにより固化成形した熱電材料について測定した結果
である。但し、還元処理温度を370℃とし、ホットプ
レス時の加熱温度を400℃、圧力を3(tonf/cm2)、
加熱時間を90分間としている。図2に示すように、還
元処理時間が10乃至50時間の範囲において、比抵抗
ρは低下している。なお、比抵抗が低下する還元処理時
間の範囲は、原料の組成に拘わらず同様である。従っ
て、還元処理時における処理時間は10乃至50時間と
する。
FIG. 2 is a graph showing the relationship between the reduction processing time and the specific resistance, with the horizontal axis representing the reduction processing time and the vertical axis representing the specific resistance. This is because a mother alloy obtained by adding 1.5% by weight of Te to a composition of Bi 0.5 Sb 1.5 Te 3 is quenched by liquid to produce a powder, which is put into a Pyrex tube and evacuated. This is a result of measurement of a thermoelectric material solidified and formed by hot pressing after the inside of the tube is replaced with hydrogen gas and sealed, subjected to a heat reduction treatment, and then subjected to hot pressing. However, the reduction treatment temperature was 370 ° C, the heating temperature during hot pressing was 400 ° C, the pressure was 3 (tonf / cm 2 ),
The heating time is 90 minutes. As shown in FIG. 2, the specific resistance ρ decreases in the range of the reduction treatment time of 10 to 50 hours. In addition, the range of the reduction treatment time in which the specific resistance decreases is the same regardless of the composition of the raw material. Therefore, the processing time during the reduction processing is set to 10 to 50 hours.

【0020】真空度:1×10-2Torr以下 本発明においては、母合金の粉末原料をパイレックス管
等に入れて真空引きした後に、水素ガス置換して封入
し、これを加熱することにより粉末原料を還元すること
ができる。この真空引きするときの真空度が1×10-2
Torr以上であると、パイレックス管等に残存する酸
素によって、加熱時に粉末が酸化してしまう。従って、
還元処理時の真空度は1×10-2Torr以下とする。
Vacuum degree: 1 × 10 −2 Torr or less In the present invention, the powdery material of the mother alloy is put into a Pyrex tube or the like, evacuated, then replaced with hydrogen gas and sealed, and heated to heat the powder. Raw materials can be reduced. The degree of vacuum when evacuation is 1 × 10 -2
If the pressure is equal to or higher than Torr, the powder oxidizes during heating due to oxygen remaining in the Pyrex tube or the like. Therefore,
The degree of vacuum during the reduction treatment is set to 1 × 10 −2 Torr or less.

【0021】次に、本実施例に係る熱電材料における平
均結晶粒径及び酸素含有量の限定理由について説明す
る。
Next, the reasons for limiting the average crystal grain size and the oxygen content in the thermoelectric material according to this embodiment will be described.

【0022】平均結晶粒径:50μm以下 熱電材料の平均結晶粒径がその特性に与える影響を調査
した結果について、以下に示す。この熱電材料として
は、Bi0.5Sb1.5Te3の組成物に1重量%のTeを
添加して得られた母合金を使用している。
Average crystal grain size: 50 μm or less The results of an investigation on the effect of the average crystal grain size of the thermoelectric material on its properties are shown below. As the thermoelectric material, a master alloy obtained by adding 1% by weight of Te to a composition of Bi 0.5 Sb 1.5 Te 3 is used.

【0023】図3は横軸に熱電材料の結晶粒の平均結晶
粒径をとり、縦軸に熱起電力αをとって、平均結晶粒径
と熱起電力との関係を示すグラフ図である。図3に示す
ように、熱起電力αは結晶粒の平均結晶粒径には殆ど影
響されない。
FIG. 3 is a graph showing the relationship between the average crystal grain size and the thermoelectromotive force, with the horizontal axis representing the average crystal grain size of the crystal grains of the thermoelectric material and the vertical axis representing the thermoelectromotive force α. . As shown in FIG. 3, the thermoelectromotive force α is hardly affected by the average crystal grain size of the crystal grains.

