JPH1074749A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH1074749A
JPH1074749A JP9211859A JP21185997A JPH1074749A JP H1074749 A JPH1074749 A JP H1074749A JP 9211859 A JP9211859 A JP 9211859A JP 21185997 A JP21185997 A JP 21185997A JP H1074749 A JPH1074749 A JP H1074749A
Authority
JP
Japan
Prior art keywords
thin film
gas
plasma
teos
gas containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9211859A
Other languages
Japanese (ja)
Other versions
JP2916119B2 (en
Inventor
Katsuyuki Mutsuhira
克之 六平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to JP9211859A priority Critical patent/JP2916119B2/en
Publication of JPH1074749A publication Critical patent/JPH1074749A/en
Application granted granted Critical
Publication of JP2916119B2 publication Critical patent/JP2916119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin film forming device for forming a thin film, which is capable of coping with tendency to an increase in higher density. SOLUTION: Two powers of different frequencies are simultaneously supplied between opposed electrodes 3 and 4 to generate a plasma in a reaction container 2. Reaction gas is introduced in the container 2 via a piping 6. The reaction gas is activated by a plasma discharge energy and a thin film of low permattivity is formed on the surface of a sample 5, such as a semiconductor substrate, by a chemical vapor growth. As the above reaction gas, gas containing at least TEOS gas and fluorine atoms, or gas containing TEOS gas and chlorine atoms or gas containing TEOS gas and bromine atoms is introduced in the container 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマ励起CV
D(Plasma Enhanced CVD)により、半導体基板等の
試料面に、ボイドの発生を抑制し平坦化が可能な低誘電
率の薄膜を形成するための薄膜形成装置に関するもので
ある。
TECHNICAL FIELD The present invention relates to a plasma-excited CV
The present invention relates to a thin film forming apparatus for forming a low dielectric constant thin film capable of suppressing generation of voids and flattening on a sample surface such as a semiconductor substrate by D (Plasma Enhanced CVD).

【0002】[0002]

【従来の技術】従来、半導体基板等の試料面に薄膜を形
成するためには、反応容器内にプラズマを発生させ、こ
の反応容器内に導入した反応ガスをプラズマ放電エネル
ギーを用いて活性化させることにより、反応ガスの化学
的気相成長によって生成される沈積物の試料面への被着
を推進させるプラズマ励起CVD装置が、広く適用され
ている。
2. Description of the Related Art Conventionally, in order to form a thin film on a sample surface such as a semiconductor substrate, a plasma is generated in a reaction vessel, and a reaction gas introduced into the reaction vessel is activated using plasma discharge energy. Accordingly, a plasma-excited CVD apparatus that promotes the deposition of a deposit generated by chemical vapor deposition of a reaction gas on a sample surface has been widely applied.

【0003】反応容器内にプラズマを発生させるために
は、反応容器内に設けられた対向電極間に13.56M
Hzや400KHz等の周波数の電源を印加し、かかる
電源の電力を調節することによって沈積速度や生成薄膜
の品質を制御している。また、導波管を介して反応容器
内に2.54GHzのマイクロ波を導入するECRプラ
ズマCVD装置も実用に供されている。
[0003] In order to generate plasma in a reaction vessel, 13.56M is applied between opposed electrodes provided in the reaction vessel.
The power of a frequency such as Hz or 400 KHz is applied, and the power of the power is adjusted to control the deposition rate and the quality of the formed thin film. Further, an ECR plasma CVD apparatus for introducing a microwave of 2.54 GHz into a reaction vessel through a waveguide is also in practical use.

【0004】一方、反応ガスとしては、例えば、半導体
基板の表面にSiO2薄膜やSiON薄膜を被着させる
ために、TEOS(テトラエチルオルソシリケート)系
ガスやSiH4(シラン)系ガスが適用されている。
On the other hand, as a reactive gas, for example, a TEOS (tetraethylorthosilicate) -based gas or a SiH 4 (silane) -based gas is applied to deposit a SiO 2 thin film or a SiON thin film on the surface of a semiconductor substrate. I have.

【0005】[0005]

【発明が解決しようとする課題】ところで、近年の更な
る高密度半導体集積回路装置(VLSI)の実現要求に
伴い、サブミクロンルールでの徴細化生成技術の開発が
極めて重要になってきた。そこで、従来のプラズマ励起
CVD装置によって生成される薄膜の形状を実験的に検
証することによって、従来技術によるサブミクロン化へ
の適用可能性を調べた。
With the recent demand for realizing a further high-density semiconductor integrated circuit device (VLSI), it has become extremely important to develop a technique for generating fineness in a submicron rule. Therefore, by experimentally verifying the shape of a thin film generated by a conventional plasma-excited CVD apparatus, the applicability of the prior art to submicronization was examined.