【0024】図4は横軸に熱電材料の結晶粒の平均結晶
粒径をとり、縦軸に熱伝導率κをとって、平均結晶粒径
と熱伝導率との関係を示すグラフ図である。図4に示す
ように、結晶粒の平均結晶粒径が大きくなるに従って熱
伝導率κは増加し、平均結晶粒径が50乃至100μm
の範囲において、熱伝導率κの増加量が大きくなる。
FIG. 4 is a graph showing the relationship between the average crystal grain size and the thermal conductivity, with the horizontal axis representing the average crystal grain size of the crystal grains of the thermoelectric material and the vertical axis representing the thermal conductivity κ. . As shown in FIG. 4, the thermal conductivity κ increases as the average crystal grain size of the crystal grains increases, and the average crystal grain size is 50 to 100 μm.
In the range, the amount of increase in the thermal conductivity κ increases.

【0025】図5は横軸に熱電材料の結晶粒の平均結晶
粒径をとり、縦軸に比抵抗ρをとって、平均結晶粒径と
比抵抗との関係を示すグラフ図である。図5に示すよう
に、結晶粒の平均結晶粒径が50μm以下の範囲におい
ては、比抵抗ρは殆ど変化しないが、平均結晶粒径が5
0μmを超える範囲においては、粒径が大きくなるに従
って比抵抗ρは増加している。
FIG. 5 is a graph showing the relationship between the average crystal grain size and the specific resistance, where the horizontal axis represents the average crystal grain size of the crystal grains of the thermoelectric material, and the vertical axis represents the specific resistance ρ. As shown in FIG. 5, when the average crystal grain size of the crystal grains is 50 μm or less, the specific resistance ρ hardly changes, but the average crystal grain size is 5 μm or less.
In the range exceeding 0 μm, the specific resistance ρ increases as the particle size increases.

【0026】図6は横軸に熱電材料の結晶粒の平均結晶
粒径をとり、縦軸に性能指数Zをとって、平均結晶粒径
と性能指数との関係を示すグラフ図である。性能指数Z
は、Z=α2/(ρ×κ)の数式で表されるので、熱起
電力αが一定のとき、比抵抗ρ及び熱伝導率κが増加す
るにつれて、性能指数Zは低下する。図6に示すよう
に、結晶粒の平均結晶粒径が50μmを超えると、性能
指数Zは著しく低下する。なお、熱電材料の平均結晶粒
径が性能指数及び熱伝導率に対して及ぼす影響は、原料
の組成に拘わらず、同様の傾向が得られる。従って、熱
電材料の平均結晶粒径は50μm以下とする。
FIG. 6 is a graph showing the relationship between the average crystal grain size and the performance index, with the horizontal axis representing the average crystal grain diameter of the crystal grains of the thermoelectric material and the vertical axis representing the performance index Z. Figure of merit Z
Is represented by the following equation: Z = α 2 / (ρ × κ). Therefore, when the thermal electromotive force α is constant, the performance index Z decreases as the specific resistance ρ and the thermal conductivity κ increase. As shown in FIG. 6, when the average crystal grain size of the crystal grains exceeds 50 μm, the figure of merit Z significantly decreases. Regarding the influence of the average crystal grain size of the thermoelectric material on the performance index and the thermal conductivity, a similar tendency is obtained irrespective of the composition of the raw material. Therefore, the average crystal grain size of the thermoelectric material is set to 50 μm or less.

【0027】酸素含有量:1500重量ppm以下 熱電材料中の酸素含有量は、還元の度合いを判断するこ
とができる値である。熱電材料中の酸素含有量が150
0重量ppmを超えている場合、還元処理時において原
料粉末が十分に還元されなかったことを示し、粉末の界
面に存在する酸化膜によってキャリアが散乱されるため
に比抵抗ρが増加し、これにより、性能指数Zが低下す
る。
Oxygen content: 1500 ppm by weight or less The oxygen content in the thermoelectric material is a value from which the degree of reduction can be determined. The oxygen content in the thermoelectric material is 150
If it exceeds 0 ppm by weight, it indicates that the raw material powder was not sufficiently reduced during the reduction treatment, and the carrier was scattered by the oxide film present at the interface of the powder, so that the specific resistance ρ increased. As a result, the figure of merit Z decreases.

【0028】図7は横軸に熱電材料中の酸素含有量をと
り、縦軸に比抵抗をとって、酸素含有量と比抵抗との関
係を示すグラフ図である。但し、この熱電材料として
は、Bi0.5Sb1.5Te3の組成物に1.5重量%のT
eを添加して得られた母合金を使用しており、平均結晶
粒径は30μmである。図7に示すように、熱電材料中
の酸素含有量が1500重量ppmを超えて増加する
と、比抵抗も著しく増加する。なお、比抵抗が低下する
酸素含有量の範囲は、原料の組成に拘わらず同様であ
る。従って、熱電材料中の酸素含有量は1500重量p
pm以下とする。
FIG. 7 is a graph showing the relationship between the oxygen content and the specific resistance, with the horizontal axis indicating the oxygen content in the thermoelectric material and the vertical axis indicating the specific resistance. However, as the thermoelectric material, the composition of Bi 0.5 Sb 1.5 Te 3 has a T content of 1.5% by weight.
The mother alloy obtained by adding e is used, and the average crystal grain size is 30 μm. As shown in FIG. 7, when the oxygen content in the thermoelectric material increases beyond 1500 ppm by weight, the specific resistance also increases significantly. The range of the oxygen content at which the specific resistance decreases is the same regardless of the composition of the raw material. Therefore, the oxygen content in the thermoelectric material is 1500 weight p.
pm or less.

【0029】このような微細結晶を有する熱電材料は、
具体的には、以下のような方法によって製造することが
できる。
The thermoelectric material having such fine crystals is
Specifically, it can be manufactured by the following method.

【0030】先ず、所望の組成となるように原料を秤量
し、真空中においてこれを溶解して母合金を作製する。
このとき、N型の熱電材料を作製する場合には、原料中
に、例えばSbI3、AgI、HgBr2又はHgCl2
等を添加すればよい。次に、例えば、単ロール法を使用
して、熱電材料の溶湯を103乃至106(K/秒)で急
冷する液体急冷法により薄膜化又は粉末状とし、これを
更に粉砕して粒径を50μm以下とする。次いで、この
粉末に還元処理を施す。
First, a raw material is weighed to have a desired composition, and the raw material is dissolved in a vacuum to prepare a mother alloy.
At this time, when producing an N-type thermoelectric material, for example, SbI 3 , AgI, HgBr 2 or HgCl 2
Etc. may be added. Next, for example, using a single roll method, the molten metal of the thermoelectric material is formed into a thin film or powder by a liquid quenching method in which the molten metal is quenched at 10 3 to 10 6 (K / sec). Is set to 50 μm or less. Next, the powder is subjected to a reduction treatment.

【0031】図8は原料粉末の還元処理方法を示す模式
図である。図8に示すように、パイレックス管1内に原
料粉末2が入れられており、このパイレックス管1の開
口部は、T字管3の一方の開口部に気密的に嵌入されて
いる。T字管3は分岐部分に三方コック4を有し、他の
一方の管は開閉栓5を介してH2ボンベ7に接続されて
おり、更に他方の管は開閉栓6を介して真空排気装置8
に接続されている。
FIG. 8 is a schematic diagram showing a method for reducing the raw material powder. As shown in FIG. 8, a raw material powder 2 is put in a Pyrex tube 1, and an opening of the Pyrex tube 1 is airtightly fitted into one opening of a T-shaped tube 3. The T-tube 3 has a three-way cock 4 at a branch portion, the other one of which is connected to an H 2 cylinder 7 through an opening and closing plug 5, and the other tube is evacuated through an opening and closing plug 6. Device 8
It is connected to the.

【0032】このように構成された装置において、先
ず、パイレックス管1が真空排気装置8に接続されるよ
うに三方コック4を調整し、パイレックス管1内の真空
度が1×10-2Torr以下になるように減圧する。次
いで、パイレックス管1がH2ボンベ7に接続されるよ
うに三方コック4を調整し、パイレックス管1内にH2
ガスを導入して、パイレックス管1を密閉封入する。そ
の後、管1を炉(図示せず)に入れて、例えば、200
乃至500℃の温度で10乃至50時間加熱し、原料粉
末2を還元処理した後、管1を割って粉末2を取り出
す。
In the apparatus configured as described above, first, the three-way cock 4 is adjusted so that the Pyrex tube 1 is connected to the vacuum evacuation device 8, and the degree of vacuum in the Pyrex tube 1 is 1 × 10 −2 Torr or less. Reduce the pressure so that Next, the three-way cock 4 was adjusted so that the Pyrex tube 1 was connected to the H 2 cylinder 7, and H 2 was inserted into the Pyrex tube 1.
Gas is introduced and the Pyrex tube 1 is hermetically sealed. Thereafter, the tube 1 is placed in a furnace (not shown) and, for example, 200
After heating at a temperature of about 500 ° C. for 10 to 50 hours to reduce the raw material powder 2, the tube 1 is cracked to take out the powder 2.