【0006】図4(a)〜(f)は、前記対向電極間に
13.56MHzの単一高周波電源を印加することによ
り反応容器内にプラズマを発生させる従来のプラズマ励
起CVD(以下、PECVDという)装置に、SiH4
系の反応ガスを導入することによリ、半導体基板表面の
SiO2膜上及びその表面に形成されたAl配線上に更
に絶縁被覆のためのSiO2薄膜を形成した場合の縦断
面形状を示す。
FIGS. 4 (a) to 4 (f) show a conventional plasma-enhanced CVD (hereinafter referred to as PECVD) in which a single high-frequency power source of 13.56 MHz is applied between the opposed electrodes to generate plasma in a reaction vessel. ) SiH 4
The longitudinal cross-sectional shape of a SiO 2 thin film for insulating coating formed on the SiO 2 film on the surface of the semiconductor substrate and on the Al wiring formed on the surface by introducing a system reaction gas is shown. .

【0007】かかる実験結果から明らかなように、形成
されたSiO2薄膜は、側面が凸状の丸みを持った断面
形状となる。即ち、Al配線の底部近傍の膜厚よりも、
Al配線の上側部近儀の膜厚が厚くなる結果、Al配線
の底部近傍にボイド(隙間)が発生する間題を生ずる。
特に、Al配線間の隙間間隔が小さくなるサブミクロン
での高密度配線(図4(e)(f)参照)にあっては、
極めて深刻な間題を招来する。
As is apparent from the above experimental results, the formed SiO 2 thin film has a cross-sectional shape with a convex rounded side surface. That is, the thickness is smaller than the film thickness near the bottom of the Al wiring.
As a result of the increase in the film thickness of the upper portion of the Al wiring, there is a problem that a void (gap) is generated near the bottom of the Al wiring.
In particular, in the case of high-density wiring at submicron where the gap between Al wirings is small (see FIGS. 4E and 4F),
Invites a very serious problem.

【0008】図5(a)〜(f)は、前記対向電極間に
13.56MHzの高周波電源と400KHzの低周波
電源とを同時に印加することにより反応容器内にプラズ
マを発生させる従来のPECVD装置に、TEOS系ガ
スを導入することによリ、半導体基板表面のSiO2
化膜上及びその表面に形成されたAl配線上に更に絶縁
被覆のためのSiO2薄膜を形成した場合の実験結果
(縦断面図)を示す。
FIGS. 5A to 5F show a conventional PECVD apparatus for generating a plasma in a reaction vessel by simultaneously applying a 13.56 MHz high frequency power supply and a 400 KHz low frequency power supply between the opposed electrodes. Then, by introducing a TEOS-based gas, an experimental result was obtained when an SiO 2 thin film for insulating coating was further formed on the SiO 2 oxide film on the surface of the semiconductor substrate and on the Al wiring formed on the surface thereof ( FIG.

【0009】尚、13.56MHzの高周波電源と40
0KHzの低周波電源との2周波電源電力を同時に適用
する技術の詳細は、特公昭59−30130号に開示さ
れている。かかる2周波電源を適用すれば、高速の薄膜
生成と薄膜品質の向上を実現することができるとしてい
る。
A 13.56 MHz high frequency power supply and 40
The details of the technique for simultaneously applying the two-frequency power supply with the low-frequency power supply of 0 KHz are disclosed in Japanese Patent Publication No. 59-30130. It is stated that the application of such a dual frequency power supply can realize high-speed thin film generation and improvement in thin film quality.

【0010】この実験結果によれぱ、図5(a)〜
(f)から明らかなように、形成されたSiO2薄膜の
側壁部分の形状が図4(a)〜(f)の場合と較べて丸
みを有さない。この結果、ボイド発生の低減化が実現さ
れた。したがって、生成薄膜の制御性の向上に大きく貢
献した技術と言える。
According to the results of this experiment, FIG.
As is apparent from (f), the shape of the side wall portion of the formed SiO 2 thin film has no roundness as compared with the cases of FIGS. 4 (a) to (f). As a result, reduction of void generation was realized. Therefore, it can be said that the technique has greatly contributed to the improvement of the controllability of the generated thin film.

【0011】しかし、図5(e)(f)に示すように、
Al配線の相互問隔が狭くなるサブミクロンでの高密度
の薄膜生成にあっては、ボイドの低減化が不十分である
ため、かかる従来技術では更なる高密度化に対する要求
に対応することが困難である。
However, as shown in FIGS. 5 (e) and 5 (f),
In the production of a high-density thin film at submicron where the mutual distance between Al wirings is narrow, the reduction of voids is insufficient, so that such a conventional technology can meet the demand for higher density. Have difficulty.

【0012】本発明は、このような従来のPECVD装
置の課題に鑑みてなされたものであり、半導体装置の更
なる高集積化及び電気的特性の向上に対応し得る薄膜形
成装置を提供することを目的とする。
The present invention has been made in view of such problems of the conventional PECVD apparatus, and has as its object to provide a thin film forming apparatus capable of coping with higher integration and improvement of electrical characteristics of a semiconductor device. With the goal.

【0013】[0013]

【課題を解決するための手段】本発明の薄膜形成装置
は、周波数の異なる2電力を同時に適用して反応容器内
にプラズマを発生させるプラズマ発生手段と、前記反応
容器内に、少なくともTEOS系ガスとフッ素原子を含
むガスとを導入して混合させる導入手段とを備え、前記
少なくともTEOS系ガスとフッ素原子を含むガスが前
記プラズマの放電エネルギ−にて活性化されて化学的気
相成長によって生成される低誘電率の沈積物を試料面に
被着させる構成とした。
According to the present invention, there is provided a thin film forming apparatus comprising: plasma generating means for generating plasma in a reaction vessel by simultaneously applying two powers having different frequencies; and at least a TEOS-based gas in the reaction vessel. Means for introducing and mixing a gas containing fluorine atoms and a gas containing fluorine atoms, wherein at least the TEOS-based gas and the gas containing fluorine atoms are activated by the discharge energy of the plasma and are generated by chemical vapor deposition. The deposited material having a low dielectric constant is deposited on the sample surface.

【0014】また、周波数の異なる2電力を同時に適用
して反応容器内にプラズマを発生させるプラズマ発生手
段と、前記反応容器内に、少なくともTEOS系ガスと
塩素原子を含むガスとを導入して混合させる導入手段と
を備え、前記少なくともTEOS系ガスと塩素原子を含
むガスが前記プラズマの放電エネルギ−にて活性化され
て化学的気相成長によって生成される低誘電率の沈積物
を試料面に被着させる構成とした。
A plasma generating means for generating plasma in the reaction vessel by simultaneously applying two powers having different frequencies; and introducing and mixing at least a TEOS-based gas and a gas containing chlorine atoms into the reaction vessel. Introduction means for causing the gas containing at least TEOS-based gas and chlorine atoms to be activated by the discharge energy of the plasma, and depositing a low dielectric constant deposit generated by chemical vapor deposition on the sample surface. It was configured to be adhered.

【0015】また、周波数の異なる2電力を同時に適用
して反応容器内にプラズマを発生させるプラズマ発生手
段と、前記反応容器内に、少なくともTEOS系ガスと
臭素原子を含むガスとを導入して混合させる導入手段と
を備え、前記少なくともTEOS系ガスと臭素原子を含
むガスが前記プラズマの放電エネルギ−にて活性化され
て化学的気相成長によって生成される低誘電率の沈積物
を試料面に被着させる構成とした。
A plasma generating means for generating plasma in the reaction vessel by simultaneously applying two powers having different frequencies; and introducing and mixing at least a TEOS-based gas and a gas containing bromine atoms into the reaction vessel. Introducing means for causing the gas containing at least TEOS-based gas and bromine atoms to be activated by the discharge energy of the plasma, and depositing a low dielectric constant deposit produced by chemical vapor deposition on the sample surface. It was configured to be adhered.

【0016】また、前記フッ素原子を含むガスとして、
26、NF3、CF4、HF、CHF3、CH22
2、SF6のいずれか一つのガスを適用した。
Further, as the gas containing a fluorine atom,
C 2 F 6 , NF 3 , CF 4 , HF, CHF 3 , CH 2 F 2 ,
One of F 2 and SF 6 gas was applied.

【0017】また、前記塩素原子を含むガスとして、C
Cl4、Cl2、HClのいずれか一つのガスを適用し
た。
Further, as the gas containing a chlorine atom, C
Any one gas of Cl 4 , Cl 2 , and HCl was applied.

【0018】また、前記臭素原子を含むガスとして、H
Brを適用した。
Further, as the gas containing a bromine atom, H
Br was applied.

【0019】[0019]

【作用】周波数の異なる2電力により反応容器内にプラ
ズマが発生し、このプラズマ放電エネルギーによって反
応ガスが活性化され、化学的気相成長により試料面上に
薄膜が形成される。凹凸を有する試料面上に薄膜を形成
すると、薄膜の側壁が順テーパ形状になることによりボ
イドが発生せず、また、緻密性の良い薄膜が形成され
る。
A plasma is generated in the reaction vessel by two electric powers having different frequencies, the reaction gas is activated by the plasma discharge energy, and a thin film is formed on the sample surface by chemical vapor deposition. When a thin film is formed on a sample surface having irregularities, the side wall of the thin film has a forward tapered shape, so that voids do not occur and a thin film having good denseness is formed.

【0020】更に、薄膜中にフッ素原子、塩素原子又は
臭素原子が取り込まれることにより、低誘電率の薄膜が
形成される。
Further, by incorporating fluorine, chlorine or bromine atoms into the thin film, a thin film having a low dielectric constant is formed.