【0033】その後、還元処理された粉末を結晶が粗大
化しない条件でホットプレスすることにより、これを固
化成形する。結晶が粗大化しない条件とは、例えば、プ
レス圧力を400kgf/cm2、温度を300乃至5
00℃、時間を30乃至180分として、真空又はAr
雰囲気下における条件とすることができる。
Thereafter, the reduced powder is hot-pressed under the condition that the crystals do not become coarse, thereby solidifying and forming the same. Conditions under which the crystals are not coarsened include, for example, a pressing pressure of 400 kgf / cm 2 and a temperature of 300 to 5
Vacuum or Ar at 00 ° C. for 30 to 180 minutes
Conditions under an atmosphere can be set.

【0034】なお、還元処理された粉末を固化成形する
方法として、他に、押出し成型する方法、放電プラズマ
焼結により成型する方法がある。放電プラズマ焼結と
は、プラズマ放電によりイオンに衝撃を与えると共に、
加熱中に加圧することによって、原料粉末の組織を成長
させることなく焼結体にすることができる方法である。
As a method of solidifying and molding the reduced powder, there are other methods such as extrusion molding and molding by discharge plasma sintering. With spark plasma sintering, while impacting ions by plasma discharge,
This is a method in which a sintered body can be obtained by applying pressure during heating without growing the structure of the raw material powder.

【0035】また、本発明の熱電材料がホットプレスに
より固化成形される場合、ホットプレスの圧力方向(結
晶のc軸が成長する方向)に平行な方向に熱流方向を定
めてもよい。
When the thermoelectric material of the present invention is solidified by hot pressing, the direction of heat flow may be determined in a direction parallel to the pressure direction of hot pressing (the direction in which the c-axis of the crystal grows).

【0036】なお、本発明において、P型の熱電材料の
原料としては、Bi及びSbのいずれか一方又は両方
と、Te及びSeのいずれか一方又は両方とを含有する
ものとする。また、N型の熱電材料の原料としては、前
記組成に、更に、I、Cl、Hg、Br、Ag及びCu
からなる群から選択された少なくとも1種の元素を添加
したものを使用する。
In the present invention, as a raw material of the P-type thermoelectric material, one or both of Bi and Sb and one or both of Te and Se are contained. In addition, as a raw material of the N-type thermoelectric material, the above composition further includes I, Cl, Hg, Br, Ag, and Cu.
A material to which at least one element selected from the group consisting of is added is used.

【0037】[0037]

【実施例】以下、本発明に係る熱電材料の実施例につい
てその比較例と比較して具体的に説明する。
EXAMPLES Examples of the thermoelectric material according to the present invention will be specifically described below in comparison with comparative examples.

【0038】先ず、種々の製造方法で、種々の組成を有
する熱電材料を製造し、これらの実施例及び比較例のサ
ンプルについて、平均結晶粒径及び酸素含有量を測定す
ると共に、比抵抗ρ、熱伝導率κ及びゼーベック係数α
を測定し、これらの値から性能指数Zを算出した。熱電
材料の組成を下記表1乃至3に示し、還元処理条件及び
固化成形方法を下記表4乃至6、測定結果を下記表7乃
至9に示す。
First, thermoelectric materials having various compositions were manufactured by various manufacturing methods, and the average crystal grain size and oxygen content of the samples of Examples and Comparative Examples were measured. Thermal conductivity κ and Seebeck coefficient α
Was measured, and a figure of merit Z was calculated from these values. The compositions of the thermoelectric materials are shown in the following Tables 1 to 3, the conditions of the reduction treatment and the solidification molding method are shown in the following Tables 4 to 6, and the measurement results are shown in the following Tables 7 to 9.

【0039】なお、酸素含有量は還元の度合いを評価す
るために測定されるものであり、本実施例においては、
非分散赤外線吸収法を使用した。即ち、試料を黒鉛坩堝
内で加熱すると、試料内の酸素が反応してCOガスを発
生するので、これをHe等のキャリアガスによって搬送
し、赤外線検出器によって濃度分析して酸素濃度に換算
した。
The oxygen content is measured to evaluate the degree of reduction, and in this embodiment,
A non-dispersive infrared absorption method was used. That is, when the sample is heated in the graphite crucible, the oxygen in the sample reacts to generate CO gas, which is conveyed by a carrier gas such as He, and the concentration is analyzed by an infrared detector and converted into oxygen concentration. .