【0021】[0021]

【実施の形態】以下、本発明の薄膜形成装置の実施の形
態を図1〜図3を参照して説明する。図1は、このPE
CVD装置の概略構成を示す。同図において、外気から
密封された反応室1を実現するための絶縁性の反応容器
2内に対向電極3,4が収容されている。一方の電極4
はアース電位に保持されると共に、対向面に薄膜形成用
の半導体基板5が設けられる。他方の電極3にはプラズ
マ発生用の電源が印加される。また、電極4側には温度
制御用のヒーター7が設けられている。電極3の上側か
ら反応室1へ配管6を介して反応ガスが導入されると共
に、反応容器2の一側から排気することで反応室1内を
減圧状態にするようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a thin film forming apparatus according to the present invention will be described below with reference to FIGS. Figure 1 shows this PE
1 shows a schematic configuration of a CVD apparatus. In FIG. 1, opposed electrodes 3 and 4 are accommodated in an insulating reaction vessel 2 for realizing a reaction chamber 1 sealed from the outside air. One electrode 4
Are held at the ground potential, and a semiconductor substrate 5 for forming a thin film is provided on the opposing surface. A power supply for plasma generation is applied to the other electrode 3. A heater 7 for controlling temperature is provided on the electrode 4 side. A reaction gas is introduced into the reaction chamber 1 from above the electrode 3 via a pipe 6, and the inside of the reaction chamber 1 is evacuated by exhausting the gas from one side of the reaction vessel 2.

【0022】更に、高周波発振源8と低周波発振源1
0、インピーダンスマッチング回路9,11及び高域遮
断フィルタ回路12を有する電源部が備えられている。
電極3と4の間には、高周波発振源8より出力される例
えば周波数13.56MHzの高周波電力がインピーダ
ンスマッチング回路9を介して供給されると同時に、低
周波発振源10より出力される例えば周波数400KH
zの低周波電力がインピーダンスマッチング回路11及
び高域遮断フィルタ回路12を介して供給される。
Further, the high-frequency oscillation source 8 and the low-frequency oscillation source 1
0, a power supply unit having impedance matching circuits 9 and 11 and a high-frequency cutoff filter circuit 12 is provided.
Between the electrodes 3 and 4, for example, a 13.56 MHz high frequency power output from the high frequency oscillation source 8 is supplied via the impedance matching circuit 9, and at the same time, for example, a frequency output from the low frequency oscillation source 10 is output. 400KH
The low frequency power of z is supplied via the impedance matching circuit 11 and the high-frequency cutoff filter circuit 12.

【0023】かかる構成の薄膜形成装置において、薄膜
形成時には、上記の反応ガスとして、フッ素原子を含む
フッ素系ガス(NF3)とTEOS系ガスとの混合ガス
を反応室1内に導入する。そして、高周波発振源8と低
周波発振源10の出力電力比を適宜に調整して、混合ガ
スをプラズマ放電エネルギーで活性化させることによ
リ、半導体基板(試料)5の表面にSiO2薄膜を生成
させる。
In the thin film forming apparatus having such a configuration, a mixed gas of a fluorine-based gas (NF 3 ) containing a fluorine atom and a TEOS-based gas is introduced into the reaction chamber 1 as the above-mentioned reactive gas when forming the thin film. By appropriately adjusting the output power ratio between the high-frequency oscillation source 8 and the low-frequency oscillation source 10 and activating the mixed gas with plasma discharge energy, a SiO 2 thin film is formed on the surface of the semiconductor substrate (sample) 5. Is generated.

【0024】図2(a)〜(f)は、かかる生成工程に
よって、半導体基板表面のSiO2膜上及びその表面に
形成されたAl配線上に更に絶縁被覆のためのSiO2
薄膜を形成した場合の縦断面形状を示す。尚、同図は、
縦断面形状の顕徴鏡写真の輪郭部分をトレースして示す
断面図であり、縦横の長さは同図中の単位スケール
(0.5μm)にて示す通りである。
FIGS. 2 (a) to 2 (f) show that the SiO 2 film on the surface of the semiconductor substrate and the Al wiring formed on the surface are further covered with SiO 2 for insulation coating by the above-described production process.
The vertical sectional shape when a thin film is formed is shown. In addition, FIG.
It is sectional drawing which traces the outline part of the microscope photograph of a longitudinal cross-sectional shape, and length and width are as showing by the unit scale (0.5 micrometer) in the figure.

【0025】同図(a)〜(d)のように、夫々のAl
配線の幅及ぴ相対間隔が比較的大きな場合には、SiO
2薄膜の側壁が順テーパ状に形成されるので、ボイドの
発生が解消される。
As shown in FIG.
If the wiring width and the relative spacing are relatively large, use SiO
(2) Since the side wall of the thin film is formed in a forward tapered shape, generation of voids is eliminated.

【0026】一方、同図(e)のように、夫々のAl配
線の幅及び相対間隔がサブミクロン範囲となる場合にあ
っても、SiO2薄膜の側壁形状が平坦になり、ボイド
の発生が大幅に低減化される。
On the other hand, as shown in FIG. 2E, even when the width and the relative interval of each Al wiring are in the submicron range, the sidewall shape of the SiO 2 thin film becomes flat and voids are generated. It is greatly reduced.

【0027】また、同図(f)のように、サブミクロン
の範囲において夫々のAl配線の幅及び相対間隔が更に
小さくなった場合でも、Al配線間にSiO2薄膜が埋
まり、ボイド発生の問題が完全に解消される。又、同図
(e)(f)に示すこれらの場合には、かかる側壁部分
の膜質が緻密になり、膜質の向上が実現された。
Further, as shown in FIG. 2F, even when the width and the relative interval of each Al wiring are further reduced in the submicron range, the problem of void formation occurs because the SiO 2 thin film is buried between the Al wirings. Is completely eliminated. Further, in these cases shown in FIGS. 7E and 7F, the film quality of the side wall portion became dense, and the film quality was improved.

【0028】因みに、SiO2薄膜の側壁部分が順テー
パ形状になりボイドの発生が大幅に抑止されるのは、原
料ガスであるTEOS系ガスがプラズマ放電エネルギー
によって活性化されて試料5の酸化膜及びAl配線上に
堆積物となって沈積されるのと同時に、フッ素系ガス
(NF3 )によってその堆積物(SiO2 薄膜)がエッ
チングされることによるものと推察される。即ち、Si
2薄膜が沈積する過程で、側壁部分が凸状になる状態
が生じたとしても、このエッチング過程が同時進行する
ことで、その凸状の部分が除去されつつ沈積過程が進行
するために、SiO2薄膜の側壁が順テーパ形状になる
と推察される。
Incidentally, the reason why the sidewall portion of the SiO 2 thin film has a forward tapered shape and the generation of voids is greatly suppressed is that the TEOS-based gas, which is the source gas, is activated by the plasma discharge energy and the oxide film of the sample 5 is formed. It is presumed that the deposit (SiO 2 thin film) is etched by the fluorine-based gas (NF 3 ) at the same time that the deposit is deposited on the Al wiring. That is, Si
In the process of depositing the O 2 thin film, even if a state where the side wall portion becomes convex occurs, since the etching process proceeds simultaneously, the deposition process proceeds while the convex portion is removed. It is assumed that the sidewall of the SiO 2 thin film has a forward tapered shape.

【0029】また、SiO2薄膜の側壁部分の膜質が緻
密になるのは、フッ素系ガス(NF3)のフッ素原子に
よって側壁部分が叩かれることによるものと推察され
る。
The reason why the film quality of the side wall portion of the SiO 2 thin film becomes dense is presumed to be that the side wall portion is hit by fluorine atoms of a fluorine-based gas (NF 3 ).

【0030】更に、SiO2 薄膜は、前記沈積過程にお
いてフッ素系ガス(NF3)のフッ素原子が取り込まれ
ることにより、誘電率が低くなる。この結果、Al配線
がMOSFET等のデバイス間を接続するための配線に
適用される場合等においては、電気的に良好なMOSF
ETを実現することが可能となる。
Furthermore, the dielectric constant of the SiO 2 thin film is reduced by the incorporation of fluorine atoms of the fluorine-based gas (NF 3 ) during the deposition process. As a result, when the Al wiring is applied to a wiring for connecting devices such as a MOSFET, etc., an electrically good MOSF
ET can be realized.

【0031】尚、以上の説明では、フッ素系ガス(NF
3)とTEOS系ガスとの混合ガスを反応ガスとして使
用する場合を述べたが、他の種類の混合ガス、例えば、
フッ素系ガス(C26、CF4、HF、CHF3、CH2
2、F2、SF6等の何れか)とTEOS系ガスとの混
合ガスや、フッ素と同族の塩素原子を含む塩素系ガス
(CCl4、Cl2、HCl等の何れか)とTEOS系ガ
スとの混合ガス、または、臭素系ガス(HBr等)とT
EOS系ガスとの混合ガスを適用しても、図2(a)〜
(f)に示すような形状のSiO2薄膜を形成すること
ができ、ボイドの低減化、品質の向上及び誘電率の低減
化の効果が得られる。
In the above description, the fluorine-based gas (NF
3 ) The case where the mixed gas of the TEOS-based gas and the TEOS-based gas is used as the reaction gas has been described. However, other types of mixed gas, for example,
Fluorine-based gas (C 2 F 6 , CF 4 , HF, CHF 3 , CH 2
A mixed gas of any one of F 2 , F 2 , SF 6, etc.) and a TEOS-based gas, or a chlorine-based gas containing a chlorine atom similar to fluorine (any one of CCl 4 , Cl 2 , HCl, etc.) and a TEOS-based gas Gas or a bromine-based gas (HBr etc.) and T
Even if a mixed gas with an EOS-based gas is applied, FIG.
An SiO 2 thin film having a shape as shown in FIG. 1F can be formed, and the effects of reducing voids, improving quality, and reducing dielectric constant can be obtained.