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【表5】 [Table 5]

【0045】[0045]

【表6】 [Table 6]

【0046】[0046]

【表7】 [Table 7]

【0047】[0047]

【表8】 [Table 8]

【0048】[0048]

【表9】 [Table 9]

【0049】上記表1乃至9に示すように、実施例N
o.1乃至7は比較例No.31乃至37と対応してお
り、夫々、同一の組成を有する原料を液体急冷法により
薄膜状にして、これを粉末化した後、固化成形したもの
である。但し、実施例No.1乃至25は、全て、粉末
化した原料に対して水素ガスによる還元処理を施した後
に、固化成形したものであるので、得られた熱電材料の
平均結晶粒径が50μm以下となると共に、酸素含有量
が1500重量ppm以下となった。従って、比較例と
比較して性能指数が向上し、4.0×10-3以上の優れ
た性能指数を示した。
As shown in Tables 1 to 9 above, Example N
o. Nos. 1 to 7 are Comparative Examples No. The materials correspond to 31 to 37, respectively, and are formed by forming raw materials having the same composition into thin films by a liquid quenching method, pulverizing them, and then solidifying and molding. However, in Example No. All of Nos. 1 to 25 are obtained by subjecting a powdered raw material to reduction treatment with hydrogen gas and then solidifying and forming the same. Therefore, the average crystal grain size of the obtained thermoelectric material becomes 50 μm or less and oxygen The content was 1500 ppm by weight or less. Therefore, the figure of merit was improved as compared with the comparative example, and an excellent figure of merit of 4.0 × 10 −3 or more was shown.

【0050】一方、比較例No.26乃至30は、還元
処理を実施したものであるが、比較例No.26、28
及び30は酸素含有量が本発明範囲の上限を超えている
ので、性能指数が低下した。また、比較例No.27及
び29は平均結晶粒径が本発明範囲の上限を超えている
ので、性能指数が低下した。更に、比較例No.31乃
至42は、粉末化された原料に対して還元処理を実施し
ていないので、酸素含有量が本発明範囲の上限を超え
て、性能指数が低下した。
On the other hand, Comparative Example No. Nos. 26 to 30 are those in which the reduction process is performed. 26, 28
In Nos. 30 and 30, since the oxygen content exceeded the upper limit of the range of the present invention, the figure of merit decreased. Also, in Comparative Example No. In Nos. 27 and 29, since the average crystal grain size exceeded the upper limit of the range of the present invention, the figure of merit decreased. Further, in Comparative Example No. In Nos. 31 to 42, since no reduction treatment was performed on the powdered raw material, the oxygen content exceeded the upper limit of the range of the present invention, and the figure of merit decreased.

【0051】[0051]

【発明の効果】以上詳述したように、本発明によれば、
熱電材料の結晶粒の平均粒径及び酸素含有量を規定して
いるので、4.0×10-3(1/K)以上の高い性能指
数を有する熱電材料を得ることができる。また、本発明
方法によれば、所定の組成を有する原料を粉末化して、
これを還元した後、固化成形することにより、平均結晶
粒径及び酸素含有量が規制された熱電素子を得るので、
その性能指数を高めることができる。
As described in detail above, according to the present invention,
Since the average particle size and the oxygen content of the crystal grains of the thermoelectric material are specified, a thermoelectric material having a high figure of merit of 4.0 × 10 −3 (1 / K) or more can be obtained. According to the method of the present invention, a raw material having a predetermined composition is powdered,
After reducing this, by solidifying and molding, the average crystal grain size and the oxygen content are controlled, so that a thermoelectric element is obtained.
Its figure of merit can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】横軸に還元処理温度をとり、縦軸に比抵抗をと
って、還元処理温度と比抵抗との関係を示すグラフ図で
ある。
FIG. 1 is a graph showing the relationship between the reduction processing temperature and the specific resistance, with the horizontal axis indicating the reduction processing temperature and the vertical axis indicating the specific resistance.

【図2】横軸に還元処理時間をとり、縦軸に比抵抗をと
って、還元処理時間と比抵抗との関係を示すグラフ図で
ある。
FIG. 2 is a graph showing the relationship between the reduction processing time and the specific resistance, with the horizontal axis indicating the reduction processing time and the vertical axis indicating the specific resistance.