【0032】ここで、特に注目すべき点は、13.56
MHzの単一の高周波電力のみを電極3に印加すること
によってプラズマを発生させ、この実施の形態と同条件
でフッ素系ガス(NF3)とTEOS系ガスとの混合ガ
スを適用してSiO2薄膜を形成た場合には、形成され
たSiO2薄膜の側壁が緻密な組成構造とならないこと
が実験的に確認された。即ち、好適なSiO2薄膜を生
成するためには、単に上記のような混合ガスを適用する
だけでは不十分であり、周波数の異なる2電力を同時に
印加た条件の下でプラズマを発生させることが必要であ
ることが確認された。
Here, a point to be particularly noted is 13.56.
Plasma is generated by applying only a single high-frequency power of 1 MHz to the electrode 3, and a mixed gas of a fluorine-based gas (NF 3 ) and a TEOS-based gas is applied under the same conditions as in this embodiment to form SiO 2. It was experimentally confirmed that when a thin film was formed, the sidewall of the formed SiO 2 thin film did not have a dense composition structure. That is, in order to generate a suitable SiO 2 thin film, it is not sufficient to simply apply the above-described mixed gas, and it is not possible to generate plasma under the condition that two powers having different frequencies are simultaneously applied. It was confirmed that it was necessary.

【0033】このように、本発明の薄膜形成装置は、プ
ラズマ発生の条件と反応ガス(混合ガス)の種類との関
係において、新規な最適条件を提供している。
As described above, the thin film forming apparatus of the present invention provides a new optimum condition in relation to the condition of plasma generation and the type of reaction gas (mixed gas).

【0034】更に、ECRプラズマCVD適用する薄膜
形成装置でも、ボイドの低減と平坦化効果、及び誘電率
化が可能なSiO2薄膜を形成することができる。この
場合には、例えば、図3に概略的に示す薄膜形成装置の
プラズマ発生室に導波管を介して2.45GHzのマイ
クロ波を導波する。プラズマ発生用ガスとして窒素(N
2)等を導入し、更に、反応ガスとして前述した混合ガ
スを反応室内に導入する。そして、薄膜を形成すべき半
導体基板等を取り付ける電極13に、高周波電力源14
からの例えば13.56MHzの高周波電力を印加する
ことによって実現される。
Further, even with a thin film forming apparatus to which ECR plasma CVD is applied, it is possible to form an SiO 2 thin film capable of reducing voids, flattening, and increasing the dielectric constant. In this case, for example, a microwave of 2.45 GHz is guided through a waveguide into a plasma generation chamber of a thin film forming apparatus schematically shown in FIG. Nitrogen (N
2 ) and the like are introduced, and the above-mentioned mixed gas is introduced into the reaction chamber as a reaction gas. A high-frequency power source 14 is applied to an electrode 13 for attaching a semiconductor substrate or the like on which a thin film is to be formed.
For example, by applying a high frequency power of 13.56 MHz.

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、周
波数の異なる2電力により反応容器内にプラズマを発生
させ、更に、反応ガスとして、TEOS系ガスとフッ素
弁士を含むガス、又はTEOS系ガスと塩素原子を含む
ガス、又はTEOS系ガスと臭素原子を含むガスを導入
することにより、ボイド低減化の効果の得られる薄膜を
形成することができる。
As described above, according to the present invention, plasma is generated in a reaction vessel by two electric powers having different frequencies, and a gas containing a TEOS-based gas and a fluorine valve or a TEOS-based gas is used as a reaction gas. By introducing a gas containing a gas and a chlorine atom or a gas containing a TEOS-based gas and a bromine atom, a thin film having an effect of reducing voids can be formed.

【0036】また、薄膜の側壁部分の膜質が緻密になる
ことから、膜質制御性に優れた薄膜を形成することがで
きる。
Further, since the film quality of the side wall portion of the thin film becomes dense, a thin film having excellent film quality controllability can be formed.

【0037】更に、薄膜中にフッ素原子や塩素原子ある
いは臭素原子が取り込まれることにより誘電率の低い薄
膜を形成することができるため、トランジスタ等の電気
的特性の向上を図ることが可能となる。
Further, a thin film having a low dielectric constant can be formed by incorporating a fluorine atom, a chlorine atom or a bromine atom into the thin film, so that the electrical characteristics of the transistor and the like can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態における薄膜形成装置の概略構成を
示す縦断面図である。
FIG. 1 is a longitudinal sectional view illustrating a schematic configuration of a thin film forming apparatus according to an embodiment.

【図2】形成されたSiO2 薄膜の縦断面形状を示す縦
断面図であり、顕微鏡写真をもとに描いた図である。
FIG. 2 is a longitudinal sectional view showing a longitudinal sectional shape of a formed SiO 2 thin film, which is drawn based on a micrograph.

【図3】変形例の薄膜形成装置の概略構成を示す縦断面
図である。
FIG. 3 is a longitudinal sectional view illustrating a schematic configuration of a thin film forming apparatus according to a modification.