【図3】横軸に熱電材料の結晶粒の平均結晶粒径をと
り、縦軸に熱起電力αをとって、平均結晶粒径と熱起電
力との関係を示すグラフ図である。
FIG. 3 is a graph showing the relationship between the average crystal grain size and the thermoelectromotive force, with the horizontal axis representing the average crystal grain size of the crystal grains of the thermoelectric material and the vertical axis representing the thermoelectromotive force α.

【図4】横軸に熱電材料の結晶粒の平均結晶粒径をと
り、縦軸に熱伝導率κをとって、平均結晶粒径と熱伝導
率との関係を示すグラフ図である。
FIG. 4 is a graph showing the relationship between the average crystal grain size and the thermal conductivity, with the horizontal axis representing the average crystal grain size of the crystal grains of the thermoelectric material and the vertical axis representing the thermal conductivity κ.

【図5】横軸に熱電材料の結晶粒の平均結晶粒径をと
り、縦軸に比抵抗ρをとって、平均結晶粒径と比抵抗と
の関係を示すグラフ図である。
FIG. 5 is a graph showing the relationship between the average crystal grain size and the specific resistance, with the horizontal axis indicating the average crystal grain size of the crystal grains of the thermoelectric material and the vertical axis indicating the specific resistance ρ.

【図6】横軸に熱電材料の結晶粒の平均結晶粒径をと
り、縦軸に性能指数Zをとって、平均結晶粒径と性能指
数との関係を示すグラフ図である。
FIG. 6 is a graph showing the relationship between the average crystal grain size and the performance index, with the horizontal axis representing the average crystal grain diameter of the crystal grains of the thermoelectric material and the vertical axis representing the performance index Z.

【図7】横軸に熱電材料中の酸素含有量をとり、縦軸に
比抵抗をとって、酸素含有量と比抵抗との関係を示すグ
ラフ図である。
FIG. 7 is a graph showing the relationship between the oxygen content and the specific resistance, with the horizontal axis indicating the oxygen content in the thermoelectric material and the vertical axis indicating the specific resistance.

【図8】原料粉末の還元処理方法を示す模式図である。FIG. 8 is a schematic view showing a method for reducing a raw material powder.

【符号の説明】[Explanation of symbols]