【図4】従来のPECVD装置によって形成されたSi
2 薄膜の形状を示す縦断面図であり、顕微鏡写真をも
とに描いた図である。
FIG. 4 shows Si formed by a conventional PECVD apparatus.
FIG. 2 is a longitudinal sectional view showing the shape of an O 2 thin film, which is a drawing drawn based on a micrograph.

【図5】更に、従来のPECVD装置によって形成され
たSiO2 薄膜の形状を示す縦断面図であり、顕微鏡写
真をもとに描いた図である。
FIG. 5 is a longitudinal sectional view showing a shape of a SiO 2 thin film formed by a conventional PECVD apparatus, and is a drawing drawn based on a micrograph.

【符号の説明】[Explanation of symbols]

1…反応室、2…反応容器、3,4…対向電極、5…試
料、6…配管、7…ヒーター、8…高周波電源、9,1
1…インピーダンスマッチング回路、10…低周波電
源、12…高域遮断フィルタ回路、13…電極、14…
高周波電源。
DESCRIPTION OF SYMBOLS 1 ... Reaction chamber, 2 ... Reaction container, 3, 4 ... Counter electrode, 5 ... Sample, 6 ... Piping, 7 ... Heater, 8 ... High frequency power supply, 9.1
DESCRIPTION OF SYMBOLS 1 ... Impedance matching circuit, 10 ... Low frequency power supply, 12 ... High frequency cut-off filter circuit, 13 ... Electrode, 14 ...
High frequency power supply.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 周波数の異なる2電力を同時に適用して
反応容器内にプラズマを発生させるプラズマ発生手段
と、 前記反応容器内に、少なくともTEOS系ガスとフッ素
原子を含むガスとを導入して混合させる導入手段とを備
え、 前記少なくともTEOS系ガスとフッ素原子を含むガス
が前記プラズマの放電エネルギ−にて活性化されて化学
的気相成長によって生成される低誘電率の沈積物を試料
面に被着させることを特徴とする薄膜形成装置。
1. A plasma generating means for generating plasma in a reaction vessel by simultaneously applying two electric powers having different frequencies, and introducing and mixing at least a TEOS-based gas and a gas containing fluorine atoms into the reaction vessel. And a gas containing at least a TEOS-based gas and a fluorine atom are activated by the discharge energy of the plasma, and a deposit having a low dielectric constant generated by chemical vapor deposition is provided on a sample surface. A thin film forming apparatus characterized by being applied.
【請求項2】 周波数の異なる2電力を同時に適用して
反応容器内にプラズマを発生させるプラズマ発生手段
と、 前記反応容器内に、少なくともTEOS系ガスと塩素原
子を含むガスとを導入して混合させる導入手段とを備
え、 前記少なくともTEOS系ガスと塩素原子を含むガスが
前記プラズマの放電エネルギ−にて活性化されて化学的
気相成長によって生成される低誘電率の沈積物を試料面
に被着させることを特徴とする薄膜形成装置。
2. A plasma generating means for generating plasma in a reaction vessel by simultaneously applying two electric powers having different frequencies, and introducing and mixing at least a TEOS-based gas and a gas containing chlorine atoms into the reaction vessel. Introducing means for causing the gas containing at least TEOS-based gas and chlorine atom to be activated by the discharge energy of the plasma and depositing a low dielectric constant deposit formed by chemical vapor deposition on the sample surface. A thin film forming apparatus characterized by being applied.
【請求項3】 周波数の異なる2電力を同時に適用して
反応容器内にプラズマを発生させるプラズマ発生手段
と、 前記反応容器内に、少なくともTEOS系ガスと臭素原
子を含むガスとを導入して混合させる導入手段とを備
え、 前記少なくともTEOS系ガスと臭素原子を含むガスが
前記プラズマの放電エネルギ−にて活性化されて化学的
気相成長によって生成される低誘電率の沈積物を試料面
に被着させることを特徴とする薄膜形成装置。
3. A plasma generating means for generating plasma in a reaction vessel by simultaneously applying two electric powers having different frequencies, and introducing and mixing at least a TEOS-based gas and a gas containing bromine atoms into the reaction vessel. Introducing means for causing the gas containing at least TEOS-based gas and bromine atoms to be activated by the discharge energy of the plasma and depositing a low dielectric constant deposit formed by chemical vapor deposition on the sample surface. A thin film forming apparatus characterized by being applied.
【請求項4】 前記フッ素原子を含むガスとして、C2
6、NF3、CF4、HF、CHF3、CH22、F2
SF6のいずれか一つのガスを導入することを特徴とす
る請求項1に記載の薄膜形成装置。
4. The gas containing a fluorine atom as C 2
F 6 , NF 3 , CF 4 , HF, CHF 3 , CH 2 F 2 , F 2 ,
2. The thin film forming apparatus according to claim 1, wherein any one gas of SF 6 is introduced.
【請求項5】 前記塩素原子を含むガスとして、CCl
4、Cl2、HClのいずれか一つのガスを導入すること
を特徴とする請求項2に記載の薄膜形成装置。
5. The gas containing a chlorine atom as CCl
4. The thin film forming apparatus according to claim 2, wherein any one gas of 4 , Cl 2 and HCl is introduced.
【請求項6】 前記臭素原子を含むガスとして、HBr
を導入することを特徴とする請求項3に記載の薄膜形成
装置。
6. The gas containing a bromine atom as HBr
The thin film forming apparatus according to claim 3, wherein:
JP9211859A 1997-08-06 1997-08-06 Thin film formation method Expired - Fee Related JP2916119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9211859A JP2916119B2 (en) 1997-08-06 1997-08-06 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9211859A JP2916119B2 (en) 1997-08-06 1997-08-06 Thin film formation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5086366A Division JPH06326026A (en) 1993-04-13 1993-04-13 Formation method for thin film in semiconductor device