1;パイレックス管、 2;原料粉末、 3;T字管、
4;三方コック、5、6;開閉栓、 7;H2ボン
ベ、 8;真空排気装置
1; Pyrex pipe; 2; raw material powder; 3; T-shaped pipe;
4; three-way stopcock, 5, 6; shutoff cock, 7; H 2 gas cylinder, 8; evacuator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Bi及びSbからなる群から選択された
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素とを含有するP型の熱
電材料において、結晶粒の平均粒径が50μm以下、酸
素含有量が1500重量ppm以下に規制されているこ
とを特徴とする熱電材料。
1. A P-type thermoelectric material containing at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se, Is regulated to an average particle size of 50 μm or less and an oxygen content of 1500 ppm by weight or less.
【請求項2】 Bi及びSbからなる群から選択された
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素と、I、Cl、Hg、
Br、Ag及びCuからなる群から選択された少なくと
も1種の元素とを含有するN型の熱電材料において、結
晶粒の平均粒径が50μm以下、酸素含有量が1500
重量ppm以下に規制されていることを特徴とする熱電
材料。
2. At least one element selected from the group consisting of Bi and Sb, at least one element selected from the group consisting of Te and Se, and I, Cl, Hg,
In an N-type thermoelectric material containing at least one element selected from the group consisting of Br, Ag, and Cu, the average grain size of crystal grains is 50 μm or less, and the oxygen content is 1500
A thermoelectric material, which is regulated to be less than ppm by weight.
【請求項3】 Bi及びSbからなる群から選択された
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素とを含有する原料を液
体急冷法により薄膜状にして、更に粉末化する第1工程
と、この第1工程により得られた粉末を水素ガスにより
還元する第2工程と、この第2工程により還元された粉
末を結晶粒が粗大化しない条件で固化成形する第3工程
と、を有し、結晶粒の平均粒径が50μm以下、酸素含
有量が1500重量ppm以下に規制された熱電材料を
得ることを特徴とする熱電材料の製造方法。
3. A raw material containing at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se is formed into a thin film by a liquid quenching method. A first step of further pulverizing, a second step of reducing the powder obtained in the first step with hydrogen gas, and a step of solidifying the powder reduced in the second step under the condition that crystal grains are not coarsened. Forming a thermoelectric material having an average crystal grain size of 50 μm or less and an oxygen content of 1500 ppm by weight or less.
【請求項4】 Bi及びSbからなる群から選択された
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素とを含有する原料を液
体急冷法により薄膜状にして、更に粉末化する第1工程
と、この第1工程により得られた粉末を真空度が1×1
-2Torr以下になるまで真空引きした後に、水素ガ
ス雰囲気下で、温度を200乃至500℃として10乃
至50時間加熱することにより前記粉末を還元する第2
工程と、この第2工程により還元された粉末を結晶粒が
粗大化しない条件で固化成形する第3工程と、を有する
ことを特徴とする熱電材料の製造方法。
4. A raw material containing at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se is formed into a thin film by a liquid quenching method. A first step of further pulverizing, and the powder obtained in the first step having a degree of vacuum of 1 × 1
After reducing the pressure to 0 -2 Torr or less, the powder is reduced by heating at 200 to 500 ° C for 10 to 50 hours in a hydrogen gas atmosphere.
A method for producing a thermoelectric material, comprising: a step of solidifying and molding the powder reduced in the second step under conditions that do not cause coarsening of crystal grains.
【請求項5】 Bi及びSbからなる群から選択された
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素と、I、Cl、Hg、
Br、Ag及びCuからなる群から選択された少なくと
も1種の元素とを含有する原料を液体急冷法により薄膜
状にして、更に粉末化する第1工程と、この第1工程に
より得られた粉末を水素ガスにより還元する第2工程
と、この第2工程により還元された粉末を結晶粒が粗大
化しない条件で固化成形する第3工程と、を有し、結晶
粒の平均粒径が50μm以下、酸素含有量が1500重
量ppm以下に規制された熱電材料を得ることを特徴と
する熱電材料の製造方法。
5. At least one element selected from the group consisting of Bi and Sb, at least one element selected from the group consisting of Te and Se, I, Cl, Hg,
A first step in which a raw material containing at least one element selected from the group consisting of Br, Ag, and Cu is formed into a thin film by a liquid quenching method and further powdered, and the powder obtained in the first step And a third step in which the powder reduced in the second step is solidified and formed under the condition that the crystal grains do not become coarse, and the average grain size of the crystal grains is 50 μm or less. And obtaining a thermoelectric material having an oxygen content regulated to 1500 ppm by weight or less.
【請求項6】 Bi及びSbからなる群から選択された
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素と、I、Cl、Hg、
Br、Ag及びCuからなる群から選択された少なくと
も1種の元素とを含有する原料を液体急冷法により薄膜
状にして、更に粉末化する第1工程と、この第1工程に
より得られた粉末を真空度が1×10-2Torr以下に
なるまで真空引きした後に、水素ガス雰囲気下で、温度
を200乃至500℃として10乃至50時間加熱する
ことにより前記粉末を還元する第2工程と、この第2工
程により還元された粉末を結晶粒が粗大化しない条件で
固化成形する第3工程と、を有することを特徴とする熱
電材料の製造方法。
6. At least one element selected from the group consisting of Bi and Sb, at least one element selected from the group consisting of Te and Se, and I, Cl, Hg,
A first step in which a raw material containing at least one element selected from the group consisting of Br, Ag, and Cu is formed into a thin film by a liquid quenching method and further powdered, and the powder obtained in the first step Is evacuated to a degree of vacuum of 1 × 10 −2 Torr or less, and then heated in a hydrogen gas atmosphere at a temperature of 200 to 500 ° C. for 10 to 50 hours to reduce the powder, and A third step of solidifying and molding the powder reduced in the second step under a condition that crystal grains are not coarsened.
JP14694497A 1996-07-03 1997-06-04 Thermoelectric material and method of manufacturing the same Expired - Lifetime JP3319338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14694497A JP3319338B2 (en) 1996-07-03 1997-06-04 Thermoelectric material and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17401196 1996-07-03
JP8-174011 1996-07-03
JP14694497A JP3319338B2 (en) 1996-07-03 1997-06-04 Thermoelectric material and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001019296A Division JP3909557B2 (en) 1996-07-03 2001-01-26 Thermoelectric material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1074984A true JPH1074984A (en) 1998-03-17
JP3319338B2 JP3319338B2 (en) 2002-08-26

Family

ID=26477640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14694497A Expired - Lifetime JP3319338B2 (en) 1996-07-03 1997-06-04 Thermoelectric material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3319338B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0996174A1 (en) * 1998-10-22 2000-04-26 Yamaha Corporation Thermoelectric materials and thermoelectric conversion element
JP2002344034A (en) * 2001-05-18 2002-11-29 Kyocera Corp Method of manufacturing thermoelectric device
WO2005020339A1 (en) * 2003-08-26 2005-03-03 Kyocera Corporation Thermoelectric material, thermoelectric element and thermoelectric module, and method for manufacturing same
JP2013161989A (en) * 2012-02-06 2013-08-19 Yamagata Univ Method for manufacturing crystal composition including bi2te3 crystal and 3d transition metal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0996174A1 (en) * 1998-10-22 2000-04-26 Yamaha Corporation Thermoelectric materials and thermoelectric conversion element
US6307143B1 (en) 1998-10-22 2001-10-23 Yamaha Corporation Thermoelectric materials and thermoelectric conversion element
JP2002344034A (en) * 2001-05-18 2002-11-29 Kyocera Corp Method of manufacturing thermoelectric device
JP4601206B2 (en) * 2001-05-18 2010-12-22 京セラ株式会社 Method for manufacturing thermoelectric element
WO2005020339A1 (en) * 2003-08-26 2005-03-03 Kyocera Corporation Thermoelectric material, thermoelectric element and thermoelectric module, and method for manufacturing same
US8035026B2 (en) 2003-08-26 2011-10-11 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and methods for manufacturing the same
US8519256B2 (en) 2003-08-26 2013-08-27 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and method for manufacturing the same
JP2013161989A (en) * 2012-02-06 2013-08-19 Yamagata Univ Method for manufacturing crystal composition including bi2te3 crystal and 3d transition metal

Also Published As

Publication number Publication date
JP3319338B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
CN112670399B (en) Method for eliminating donor-like effect of bismuth telluride-based thermoelectric material
US4040849A (en) Polycrystalline silicon articles by sintering
EP0152545B1 (en) High thermal conductivity aluminum nitride ceramic body
JPH11322332A (en) Zno-based sintered product and its production
JP3909557B2 (en) Thermoelectric material and manufacturing method thereof
US6043424A (en) Thermoelectric alloy achieving large figure of merit by reducing oxide and process of manufacturing thereof
JP3319338B2 (en) Thermoelectric material and method of manufacturing the same
Cook et al. Parasitic effects of oxygen on the thermoelectric properties of Si80Ge20 doped with GaP and P
WO2019092969A1 (en) Tungsten sputtering target and method for producing same
US20210074900A1 (en) ZrNiSn-BASED HALF-HEUSLER THERMOELECTRIC MATERIAL AND PROCESS FOR MANUFACTURING SAME AND FOR REGULATING ANTISITE DEFECTS THEREIN
JP2004134673A (en) N-type thermoelectric transduction material and manufacturing method thereof
JP3438928B2 (en) Method for producing silicon nitride powder
JP4078414B2 (en) Lanthanum sulfide sintered body and manufacturing method thereof
Cook et al. The preparation of SiGe thermoelectric materials by mechanical alloying
Takano et al. Single crystal growth of (LaO) CuS
JP3929880B2 (en) Thermoelectric material
JPH09321347A (en) Thermoelectric conversion material and manufacture thereof
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JP2625280B2 (en) Manufacturing method of oxide superconducting material
JP4491080B2 (en) Method for producing sintered silicon carbide
Hauck et al. Phase relations in pseudobinary Ba2M Cu3O6. 5+ x (M= Y, Gd)
JPH0455142B2 (en)
Kim et al. Properties of Ag/Bi-2223 superconducting tapes seeded with fully reacted 2223 particles
Horio et al. Microstructure and thermoelectric properties of hot-pressed p-type Bi0. 5Sb1. 5Te3 alloys prepared by rapid solidification technique
Yolken et al. Thermal Regeneration of Oxide Covered Iron {100} and {110} Surfaces

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140621

Year of fee payment: 12

EXPY Cancellation because of completion of term