Publications (2)

Publication Number Publication Date
JPH1074749A true JPH1074749A (en) 1998-03-17
JP2916119B2 JP2916119B2 (en) 1999-07-05

Family

ID=16612792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9211859A Expired - Fee Related JP2916119B2 (en) 1997-08-06 1997-08-06 Thin film formation method

Country Status (1)

Country Link
JP (1) JP2916119B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068261A (en) * 1998-08-19 2000-03-03 Toshiba Corp Manufacture of semiconductor device
GB2343197A (en) * 1998-10-29 2000-05-03 Lg Philips Lcd Co Ltd Forming silicon oxide layer by use of two frequency excitation plasma CVD
KR20160116216A (en) * 2015-03-27 2016-10-07 삼성전자주식회사 Plasma-enhanced chemical vapor deposition (PE-CVD) apparatus and method of operating the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068261A (en) * 1998-08-19 2000-03-03 Toshiba Corp Manufacture of semiconductor device
GB2343197A (en) * 1998-10-29 2000-05-03 Lg Philips Lcd Co Ltd Forming silicon oxide layer by use of two frequency excitation plasma CVD
GB2343197B (en) * 1998-10-29 2001-01-10 Lg Philips Lcd Co Ltd Method of forming silicon oxide layer and method of manufacturing thin film transistor thereby
US6337292B1 (en) 1998-10-29 2002-01-08 Lg. Philips Lcd Co., Ltd. Method of forming silicon oxide layer and method of manufacturing thin film transistor thereby
US6627545B2 (en) 1998-10-29 2003-09-30 Lg.Philips Lcd Co., Ltd Method of forming silicon oxide layer and method of manufacturing thin film transistor thereby
US6716752B2 (en) 1998-10-29 2004-04-06 Lg.Philips Lcd Co., Ltd. Method of forming silicon oxide layer and method of manufacturing thin film transistor thereby
US7378304B2 (en) 1998-10-29 2008-05-27 Lg.Philips Lcd Co., Ltd. Method of forming silicon oxide layer and method of manufacturing thin film transistor thereby
KR20160116216A (en) * 2015-03-27 2016-10-07 삼성전자주식회사 Plasma-enhanced chemical vapor deposition (PE-CVD) apparatus and method of operating the same

Also Published As

Publication number Publication date
JP2916119B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US5571571A (en) Method of forming a thin film for a semiconductor device
JPH10144675A (en) Method of forming film with plasma
JPH0982495A (en) Plasma producing device and method
KR100430807B1 (en) Method of plasma-assisted film deposition
JPH07161702A (en) Plasma etching of oxide
US8039406B2 (en) Method of gap-filling using amplitude modulation radiofrequency power and apparatus for the same
KR100238573B1 (en) Method and apparatus for forming thin film
JPH06326026A (en) Formation method for thin film in semiconductor device
JP2771347B2 (en) Plasma chemical vapor deposition method and apparatus therefor and method for manufacturing multilayer wiring
JPH0766186A (en) Anisotropic depositing method of dielectric
US5281557A (en) Soluble oxides for integrated circuit fabrication formed by the incomplete dissociation of the precursor gas
JP2916119B2 (en) Thin film formation method
JP4356747B2 (en) Gap filling method and material vapor deposition method using high density plasma chemical vapor deposition
JP2003059918A (en) Method and apparatus for plasma treatment and manufacturing method for semiconductor device
JP3530788B2 (en) Microwave supplier, plasma processing apparatus and processing method
JP4141021B2 (en) Plasma deposition method
EP0724286A1 (en) A method of forming a thin film of silicon oxide for a semiconductor device
JP3440714B2 (en) Method for forming silicon compound based insulating film
JP2819774B2 (en) Method of forming insulating film
US20010045354A1 (en) Method of etching high aspect ratio openings in silicon
JP3090561B2 (en) Semiconductor device thin film forming method
JPH07193004A (en) Thin-film forming method for semiconductor device
JPH06302593A (en) Fabrication of semiconductor device
JPH08330293A (en) Formation method of insulation film and plasma chemical vapor deposition device used for the method
JP2006286892A (en) Swp-cvd film forming method, cvd film forming apparatus, and indication panel for flat-panel display

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees