JPH1073896A - Silver halide photographic emulsion and silver halide photographic sensitive material - Google Patents

Silver halide photographic emulsion and silver halide photographic sensitive material

Info

Publication number
JPH1073896A
JPH1073896A JP17058097A JP17058097A JPH1073896A JP H1073896 A JPH1073896 A JP H1073896A JP 17058097 A JP17058097 A JP 17058097A JP 17058097 A JP17058097 A JP 17058097A JP H1073896 A JPH1073896 A JP H1073896A
Authority
JP
Japan
Prior art keywords
silver halide
solution
silver
grains
halide grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17058097A
Other languages
Japanese (ja)
Inventor
Hiroshi Takada
宏 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP17058097A priority Critical patent/JPH1073896A/en
Publication of JPH1073896A publication Critical patent/JPH1073896A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve photographic fog and sensitivity, to reduce an increase in the fog or decrease in the sensitivity during storage and to improve pressure resistance by specifying the average aspect ratio, coefft. of changes in the particle size and coefft. of changes in the thickness of silver halide particles. SOLUTION: In this silver halide photographic emulsion containing silver halide particles, the silver halied particles have <=3.0 average aspect ratio and substantially have dislocation lines, <=20.0% coefft. of changes in the particle size and <=20.0% coefft. of changes in the thickness. The silver halide particles are substantially planer silver halide particles and preferably such particles having two parallel twin faces so as to decrease fluctuation in the particle size and thickness of the silver halide particles. The compsn. of the silver halide particles is preferably silver iodide bromide or silver chloride iodide bromide, and especially silver iodide bromide containing >1.0mol% silver iodide is preferable. Moreover, the average silver iodide content is preferably <10.0%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はハロゲン化銀写真乳
剤、及びハロゲン化銀写真感光材料に関し、詳しくは感
度、カブリに優れ、加えて耐圧性、保存性の改良された
ハロゲン化銀写真乳剤及びそれを用いたハロゲン化銀写
真感光材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silver halide photographic emulsion and a silver halide photographic light-sensitive material, and more particularly, to a silver halide photographic emulsion which is excellent in sensitivity and fog, and has improved pressure resistance and storage stability. The present invention relates to a silver halide photographic material using the same.

【0002】[0002]

【従来の技術】近年、ハロゲン化銀写真感光材料(以
下、単に感光材料ともいう)に対する性能上の要請はま
すます厳しく、高感度、低カブリ、優れた粒状性等の写
真に求められる基本的な性能のみならず、圧力耐性や保
存性といった諸性能の改良に対する要請も従来以上に強
くなっている。
2. Description of the Related Art In recent years, demands for performance of silver halide photographic materials (hereinafter, also simply referred to as photographic materials) are becoming more and more severe, and basic photographic properties such as high sensitivity, low fog, and excellent granularity are required. Demands for not only high performance but also improvements in various properties such as pressure resistance and storage stability have become stronger than ever.

【0003】一般に、ハロゲン化銀写真感光材料は、様
々な圧力を受ける。例えば、一般写真用ネガフィルム
は、製造工程の裁断や穿孔時に大きな圧力を受けるし、
カメラ内で搬送される際に曲げられたり擦れたりもす
る。このように、ハロゲン化銀写真感光材料に様々な圧
力が加わると写真性能に変化が生じることが知られてお
り、これらの圧力に対する耐性を向上させる技術が望ま
れている。また、コンパクトカメラやレンズ付きフィル
ムの普及に伴う写真撮影の日常化と用途の広がりによっ
て、ハロゲン化銀写真感光材料は様々な環境下に保持さ
れ、種々の条件下で使用されるようになった。それに伴
い、保存安定性も重要な性能項目となっている。
In general, a silver halide photographic light-sensitive material is subjected to various pressures. For example, negative films for general photography are subject to great pressure during cutting and perforation in the manufacturing process,
They may bend or rub when transported in the camera. As described above, it is known that when various pressures are applied to a silver halide photographic light-sensitive material, the photographic performance is changed, and a technique for improving the resistance to these pressures is desired. Also, with the spread of photography and the spread of applications with the spread of compact cameras and films with lenses, silver halide photographic materials have been maintained in various environments and used under various conditions. . Along with that, storage stability is also an important performance item.

【0004】ハロゲン化銀写真感光材料の基本性能の支
配的因子はハロゲン化銀粒子であり、感度や画質の向上
を目指したハロゲン化銀粒子の開発は従来から精力的に
取り組まれてきた。一般に、画質を向上させるために
は、ハロゲン化銀粒子の粒径を小さくして単位銀量当た
りの粒子数を増加させ、発色点数(画素数)を増やす方法
が有効である。
[0004] Silver halide grains are a dominant factor in the basic performance of silver halide photographic light-sensitive materials, and the development of silver halide grains aimed at improving sensitivity and image quality has been energetically addressed. In general, in order to improve the image quality, it is effective to reduce the particle size of the silver halide grains, increase the number of grains per unit silver amount, and increase the number of coloring points (the number of pixels).

【0005】しかし、粒径を小さくすることは、感度低
下を招くため、高感度と高画質をともに満足させるには
限界があった。より一層の高感度化、高画質化を図るべ
く、ハロゲン化銀粒子1個当たりの感度/サイズ比を向
上させる技術が研究されているが、その一つとして平板
状ハロゲン化銀粒子を用いる技術が特開昭58−111
935号、同58−111936号、同58−1119
37号、同58−13927号、同59−99433号
等に記載されている。
However, reducing the particle size causes a reduction in sensitivity, and there is a limit to satisfying both high sensitivity and high image quality. In order to achieve higher sensitivity and higher image quality, techniques for improving the sensitivity / size ratio per silver halide grain have been studied. One of the techniques is to use tabular silver halide grains. Is disclosed in JP-A-58-111.
No. 935, No. 58-111936, No. 58-1119
37, 58-13927, and 59-99433.

【0006】これらの平板状ハロゲン化銀粒子を6面体
や8面体、或いは12面体粒子等のいわゆる正常晶ハロ
ゲン化銀粒子と比較すると、ハロゲン化銀粒子の単位体
積当たりの表面積が大きくなるため、同一体積の場合に
は平板粒子の方が粒子表面により多くの分光増感色素を
吸着させることができ、一層の高感度化を図れる利点が
ある。更に、特開昭63−92942号には、平板状ハ
ロゲン化銀粒子内部に沃化銀含有率の高い領域を設ける
技術が、特開昭63−151618号には、6角平板状
ハロゲン化銀粒子を用いる技術が採り上げられ、それぞ
れ感度、粒状性に対する効果が示されている。
When these tabular silver halide grains are compared with so-called normal crystal silver halide grains such as hexahedral, octahedral, or dodecahedral grains, the surface area per unit volume of the silver halide grains is increased. In the case of the same volume, tabular grains have the advantage that more spectral sensitizing dyes can be adsorbed on the grain surface and that higher sensitivity can be achieved. JP-A-63-92942 discloses a technique for providing a region having a high silver iodide content in tabular silver halide grains, and JP-A-63-151618 discloses a hexagonal tabular silver halide. Techniques using particles have been taken and their effects on sensitivity and granularity have been shown, respectively.

【0007】また、特開昭63−106746号には、
二つの相対向する主平面に対して平行な方向に実質的に
層状の構造を有する平板状ハロゲン化銀粒子を、特開平
1−279237号には、二つの相対向する主平面に対
して実質的に平行な面で区切られる層状構造を有し、最
外層の平均沃化銀含有率が該ハロゲン化銀粒子全体の平
均沃化銀含有率より少なくとも1モル%以上高い平板状
ハロゲン化銀粒子を、それぞれ用いる技術について記述
されている。この他、特開平1−183644号では、
沃化銀を含むハロゲン化銀相の沃化銀分布が完全に均一
である平板状ハロゲン化銀粒子を用いる技術について述
べられている。
Further, Japanese Patent Application Laid-Open No. 63-106746 discloses that
Japanese Patent Application Laid-Open No. 1-279237 discloses that a tabular silver halide grain having a substantially layered structure in a direction parallel to two opposing main planes is substantially parallel to two opposing main planes. Tabular silver halide grains having a layered structure delimited by planes parallel to each other, wherein the average silver iodide content of the outermost layer is at least 1 mol% or more higher than the average silver iodide content of the whole silver halide grains Are described for each of the techniques used. In addition, in JP-A-1-183644,
A technique using tabular silver halide grains in which the silver iodide distribution of a silver halide phase containing silver iodide is completely uniform is described.

【0008】平板状ハロゲン化銀粒子(以下、単に平板
粒子ともいう)における平行な双晶面に着目した技術に
関しても幾つかの報告がある。例えば、特開昭63−1
63451号においては、平行な2以上の双晶面間の最
も長い距離(a)と粒子の厚み(b)との比(b/a)
の値が5以上である平板状ハロゲン化銀粒子を用いる技
術が、さらに、特開平1−201649号では、平板状
ハロゲン化銀粒子に存在する転位線の本数も同時に規定
した技術が示され、感度、粒状性、鮮鋭性に対する効果
が報告されている。
[0008] There have been several reports on techniques focusing on parallel twin planes in tabular silver halide grains (hereinafter also simply referred to as tabular grains). For example, JP-A-63-1
No. 63451, the ratio (b / a) of the longest distance (a) between two or more parallel twin planes and the thickness (b) of a grain
Is a technique using tabular silver halide grains having a value of 5 or more, and JP-A-1-201649 discloses a technique in which the number of dislocation lines present in the tabular silver halide grains is also defined at the same time. Effects on sensitivity, granularity, and sharpness have been reported.

【0009】また、WO91/18320号において
は、少なくとも2つの双晶面間距離の距離が0.012
μm未満である平板状ハロゲン化銀粒子を用いる技術
が、特開平3−353043号においては、最長双晶面
間距離の平均が10〜100Åであるコア/シェル型双
晶ハロゲン化銀粒子を用いる技術が報告され、それぞれ
感度、粒状性、或いは鮮鋭性、圧力特性、粒状性に対す
る改良効果が述べられている。
In WO 91/18320, the distance between at least two twin planes is 0.012.
A technique using tabular silver halide grains of less than .mu.m is disclosed in Japanese Patent Application Laid-Open (JP-A) No. 3-353003, in which core / shell type twin silver halide grains having an average distance between the longest twin planes of 10 to 100 DEG are used. Techniques are reported, each describing sensitivity, graininess, or the effect of improving sharpness, pressure characteristics, and graininess.

【0010】ところで、当業界におけるハロゲン化銀写
真感光材料の感度や画質を向上させることを目的とした
ハロゲン化銀乳剤に対する取り組みの中で、最も基本的
でかつ重要な技術として位置付けられるものにハロゲン
化銀乳剤の単分散化技術がある。粒径の大きなハロゲン
化銀粒子と小さなハロゲン化銀粒子では化学増感の最適
な条件が異なるため、両者が混在した、即ち多分散な
(粒径分布の広い)ハロゲン化銀乳剤には最適に化学増
感を施すことが難しく、結果としてカブリの増加を招い
たり十分な化学増感を行うことができない場合が多い。
一方、単分散ハロゲン化銀写真乳剤の場合には、最適な
化学増感を施すことが容易であり、高感度でカブリの少
ないハロゲン化銀写真乳剤を調製することが可能とな
る。また、硬階調(高ガンマ)な特性曲線が期待でき
る。
[0010] Among the efforts in the art for a silver halide emulsion aiming at improving the sensitivity and image quality of a silver halide photographic light-sensitive material, halogen is one of the most basic and important technologies. There is a technique for monodispersing silver halide emulsions. Since the optimum conditions for chemical sensitization are different between large and small silver halide grains, they are optimal for a mixed, ie polydisperse (wide grain size) silver halide emulsion. It is difficult to perform chemical sensitization, and as a result, fog is often increased or sufficient chemical sensitization cannot be performed in many cases.
On the other hand, in the case of a monodispersed silver halide photographic emulsion, optimal chemical sensitization can be easily performed, and a silver halide photographic emulsion having high sensitivity and low fog can be prepared. In addition, a hard gradation (high gamma) characteristic curve can be expected.

【0011】平板状ハロゲン化銀粒子の単分散技術とし
ては、特開平1−213637号では、平行な双晶面を
2枚有する単分散なハロゲン化銀粒子で感度や粒状性等
を改良する技術について述べられている。また、特開平
5−173268号、及び特開平6−202258号で
は、粒径分布の小さな平板状ハロゲン化銀粒子を製造す
る方法が示されている。これら平板状粒子における単分
散技術においては、単分散なハロゲン化銀粒子とは、個
々の平板粒子間の投影面積のばらつきが小さいことを意
味している。さらに、特開平6−258744号では、
粒子内部にハロゲン化銀組成の異なる領域を有する単分
散な平板状ハロゲン化銀粒子を用いて、感度や階調、圧
力耐性や潜像保存性を改良する技術が報告されている。
この技術が言うところの単分散とは個々の粒子間の体積
のばらつきが小さいことを意味している。即ち、これら
の平板状ハロゲン化銀粒子の単分散化に関係する従来の
技術は、ハロゲン化銀粒子の投影面積直径や粒子体積の
変動係数にのみ着目したものであり、ハロゲン化銀粒子
の厚さの変動係数をも制御することを意図した技術では
ない。
As a monodispersion technique for tabular silver halide grains, Japanese Patent Application Laid-Open No. 1-213637 discloses a technique for improving sensitivity, graininess and the like by using monodisperse silver halide grains having two parallel twin planes. Is described. Further, JP-A-5-173268 and JP-A-6-202258 disclose methods for producing tabular silver halide grains having a small grain size distribution. In the monodispersion technique of these tabular grains, the monodisperse silver halide grains mean that the variation in the projected area between individual tabular grains is small. Furthermore, in JP-A-6-258744,
A technique for improving sensitivity, gradation, pressure resistance, and latent image preservability using monodisperse tabular silver halide grains having regions having different silver halide compositions inside the grains has been reported.
Monodispersion as referred to in this technique means that the volume variation between individual particles is small. In other words, the prior art relating to the monodispersion of these tabular silver halide grains focuses only on the variation coefficient of the projected area diameter and the grain volume of the silver halide grains, and the thickness of the silver halide grains is reduced. It is not a technique intended to control the coefficient of variation of the height.

【0012】平板状ハロゲン化銀粒子の厚さに関係した
技術としては、特開平6−43605号、同6−436
06号、及び特開平7−191425号に記載の技術が
知られている。特開平6−43605号、同6−436
06号に開示される技術は、具体的には平板状ハロゲン
化銀粒子の厚さの平均値に着目したものであり、特開平
7−191425号に開示される技術は、平板状ハロゲ
ン化銀粒子の厚さの変動係数と双晶面間距離の変動係数
の比をとった値を規定するものである。
Techniques related to the thickness of tabular silver halide grains are described in JP-A-6-43605 and JP-A-6-436.
No. 06 and Japanese Patent Application Laid-Open No. 7-191425 are known. JP-A-6-43605 and JP-A-6-436
Specifically, the technique disclosed in JP-A-6-2006 focuses on the average value of the thickness of tabular silver halide grains, and the technique disclosed in JP-A-7-191425 discloses a technique disclosed in JP-A-7-191425. It defines a value obtained by taking the ratio of the variation coefficient of the grain thickness to the variation coefficient of the distance between twin planes.

【0013】上記特開平6−43605号、同6−43
606号、及び特開平6−332090号では、平板状
ハロゲン化銀粒子の厚さの分布を小さくすることについ
て、写真性能上或いは乳剤調製上の有用性が示唆されて
いるが具現化する技術はなんら示されていない。
JP-A-6-43605 and JP-A-6-43605
No. 606 and JP-A-6-332090 suggest usefulness in reducing the thickness distribution of tabular silver halide grains in terms of photographic performance or emulsion preparation. Nothing is shown.

【0014】特開平5−173272号公報には、主平
面に平行な双晶面を偶数枚有し、主平面の形状が最大隣
接辺比率が2.0〜1.0の六角形である平板状ハロゲ
ン化銀粒子の粒径の変動係数が21〜29%の範囲であ
り、かつその厚さの変動係数が20%以下であることを
特徴とするハロゲン化銀乳剤が開示されている。該公報
の実施例には、直径の変動係数が20%以下でかつ平板
状粒子の厚さの変動係数が20%以下の粒子を含むハロ
ゲン化銀乳剤が比較例に挙げられている。しかし、該乳
剤のこれら変動係数の値は、主平面の形状が最大隣接辺
比率が2.0〜1.0の六角形である平板状ハロゲン化
銀粒子について測定された値である。本発明者らが該実
施例を追試したところ、該乳剤には主平面の形状が最大
隣接辺比率が2.0〜1.0の六角形である平板状ハロ
ゲン化銀粒子が投影面積比で約90%程度以下存在する
が、それ以外に正常晶と思われる小粒子や非平行な双晶
面を複数枚有する粗大粒子が存在した。該乳剤に対し
て、そこに含まれる任意の粒子を対象として直径及び厚
さを改めて測定し変動係数を求めたところ、直径及び厚
さの変動係数は共に20%を越える値であった。
Japanese Patent Application Laid-Open No. 5-173272 discloses a flat plate having an even number of twin planes parallel to the main plane and having a shape of the main plane which is a hexagon having a maximum adjacent side ratio of 2.0 to 1.0. A silver halide emulsion is disclosed in which the coefficient of variation of the particle size of the silver halide grains is in the range of 21 to 29% and the coefficient of variation of the thickness is 20% or less. In Examples of this publication, silver halide emulsions containing grains having a coefficient of variation of 20% or less in diameter and a coefficient of variation of 20% or less in thickness of tabular grains are mentioned in Comparative Examples. However, the values of these variation coefficients of the emulsion are values measured for tabular silver halide grains whose main plane is hexagonal with a maximum adjacent side ratio of 2.0 to 1.0. The present inventors have conducted additional tests on the Examples. As a result, the emulsion was found to have hexagonal tabular silver halide grains having a principal plane shape having a maximum adjacent side ratio of 2.0 to 1.0 in terms of projected area ratio. Although about 90% or less existed, small particles considered to be normal crystals and coarse particles having a plurality of non-parallel twin planes were also present. With respect to the emulsion, diameter and thickness were again measured for arbitrary grains contained in the emulsion, and the coefficient of variation was determined. The coefficient of variation of both diameter and thickness exceeded 20%.

【0015】従って、該技術では本発明のハロゲン化銀
乳剤を調整することはできない。
Therefore, the technique cannot adjust the silver halide emulsion of the present invention.

【0016】ハロゲン化銀乳剤の感度を高める方法とし
て、平板状ハロゲン化銀粒子に転移線を導入する技術が
米国特許第4,956,269号に開示されている。一
般に、ハロゲン化銀粒子に圧力を加えると、カブリを生
じたり減感したりすることが知られているが、転位線を
導入した粒子は、圧力が加わることにより著しく減感す
るという問題を有していた。特開平1−201649号
公報には、平均アスペクト比が8以下の平板状粒子であ
り、該粒子が有する平行な2以上の双晶面間の最も長い
距離(a)と粒子の厚み(b)との比(b/a)の値が
5以上である粒子が全平板粒子の50%以上(数)であ
り、転位線を10本以上有する粒子が全平板粒子の50
%以上(数)であるハロゲン化銀乳剤が開示されてい
る。該公報には、好ましい態様として、粒子厚みの変動
係数は20%以下、投影面積の変動係数は30%以下と
の記載がある。しかし、本発明者が該技術を追試したと
ころ該技術によって得られるハロゲン化銀乳剤には該技
術が規定するところの平板状粒子以外のハロゲン化銀粒
子、即ち正常晶や非平行双晶粒子が存在した。
As a method for increasing the sensitivity of a silver halide emulsion, US Pat. No. 4,956,269 discloses a technique for introducing a transition line into tabular silver halide grains. It is generally known that when pressure is applied to silver halide grains, fogging or desensitization occurs.However, grains having dislocation lines introduced therein have a problem that they are significantly desensitized by application of pressure. Was. JP-A-1-201649 discloses tabular grains having an average aspect ratio of 8 or less, the longest distance (a) between two or more parallel twin planes of the grains and the thickness (b) of the grains. Is 5% or more (number) of all tabular grains, and grains having 10 or more dislocation lines are 50% or less of all tabular grains.
% Or more (number) are disclosed. In this publication, as a preferred embodiment, the coefficient of variation of grain thickness is 20% or less, and the coefficient of variation of projected area is 30% or less. However, when the present inventor re-tested the technique, the silver halide emulsion obtained by the technique contained silver halide grains other than tabular grains defined by the technique, that is, normal crystals and non-parallel twin grains. Were present.

【0017】該乳剤に対して、そこに含まれる任意の粒
子を対象として粒径を測定したところ、その値は20%
を越えていた。
When the particle size of the emulsion was measured with respect to arbitrary particles contained therein, the value was found to be 20%.
Was over.

【0018】従って、該技術から得られるハロゲン化銀
乳剤は本発明のハロゲン化銀乳剤とは異なる。
Therefore, the silver halide emulsion obtained from the technique is different from the silver halide emulsion of the present invention.

【0019】また、該技術では、転位線を導入すること
によって生ずる被圧による著しい減感を改良することは
できていない。また、特開平3−189642号公報に
は、アスペクト比が2以上でフリンジ部に10本以上の
転位線を有する平板状ハロゲン化銀粒子によってしめら
れ、かつ該平板状ハロゲン化銀粒子のサイズ分布が単分
散であるハロゲン化銀乳剤が開示されている。しかし、
該公報においては、粒子の厚さの分布についてなんら触
れられていない。
In addition, the technique cannot improve remarkable desensitization caused by pressure being caused by introducing dislocation lines. Japanese Patent Application Laid-Open No. Hei 3-189624 discloses a tabular silver halide grain having an aspect ratio of 2 or more and having 10 or more dislocation lines in a fringe portion, and a size distribution of the tabular silver halide grain. Are monodispersed silver halide emulsions. But,
In this publication, there is no mention of the particle thickness distribution.

【0020】即ち、本発明の構成要件である、転位線を
有する平板状ハロゲン化銀粒子であって、かつ粒径の変
動係数と粒子の厚さの変動係数の両者が共に小さいとい
う特徴を有するハロゲン化銀乳剤は従来得られていなか
った。加えて該ハロゲン化銀乳剤によって、転位線を有
するハロゲン化銀乳剤の被圧時の減感が改良されること
も知られていなかった。
That is, it is a tabular silver halide grain having dislocation lines, which is a feature of the present invention, and has a feature that both the coefficient of variation of the grain size and the coefficient of variation of the grain thickness are small. Silver halide emulsions have not been obtained before. In addition, it has not been known that the silver halide emulsion improves the desensitization of a silver halide emulsion having dislocation lines when subjected to pressure.

【0021】[0021]

【発明が解決しようとする課題】本発明の目的は、カブ
リ、感度に優れ、また保存時のカブリ上昇や感度低下が
小さく、加えて圧力耐性の改良されたハロゲン化銀写真
乳剤及びハロゲン化銀写真感光材料を提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a silver halide photographic emulsion and a silver halide which are excellent in fog and sensitivity, have little increase in fog and decrease in sensitivity during storage, and have improved pressure resistance. A photographic light-sensitive material is provided.

【0022】[0022]

【課題を解決するための手段】本発明の上記目的は、 1.ハロゲン化銀粒子を含有するハロゲン化銀写真乳剤
において、該ハロゲン化銀粒子が、平均アスペクト比が
3.0以上ありかつ実質的に転位線を有しかつ粒径の変
動係数が20.0%以下でありかつ厚さの変動係数が2
0.0%以下から成ることを特徴とするハロゲン化銀写
真乳剤、 2.ハロゲン化銀粒子の平均アスペクト比が6.0以上
であることを特徴とする前記1に記載のハロゲン化銀写
真乳剤、 3.ハロゲン化銀粒子の厚さの変動係数が15.0%以
下であることを特徴とする前記1又は2に記載のハロゲ
ン化銀写真乳剤、 4.支持体上に設けられた少なくとも1層のハロゲン化
銀写真乳剤層中に、前記1〜3のいずれか1項に記載の
ハロゲン化銀写真乳剤を含有することを特徴とするハロ
ゲン化銀写真感光材料、 により達成される。
The above objects of the present invention are as follows. In a silver halide photographic emulsion containing silver halide grains, the silver halide grains have an average aspect ratio of at least 3.0, substantially have dislocation lines, and have a coefficient of variation of grain size of 20.0%. Less than and the coefficient of variation of the thickness is 2
1. a silver halide photographic emulsion comprising 0.0% or less; 2. The silver halide photographic emulsion according to the above item 1, wherein the silver halide grains have an average aspect ratio of 6.0 or more; 3. The silver halide photographic emulsion according to the above 1 or 2, wherein the coefficient of variation of the thickness of the silver halide grains is 15.0% or less. 4. A silver halide photographic light-sensitive material comprising at least one silver halide photographic emulsion layer provided on a support, containing the silver halide photographic emulsion described in any one of 1 to 3 above. Material.

【0023】以下、本発明を更に詳細に述べる。Hereinafter, the present invention will be described in more detail.

【0024】平板状ハロゲン化銀粒子は、結晶学的には
双晶に分類される。双晶とは、一つの粒子内に一つ以上
の双晶面を有する結晶であり、ハロゲン化銀粒子におけ
る双晶の形態の分類は、クラインとモイザーによる報文
「Photographishe Korrespon
denz」99巻99頁、同100巻57頁に詳しく述
べられている。
Tabular silver halide grains are crystallographically classified as twins. Twins are crystals having one or more twin planes in one grain. Classification of twin morphology in silver halide grains is based on a report by Klein and Moiser in "Photographhishhe Korrespon."
denz, Vol. 99, p. 99, and Vol. 100, p. 57.

【0025】本発明において、ハロゲン化銀粒子は、実
質的に平板状のハロゲン化銀粒子であり、該平板状ハロ
ゲン化銀粒子とは、粒子内に1つまたは互いに平行な2
つ以上の双晶面を有するものである。但し、本発明の主
たる構成要件であるハロゲン化銀粒子間の粒径と厚さの
ばらつきを小さくするために、平行な双晶面を2枚有す
る粒子であることが好ましい。
In the present invention, the silver halide grains are substantially tabular silver halide grains, and the term "tabular silver halide grains" means one or two parallel silver halide grains in the grains.
It has two or more twin planes. However, it is preferable that the grains have two parallel twin planes in order to reduce variation in grain size and thickness between silver halide grains, which is a main constituent requirement of the present invention.

【0026】本発明においてアスペクト比とは、ハロゲ
ン化銀粒子の粒径と厚さの比(アスペクト比=直径/厚
さ)をいう。また、本発明でいう粒径とは、ハロゲン化
銀粒子の表面を形成する平面の中で最も広い面積を有す
る面(主平面とも称する)に対して垂直にその粒子を投
影した場合の面積(投影面積)に等しい面積を有する円
の直径で表される。平板状粒子の場合、粒子の厚さと
は、主平面に垂直な方向での粒子の厚さであり、一般に
2つの主平面間の距離に一致する。
In the present invention, the aspect ratio refers to the ratio of the particle diameter to the thickness of the silver halide grains (aspect ratio = diameter / thickness). In the present invention, the grain size is defined as an area when the grain is projected perpendicularly to a plane having the largest area (also referred to as a main plane) among the planes forming the surface of the silver halide grain (also referred to as a main plane) (Projected area). In the case of tabular grains, the grain thickness is the thickness of the grain in a direction perpendicular to the major plane and generally corresponds to the distance between the two major planes.

【0027】粒径と厚さは以下の方法で求められる。支
持体上に内部標準となる粒径既知のラテックスボールと
主平面が平行に配向するようにハロゲン化銀粒子を塗布
した試料を作成し、ある角度からカーボン蒸着法により
シャドーイングを施した後、通常のレプリカ法によって
レプリカ試料を作成する。同試料の電子顕微鏡写真を撮
影し、画像処理装置等を用いて個々の粒子の投影面積と
厚さを求める。この場合、粒子の投影面積は内部標準の
投影面積から、粒子の厚さは内部標準と粒子の影(シャ
ドー)の長さから算出することができる。
The particle size and thickness can be determined by the following method. After preparing a sample coated with silver halide particles so that the main surface and the latex ball of known particle size as an internal standard are oriented in parallel on the support, and shadowed by carbon vapor deposition from a certain angle, A replica sample is prepared by a normal replica method. An electron micrograph of the sample is taken, and the projected area and thickness of each particle are determined using an image processing device or the like. In this case, the projected area of the particle can be calculated from the projected area of the internal standard, and the thickness of the particle can be calculated from the length of the internal standard and the shadow of the particle.

【0028】本発明において、アスペクト比、粒径、粒
子厚さの平均値は、上記シャドーイング法を用いてハロ
ゲン化銀乳剤に含まれるハロゲン化銀粒子を任意に10
00個以上測定し、それらの算術平均として求められる
値をいう。本発明の平板状ハロゲン化銀粒子の平均アス
ペクト比は3.0以上であるが、6.0以上であること
が特に好ましい。
In the present invention, the average value of the aspect ratio, the grain size and the grain thickness is determined by arbitrarily setting the silver halide grains contained in the silver halide emulsion to 10 by the shadowing method.
A value obtained by measuring at least 00 pieces and obtaining an arithmetic average thereof. The average aspect ratio of the tabular silver halide grains of the present invention is 3.0 or more, and particularly preferably 6.0 or more.

【0029】本発明においてハロゲン化銀粒子の粒径及
び粒子の厚さの変動係数とは、上記測定から得られる値
を用いて下式によって定義される値である。
In the present invention, the coefficient of variation of the grain size and grain thickness of silver halide grains is a value defined by the following equation using the values obtained from the above measurements.

【0030】本発明のハロゲン化銀粒子の粒径の変動係
数は20.0%以下であるが、10.0%以下がより好
ましい。また、本発明のハロゲン化銀粒子の厚さの変動
係数は20.0%以下であるが、15.0%以下がより
好ましい。
The coefficient of variation of the grain size of the silver halide grains of the present invention is 20.0% or less, more preferably 10.0% or less. Further, the coefficient of variation of the thickness of the silver halide grains of the present invention is 20.0% or less, more preferably 15.0% or less.

【0031】粒径の変動係数(%)=(粒径の標準偏差/
粒径の平均値)×100 厚さの変動係数(%)=(厚さの標準偏差/厚さの平均値)
×100 本発明におけるハロゲン化銀粒子の組成としては、沃臭
化銀、塩沃臭化銀であることが好ましい。特に1.0モ
ル%以上の沃化銀を含有する沃臭化銀であることが好ま
しく、加えて、ハロゲン化銀写真乳剤の平均沃化銀含有
率としては、10.0モル%以下であることが好まし
く、1.0モル%以上6.0モル%以下が特に好まし
い。ハロゲン化銀粒子の組成は、EPMA法、X線回折
法等の組成分析法を用いて調べることができる。
Coefficient of variation (%) of particle size = (standard deviation of particle size /
Average value of particle size) x 100 Variation coefficient of thickness (%) = (standard deviation of thickness / average value of thickness)
× 100 The composition of the silver halide grains in the invention is preferably silver iodobromide or silver chloroiodobromide. In particular, silver iodobromide containing 1.0 mol% or more of silver iodide is preferable. In addition, the average silver iodide content of a silver halide photographic emulsion is 10.0 mol% or less. It is preferably 1.0 mol% or more and 6.0 mol% or less. The composition of the silver halide grains can be determined by a composition analysis method such as an EPMA method and an X-ray diffraction method.

【0032】本発明のハロゲン化銀粒子の表面相の平均
沃化銀含有率は、1モル%以上であることが好ましく、
2モル%以上20モル%以下であることがより好まし
く、3モル%以上15モル%以下がさらに好ましい。こ
こでいうハロゲン化銀粒子の表面相の平均沃化銀含有率
は、XPS法またはISS法を用いて求められる値であ
る。例えば、XPS法による表面沃化銀含有率は次のよ
うにして得られる。試料を1×10-4torr以下の超
高真空中で−155℃以下まで冷却し、プローブ用X線
としてMgKaをX線源電流40mAで照射し、Ag3
d5/2、Br3d,I3d3/2電子について測定す
る。測定されたピークの積分強度を感度因子で補正し、
これらの強度比からハロゲン化銀表面相の沃化銀含有率
等の組成を求める。
The average silver iodide content of the surface phase of the silver halide grains of the present invention is preferably at least 1 mol%.
It is more preferably from 2 mol% to 20 mol%, and still more preferably from 3 mol% to 15 mol%. Here, the average silver iodide content of the surface phase of the silver halide grains is a value obtained by using the XPS method or the ISS method. For example, the surface silver iodide content by the XPS method can be obtained as follows. The sample was cooled to −155 ° C. or less in an ultra-high vacuum of 1 × 10 −4 torr or less, and irradiated with MgKa as an X-ray for a probe at an X-ray source current of 40 mA.
d5 / 2, Br3d and I3d3 / 2 are measured. Correct the integrated intensity of the measured peak with the sensitivity factor,
The composition such as the silver iodide content of the silver halide surface phase is determined from these intensity ratios.

【0033】本発明のハロゲン化銀写真乳剤は、実質的
に転位線を有する。本発明において実質的に転位線を有
するとは、ハロゲン化銀写真乳剤に含まれるハロゲン化
銀粒子を任意に1000個以上観察し、それらの全影面
積の50%以上が転位線を有する場合をいう。転位線が
存在する位置について特別な限定はないが、平板状ハロ
ゲン化銀粒子の外周部近傍や稜線近傍、又は頂点近傍に
存在することが好ましい。粒子全体における転位線導入
の位置関係でいえば、粒子全体の銀量の50%以降に導
入されることが好ましく、60%以上95%以下の間で
導入されることがさらに好ましく、70%以上90%以
下の間で導入されることが最も好ましい。転位線の数に
ついては、5本以上の転位線を含む粒子が全投影面積の
50%以上であることが好ましいが、70%以上である
ことがより好ましく、90%以上であることがさらに好
ましい。また、それぞれの場合において転位線の数は1
0本以上存在することが特に望ましい。
The silver halide photographic emulsion of the present invention has substantially dislocation lines. In the present invention, "having substantially dislocation lines" means that 1000 or more silver halide grains contained in a silver halide photographic emulsion are arbitrarily observed and 50% or more of the total shadow area has dislocation lines. Say. There is no particular limitation on the position where the dislocation line exists, but it is preferable that the dislocation line exists near the outer peripheral portion, near the ridge line, or near the vertex of the tabular silver halide grains. Speaking of the positional relationship of dislocation line introduction in the whole grain, it is preferably introduced at 50% or more of the silver amount of the whole grain, more preferably at 60% or more and 95% or less, more preferably at 70% or more. Most preferably, it is introduced between 90% or less. The number of dislocation lines is preferably 50% or more, more preferably 70% or more, and even more preferably 90% or more of the total projected area of grains containing 5 or more dislocation lines. . In each case, the number of dislocation lines is 1
It is particularly desirable that there be zero or more.

【0034】ハロゲン化銀粒子が有する転位線は、例え
ばJ.F.Hamilton、Photo.Sci.E
ng.11(1967)57や、T.Shiozaw
a,J.Soc.Phot.Sci.Japan35
(1972)213に記載の、低温での透過型電子顕微
鏡を用いた直接的な方法により観察できる。即ち、ハロ
ゲン化銀写真乳剤からハロゲン化銀粒子に転位が発生す
るほどの圧力をかけないように注意して取り出したハロ
ゲン化銀粒子を、電子顕微鏡用のメッシュ上に主平面が
平行に配向するように乗せ、電子線による損傷(プリン
トアウトなど)を防ぐように試料を冷却した状態で透過
法により観察を行う。この時、ハロゲン化銀粒子の厚み
が厚いほど電子線が透過しにくくなるので、高圧型の電
子顕微鏡を用いた法がより鮮明に観察することができ
る。このような方法によって得られたハロゲン化銀粒子
の写真から、個々のハロゲン化銀粒子における転位線の
位置及び数を求めることができる。
Dislocation lines of silver halide grains are described, for example, in J. Am. F. Hamilton, Photo. Sci. E
ng. 11 (1967) 57 and T.I. Shiozaw
a, J. et al. Soc. Photo. Sci. Japan35
(1972) 213 can be observed by a direct method using a transmission electron microscope at a low temperature. That is, the silver halide grains taken out from the silver halide photographic emulsion, taking care not to apply enough pressure to generate the dislocations on the silver halide grains, the main planes of which are oriented in parallel on a mesh for an electron microscope. The specimen is cooled and observed by a transmission method so as to prevent damage (such as printout) by an electron beam. At this time, the thicker the silver halide grains, the more difficult it is for an electron beam to pass through, so that a method using a high-pressure electron microscope can be observed more clearly. From the photographs of the silver halide grains obtained by such a method, the position and number of dislocation lines in each silver halide grain can be determined.

【0035】また、本発明のハロゲン化銀写真乳剤にお
いては、ハロゲン化銀粒子間の沃化銀含有率がより均一
であることが好ましい。即ち、該ハロゲン化銀写真乳剤
における沃化銀含有率の変動係数が30%以下であるこ
とが好ましく、さらには20%以下である場合がより好
ましい。但し、ここでいう変動係数とは沃化銀含有率の
標準偏差を沃化銀含有率の平均値で割ったものに100
を乗じた値であり、ハロゲン化銀乳剤に含まれるハロゲ
ン化銀粒子を任意に1000個以上測定し得られた値を
いう。
Further, in the silver halide photographic emulsion of the present invention, the silver iodide content between silver halide grains is preferably more uniform. That is, the coefficient of variation of the silver iodide content in the silver halide photographic emulsion is preferably 30% or less, and more preferably 20% or less. Here, the coefficient of variation is defined as a value obtained by dividing the standard deviation of the silver iodide content by the average value of the silver iodide content.
And a value obtained by arbitrarily measuring 1000 or more silver halide grains contained in a silver halide emulsion.

【0036】写真用ハロゲン化銀粒子は、塩化銀、臭化
銀、沃化銀、或いはそれらの固溶体から成る微結晶であ
るが、その結晶内部にハロゲン化銀組成の異なる2つ以
上の相を形成することが可能である。このような構造を
有する粒子としては、互いに異なるハロゲン化銀組成を
有する内核相と外表相から構成される粒子が知られてお
り、一般にコア/シェル型粒子と呼ばれる。本発明のハ
ロゲン化銀粒子は、外表相が内核相より沃化銀含有率が
高いコア/シェル型の粒子構造を有することが好まし
い。
The silver halide grains for photography are microcrystals composed of silver chloride, silver bromide, silver iodide, or a solid solution thereof, and two or more phases having different silver halide compositions are contained in the crystal. It is possible to form. As a grain having such a structure, a grain composed of an inner core phase and an outer surface phase having mutually different silver halide compositions is known, and is generally called a core / shell type grain. The silver halide grains of the present invention preferably have a core / shell type grain structure in which the outer surface phase has a higher silver iodide content than the inner core phase.

【0037】本発明のハロゲン化銀写真乳剤の調製形態
としては、当業界で知られた方法を適宜適用することが
できる。例えば、ハロゲン化銀粒子形成時の反応液のp
Agを制御する、いわゆるコントロールド・ダブルジェ
ット法やコントロールド・トリプルジェット法を用いる
ことができる。また、必要に応じてハロゲン化銀溶剤を
用いることができ、有用なハロゲン化銀溶剤としては、
アンモニア、チオエーテル、チオ尿素類をあげることが
できる。チオエーテルに関しては米国特許第3,27
1,157号、同第3,790,387号、同第3,5
74,628号等を参考にすることができる。また本発
明のハロゲン化銀粒子の調製法としては特に限定はな
く、アンモニア法やアンモニアを使わない中性法、酸性
法などを用いることができるが、該ハロゲン化銀粒子形
成時のカブリを抑制できるという観点から、好ましくは
pH(水素イオン濃度の逆数の対数)が5.5以下、さ
らに好ましくは4.5以下の環境で平板状ハロゲン化銀
粒子を形成することが好ましい。
As a preparation form of the silver halide photographic emulsion of the present invention, a method known in the art can be appropriately applied. For example, p of the reaction solution when forming silver halide grains
A so-called controlled double jet method or controlled triple jet method for controlling Ag can be used. Further, a silver halide solvent can be used if necessary, and as a useful silver halide solvent,
Ammonia, thioethers and thioureas can be mentioned. Regarding thioethers, U.S. Pat.
No. 1,157, No. 3,790,387, No. 3,5
No. 74,628 can be referred to. The method for preparing the silver halide grains of the present invention is not particularly limited, and an ammonia method, a neutral method using no ammonia, an acidic method, or the like can be used, but the fogging during the formation of the silver halide grains is suppressed. From the viewpoint that the silver halide grains can be formed, it is preferable to form tabular silver halide grains in an environment where the pH (the logarithm of the reciprocal of the hydrogen ion concentration) is 5.5 or less, more preferably 4.5 or less.

【0038】本発明のハロゲン化銀粒子間及び該粒子内
部における沃化銀含有率をより精密に制御するために、
ハロゲン化銀粒子の沃化銀含有相形成の少なくとも一部
が、該ハロゲン化銀粒子よりも溶解度の小さいハロゲン
化銀粒子の存在下に行われることが望ましく、溶解度の
小さいハロゲン化銀粒子としては沃化銀を用いることが
特に望ましい。また、同様の理由から、ハロゲン化銀粒
子の沃化銀含有相形成の少なくとも一部を、1種類以上
のハロゲン化銀微粒子のみを供給することによって形成
する方法も好ましい。
In order to more precisely control the silver iodide content between and within the silver halide grains of the present invention,
It is desirable that at least a part of the formation of the silver iodide-containing phase of the silver halide grains is carried out in the presence of silver halide grains having a lower solubility than the silver halide grains. It is particularly desirable to use silver iodide. For the same reason, a method of forming at least a part of the silver iodide-containing phase of silver halide grains by supplying only one or more types of silver halide fine grains is also preferable.

【0039】本発明のハロゲン化銀粒子への転位線の導
入法に関しては特に限定はなく、例えば、沃化カリウム
のような沃素イオン水溶液と水溶性銀塩溶液をダブルジ
ェットで添加する方法、もしくは沃化銀微粒子を添加す
る方法、沃素イオン溶液のみを添加する方法、特開平6
−11781号に記載されているような沃化物イオン放
出剤を用いる方法等の、公知の方法を使用して所望の位
置で転位線の起源となる転位を形成することができる。
これらの方法の中では、沃素イオン水溶液と水溶性銀塩
溶液をダブルジェットで添加する方法や沃化銀微粒子を
添加する方法、沃化物イオン放出剤を用いる方法が好ま
しいが、沃化銀微粒子を添加する方法が最も好ましい。
The method for introducing dislocation lines into the silver halide grains of the present invention is not particularly limited. For example, a method of adding an aqueous solution of an iodide ion such as potassium iodide and a solution of a water-soluble silver salt by double jet, or A method of adding silver iodide fine grains, a method of adding only an iodine ion solution,
A known method such as a method using an iodide ion releasing agent described in US Pat. No. 11,1781, or the like can be used to form a dislocation which is a source of a dislocation line at a desired position.
Among these methods, a method of adding an aqueous iodide ion solution and a water-soluble silver salt solution by a double jet, a method of adding silver iodide fine particles, and a method of using an iodide ion releasing agent are preferable. The addition method is most preferable.

【0040】本発明のハロゲン化銀粒子の体積換算粒径
は0.1〜1.2μmが好ましく、0.20〜0.8μ
mがさらに好ましい。0.1μm以下では実用的な感度
を得ることが難しく、一方1.2μm以上では粒径が大
きいことによる粒状の劣化が顕著なためである。ここで
いう体積換算粒径とは、ハロゲン化銀粒子と同体積の立
方体の一辺の長さの値である。
The silver halide grains of the present invention preferably have a particle size in terms of volume of 0.1 to 1.2 μm, more preferably 0.20 to 0.8 μm.
m is more preferred. If it is less than 0.1 μm, it is difficult to obtain practical sensitivity, while if it is more than 1.2 μm, the granularity is significantly deteriorated due to the large particle diameter. Here, the volume-converted particle size is a value of the length of one side of a cube having the same volume as the silver halide grains.

【0041】一般に、平板状ハロゲン化銀粒子は核形
成、熟成、成長のプロセスを経て調製される。ハロゲン
化銀粒子の粒径と厚さの変動係数を共に小さくするため
には、核形成及び熟成段階からそれぞれの値を制御する
ことに留意することが大切である。
Generally, tabular silver halide grains are prepared through nucleation, ripening and growth processes. In order to reduce both the coefficient of variation of the grain size and the thickness of the silver halide grains, it is important to note that the respective values are controlled from the nucleation and ripening stages.

【0042】以下に本発明のハロゲン化銀写真乳剤を調
製する方法について述べる。
The method for preparing the silver halide photographic emulsion of the present invention will be described below.

【0043】1.核形成 平板状粒子の核形成は、一般には保護コロイド性を有す
る分散媒水溶液を保持する反応容器内に、銀塩水溶液と
ハロゲン化アルカリ水溶液を同時に添加して行われるダ
ブルジェット法、或いはハロゲン化アルカリを含む保護
コロイド溶液に銀塩水溶液を添加する。またはその逆に
銀塩水溶液を含む保護コロイド溶液にハロゲン化アルカ
リ水溶液を添加するシングルジェット法が用いられる。
1. Nucleation The nucleation of tabular grains is generally carried out by simultaneously adding a silver salt aqueous solution and an alkali halide aqueous solution into a reaction vessel holding an aqueous dispersion medium having a protective colloid property, or a double jet method. An aqueous silver salt solution is added to the protective colloid solution containing alkali. Alternatively, a single jet method is used in which an aqueous alkali halide solution is added to a protective colloid solution containing an aqueous silver salt solution.

【0044】また、必要に応じて、特開平2−4433
5号や米国特許第5,104,786号に開示される方
法を用いて核形成を行うこともできる。核形成は、保護
コロイド水溶液中でpBrが1〜4の条件下で行うこと
が好ましい。さらに核形成時のpBrとしては、2.5
以下が好ましく、1.5〜2.5が特に好適な条件であ
る。
Also, if necessary, refer to
Nucleation can also be performed using the methods disclosed in US Pat. No. 5,104,786. The nucleation is preferably performed in a protective colloid aqueous solution under the condition of pBr of 1 to 4. Further, the pBr at the time of nucleation is 2.5
The following are preferable, and 1.5 to 2.5 are particularly preferable conditions.

【0045】核形成時に用いられる保護コロイド性を有
する分散媒としては、ゼラチンと保護コロイドポリマー
がある。ゼラチンの種類としては、通常分子量10万程
度のアルカリ処理ゼラチンが用いられるが、低分子量ゼ
ラチン(分子量5千〜3万)や酸化処理ゼラチンを用い
ることも知られている。本発明のハロゲン化銀写真乳剤
の核形成において好ましく用いられる分散媒は、平板核
粒子の側面成長を抑制するメチオニンの含有率の少ない
ゼラチンであり、具体的には酸化処理ゼラチン、或いは
酸化処理した低分子量ゼラチン(分子量5千〜2万)で
ある。核形成時の保護コロイド水溶液中の分散媒の濃度
は、一般に保護コロイド水溶液の重量に対して5重量%
以下であるが、1重量%以下が好ましく、0.5重量%
以下がより好ましい。核形成時の温度は60℃以下が好
ましいが、5〜50℃がより好ましく、10〜40℃が
さらに好ましい。
As a dispersion medium having a protective colloid property used at the time of nucleation, there are gelatin and a protective colloid polymer. As a kind of gelatin, alkali-treated gelatin having a molecular weight of about 100,000 is usually used, but low-molecular-weight gelatin (molecular weight of 5,000 to 30,000) or oxidized gelatin is also known. The dispersion medium preferably used in the nucleation of the silver halide photographic emulsion of the present invention is a gelatin having a low content of methionine which suppresses the lateral growth of tabular nuclei grains, and specifically, oxidized gelatin or oxidized gelatin Low molecular weight gelatin (molecular weight 5,000 to 20,000). The concentration of the dispersion medium in the aqueous protective colloid solution during nucleation is generally 5% by weight based on the weight of the aqueous protective colloid solution.
But not more than 1% by weight, preferably 0.5% by weight
The following is more preferred. The temperature at the time of nucleation is preferably 60C or lower, more preferably 5C to 50C, and even more preferably 10C to 40C.

【0046】2.熟成 核形成終了時には、平板粒子として成長可能な粒子(双
晶面を1枚、或いは平行な双晶面を複数枚有する粒子)
とそれ以外の粒子(正常晶粒子と非平行双晶粒子)が混
在する。単分散性の高い平板状ハロゲン化銀粒子を得る
ためには、平行2枚双晶粒子以外の粒子を消失せしめ、
なおかつ粒子の粒径と厚さを揃えることが重要である。
これを可能にする方法として、核形成に引き続いてオス
トワルド熟成を施すことが知られている。オストワルド
熟成を施すため、溶液温度を上昇させる方法、アンモニ
アやチオエーテル等のハロゲン化銀溶剤を添加する方
法、温度上昇と溶剤添加を組み合わせて行う方法が用い
られる。
2. Ripening At the end of nucleation, grains that can grow as tabular grains (grains having one twin plane or a plurality of parallel twin planes)
And other particles (normal crystal particles and non-parallel twin particles). In order to obtain tabular silver halide grains having high monodispersibility, grains other than twin twin grains are eliminated,
It is important to make the particle size and thickness uniform.
As a method for achieving this, it is known to perform Ostwald ripening following nucleation. In order to perform Ostwald ripening, a method of increasing the solution temperature, a method of adding a silver halide solvent such as ammonia or thioether, and a method of combining the temperature increase and the addition of the solvent are used.

【0047】しかし、本発明のハロゲン化銀写真乳剤を
得るためには、ハロゲン化銀溶剤は使用しないことが好
ましい。これは、溶剤を加えることにより平行2枚双晶
粒子の厚みが増加し、同時にその分布も劣化してしまう
ためである。熟成工程での溶液温度は40〜80℃が好
ましく、より好ましくは5〜70℃であり、pBrは
1.0〜3.0が好ましく、より好ましくは1.5〜
2.5である。水溶液中の分散媒の濃度は、0.5〜1
0重量%が好ましく、0.5〜5重量%がより好まし
い。
However, in order to obtain the silver halide photographic emulsion of the present invention, it is preferable not to use a silver halide solvent. This is because the addition of the solvent increases the thickness of the twin parallel twin grains, and at the same time, the distribution thereof is deteriorated. The solution temperature in the aging step is preferably from 40 to 80C, more preferably from 5 to 70C, and the pBr is preferably from 1.0 to 3.0, more preferably from 1.5 to 3.0.
2.5. The concentration of the dispersion medium in the aqueous solution is 0.5 to 1
0% by weight is preferable, and 0.5 to 5% by weight is more preferable.

【0048】本発明のハロゲン化銀写真乳剤を得るため
には、核形成が終了した後速やかに、下記一般式〔I〕
で表される化合物を添加する方法が好適である。
In order to obtain the silver halide photographic emulsion of the present invention, immediately after the completion of nucleation, the following general formula [I]
Is preferred.

【0049】一般式〔I〕 YO(CH2CH2O)m(CH(CH3)CH2O)p
(CH2CH2O)nY 一般式〔I〕において、Yは水素原子、−SO3M又は
−COBCOOMを表わす。Mは水素原子、アルカリ金
属原子、アンモニウム基又は炭素数5以下のアルキル置
換アンモニウム基を表わし、Bは連結基を表わす。m及
びnは各々0〜50の整数を表わし、pは1〜100の
整数を表わす。以下、一般式〔I〕で表される化合物の
代表的具体例を示す。
Formula [I] YO (CH 2 CH 2 O) m (CH (CH 3 ) CH 2 O) p
In (CH 2 CH 2 O) nY formula (I), Y represents a hydrogen atom, -SO 3 M or -COBCOOM. M represents a hydrogen atom, an alkali metal atom, an ammonium group or an alkyl-substituted ammonium group having 5 or less carbon atoms, and B represents a linking group. m and n each represent an integer of 0 to 50, and p represents an integer of 1 to 100. Hereinafter, typical specific examples of the compound represented by the general formula [I] will be shown.

【0050】[0050]

【化1】 Embedded image

【0051】また、上記化合物の代わりに、米国特許第
5,147,771号、同5,147,772号、同
5,147,773号、同5,171,659号、及び
特開平6−332090号に記載の他のポリアルキレン
オキシドブロックコポリマーや、親水性ポリアルキレン
オキサイド、ポリエチレンオキサイド誘導体等の化合物
を用いることもできる。
Further, instead of the above compounds, US Pat. Nos. 5,147,771, 5,147,772, 5,147,773, 5,171,659, and Compounds such as other polyalkylene oxide block copolymers described in 332090, hydrophilic polyalkylene oxides, and polyethylene oxide derivatives can also be used.

【0052】上記特許に開示される技術では、核形成時
から上記化合物を含有させている。これは、生成した平
板核の側面成長を上記化合物を用い抑制することによ
り、平板核の粒径(投影面積換算円直径値)の分布の広
がりを抑え、かつ同時に核生成数を増加させることを意
図している。
In the technique disclosed in the above patent, the above compound is contained from the time of nucleation. This is because by suppressing the lateral growth of the generated plate nuclei using the above compound, it is possible to suppress the spread of the distribution of the particle size (projected area converted circular diameter value) of the plate nuclei and simultaneously increase the nucleation number. Intended.

【0053】しかし、核形成段階から上記化合物を存在
させることは、平板核粒子の粒径を単分散化するには有
効であるが、逆に平板核粒子の厚さとその分布を増加さ
せるため粒子の厚さを単分散化するためには有効な手段
とは成り得ない。核形成の段階で広がった粒子厚の分布
を、その後の熟成や成長のプロセスで低減することは非
常に困難である。一方、核形成後に粒径分布にある程度
の広がりがあったとしても、熟成や成長の段階で上記化
合物を存在せしめることにより、粒径分布を単分散化す
ることは可能である。従って、本発明のハロゲン化銀写
真乳剤を調製するために肝要なことは、 1.核形成時には前記化合物やメチオニン含有率の高い
ゼラチン等の、平板状ハロゲン化銀粒子の側面成長を抑
制するような化合物や保護コロイド剤を用いないこと、 2.粒子の厚さを増すような溶剤を用いた熟成時を行わ
ないこと、 3.熟成時及び成長時には上記化合物を用いて平板粒子
の粒径の分布の広がりを適度に抑制すること、 である。
However, the presence of the above compound from the nucleation stage is effective for monodispersing the particle size of tabular nuclei, but conversely increases the thickness and distribution of tabular nuclei. It cannot be an effective means for monodispersing the thickness of. It is very difficult to reduce the distribution of grain thickness that has spread during the nucleation stage in subsequent ripening and growth processes. On the other hand, even if the particle size distribution spreads to some extent after nucleation, it is possible to monodisperse the particle size distribution by allowing the compound to exist at the stage of ripening or growth. Therefore, what is essential for preparing the silver halide photographic emulsion of the present invention is: 1. At the time of nucleation, do not use a compound such as the compound or gelatin having a high methionine content, which suppresses lateral growth of tabular silver halide grains, or a protective colloid agent. 2. No ripening with a solvent that increases the thickness of the particles; At the time of ripening and growth, the above compound is used to appropriately suppress the spread of the particle size distribution of tabular grains.

【0054】即ち、平板状ハロゲン化銀粒子の厚さの変
動係数は核形成と熟成の段階で制御し、粒径の変動係数
は熟成及び粒子成長の段階で制御することにより、本発
明のハロゲン化銀写真乳剤を調製することが可能とな
る。
That is, the coefficient of variation of the thickness of tabular silver halide grains is controlled at the stage of nucleation and ripening, and the coefficient of variation of the grain size is controlled at the stage of ripening and grain growth. It becomes possible to prepare a silver halide photographic emulsion.

【0055】尚、本発明のハロゲン化銀写真乳剤におい
ては、リサーチ・ディスクロージャーNo.30811
9(以下RD308119と略す)に記載されている技
術を用いることができる。
In the silver halide photographic emulsion of the present invention, Research Disclosure No. 30811
9 (hereinafter abbreviated as RD308119) can be used.

【0056】下記に記載箇所を示す。The following shows the places to be described.

【0057】[0057]

【表1】 [Table 1]

【0058】本発明のハロゲン化銀写真乳剤には、公知
の方法に従い、物理熟成や他の化学熟成及び分光増感を
施すことができる。
The silver halide photographic emulsion of the present invention can be subjected to physical ripening, other chemical ripening and spectral sensitization according to a known method.

【0059】このような工程で使用される添加剤として
は、リサーチ・ディスクロージャーNo.17643、
No.18716及びNo.308119(それぞれ、
以下RD17643,RD18716,RD30811
9と略す)に記載されているものを用いることができ
る。下記に記載箇所を示す。
The additives used in such a step include Research Disclosure No. 17643,
No. 18716 and no. 308119 (respectively,
RD17643, RD18716, RD30811
9) can be used. The places to be described are shown below.

【0060】[0060]

【表2】 [Table 2]

【0061】本発明に使用できる公知の写真用添加剤も
上記リサーチ・ディスクロージャーに記載されている。
下記に記載箇所を示す。
Known photographic additives which can be used in the present invention are also described in the above-mentioned Research Disclosure.
The places to be described are shown below.

【0062】[0062]

【表3】 [Table 3]

【0063】本発明には種々のカプラーを使用すること
ができ、その具体例は上記リサーチ・ディスクロージャ
ーに記載されている。
Various couplers can be used in the present invention, and specific examples are described in the above-mentioned Research Disclosure.

【0064】下記に関連ある記載箇所を示す。The following shows the relevant descriptions.

【0065】[0065]

【表4】 [Table 4]

【0066】本発明に使用する添加剤は、RD3081
19XIV に記載されている分散法などにより添加するこ
とができる。
The additive used in the present invention is RD3081
It can be added by the dispersion method described in 19XIV.

【0067】本発明においては、前述RD17643
28頁、RD18716 647〜8頁及びRD308
119XIX に記載されている支持体を使用することがで
きる。
In the present invention, the aforementioned RD17643
28 pages, RD18716 pages 647-8 and RD308
The support described in 119XIX can be used.

【0068】本発明の感光材料には、前述RD3081
19VII −K項に記載されているフィルター層や中間層
などの補助層を設けることができ、さらに、前述RD3
08119VII −K項に記載されている順層、逆層、ユ
ニット構成等の様々な層構成をとることができる。
The light-sensitive material of the present invention includes the aforementioned RD3081
An auxiliary layer such as a filter layer or an intermediate layer described in the section 19VII-K can be provided.
Various layer configurations such as a normal layer, a reverse layer, and a unit configuration described in section 08119VII-K can be employed.

【0069】本発明は、一般用もしくは映画用のカラー
ネガフィルム、スライド用もしくはテレビ用のカラー反
転フィルム、カラーペーパー、カラーポジフィルム、カ
ラー反転ペーパーに代表される種々のカラー感光材料に
適用することができる。
The present invention can be applied to various color light-sensitive materials represented by general or movie color negative films, slide or television color reversal films, color papers, color positive films, and color reversal papers. .

【0070】本発明の感光材料は、前述RD17643
28〜29頁、RD18716647頁及びRD30
8119XIX に記載された通常の方法によって、現像処
理することができる。
The light-sensitive material of the present invention is obtained by using
Pages 28 to 29, RD18716647 and RD30
The development can be carried out by the usual method described in 8119XIX.

【0071】[0071]

【実施例】以下に、本発明を実施例を挙げて具体的に説
明するが、本発明はこれらの実施態様に限定されるもの
ではない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these embodiments.

【0072】(比較乳剤Em−100の調製) 〔核形成〕下記ゼラチン溶液B−101を28℃に保
ち、特開昭62−160128号公報記載の混合撹拌装
置を用いて撹拌回転数450回転/分で撹拌しながら、
1Nの硫酸を用いてpHを1.95に調整した。その後
ダブルジェット法を用いてS−101液とX−101液
を一定の流量で1分間で添加し核形成を行った。
(Preparation of Comparative Emulsion Em-100) [Nucleation] The following gelatin solution B-101 was kept at 28 ° C., and the stirring speed was 450 rpm using a mixing and stirring apparatus described in JP-A-62-160128. While stirring in minutes,
The pH was adjusted to 1.95 with 1N sulfuric acid. Thereafter, the S-101 solution and the X-101 solution were added at a constant flow rate for one minute by using the double jet method to form nuclei.

【0073】 (B−101) 酸化処理ゼラチン(平均分子量10万) 2.100g 臭化カリウム 0.932g 〔下記(化合物A)の10重量%メタノール溶液 2.312ml H2O 837.5ml (化合物A) HO(CH2CH2O)m(CH(CH3)CH2O)19.8(CH2CH2O)nH (m+n=9.77) (S−101) 硝酸銀 1.624g H2O 18.747ml (X−101) 臭化カリウム 1.138g H2O 18.708ml 〔熟成〕上記添加終了後にG−101液を加え、30分
間を要して60℃に昇温した。60℃でさらに20分間
保持した。この間溶液の銀電位(飽和銀−塩化銀電極を
比較電極として銀イオン選択電極で測定)を0.5Nの
臭化カリウム溶液を用いて6mVに制御した。
(B-101) Oxidized gelatin (average molecular weight 100,000) 2.100 g Potassium bromide 0.932 g [2.312 ml of a 10% by weight methanol solution of the following (compound A): 837.5 ml of H 2 O (compound A) ) HO (CH 2 CH 2 O ) m (CH (CH 3) CH 2 O) 19.8 (CH 2 CH 2 O) nH (m + n = 9.77) (S-101) silver nitrate 1.624g H 2 O 18. 747 ml (X-101) 1.138 g of potassium bromide 18.708 ml of H 2 O [Aging] After completion of the above addition, the G-101 solution was added, and the temperature was raised to 60 ° C. over 30 minutes. Hold at 60 ° C. for another 20 minutes. During this time, the silver potential of the solution (measured with a silver ion selective electrode using a saturated silver-silver chloride electrode as a reference electrode) was controlled at 6 mV using a 0.5 N potassium bromide solution.

【0074】 (G−101) アルカリ処理不活性ゼラチン(平均分子量10万) 4.478g H2O 105.4ml 〔成長〕熟成終了後、1Nの水酸化カリウムを用いてp
Hを5.8に調整した。続いてダブルジェット法を用い
てS−102液とX−102液を流量を加速しながら
(終了時と開始時の添加流量の比が約10倍)41分間
で添加した。添加終了後にG−102液を加え、引き続
いてS−103液とX−103液を流量を加速しながら
(終了時と開始時の添加流量の比が約8.7倍)121
分間で添加した。この間溶液の銀電位を1.0Nの臭化
カリウム溶液を用いて8mVに制御した。
(G-101) Alkali-treated inert gelatin (average molecular weight: 100,000) 4.478 g H 2 O 105.4 ml [Growth] After ripening, p was added using 1N potassium hydroxide.
H was adjusted to 5.8. Subsequently, the S-102 solution and the X-102 solution were added using the double jet method for 41 minutes while accelerating the flow rates (the ratio of the addition flow rates at the end and at the start was about 10 times). After completion of the addition, the G-102 solution is added, and subsequently the S-103 solution and the X-103 solution are accelerated while increasing the flow rates (the ratio of the addition flow rates at the end and at the start is about 8.7 times).
Minutes. During this time, the silver potential of the solution was controlled at 8 mV using a 1.0 N potassium bromide solution.

【0075】 (S−102) 硝酸銀 20.60g H2O 92.27ml (X−102) 臭化カリウム 14.43g H2O 91.77ml (G−102) アルカリ処理不活性ゼラチン(平均分子量10万) 20.76g H2O 170.7ml (S−103) 硝酸銀 577.8g H2O 834.0g (X−103) 臭化カリウム 396.7g 沃化カリウム 11.29g H2O 824.2ml 上記成長終了後に常法に従い脱塩・水洗処理を施し、ゼ
ラチンを加えて良く分散し、pHを5.8、pAgを
8.1に調整した。
(S-102) Silver nitrate 20.60 g H 2 O 92.27 ml (X-102) Potassium bromide 14.43 g H 2 O 91.77 ml (G-102) Alkali-treated inert gelatin (average molecular weight 100,000) ) 20.76g H 2 O 170.7ml (S -103) Silver nitrate 577.8g H 2 O 834.0g (X- 103) potassium bromide 396.7g iodide 11.29g H 2 O 824.2ml said growth After completion, the mixture was subjected to desalting / washing treatment according to a conventional method, and gelatin was added to the mixture, which was dispersed well, and the pH and pAg were adjusted to 5.8 and 8.1.

【0076】かくして得られた乳剤をEm−100とす
る。
The emulsion thus obtained is named Em-100.

【0077】(比較乳剤Em−200の調製) 〔核形成〕下記ゼラチン溶液B−201を28℃に保
ち、特開昭62−160128号公報記載の混合撹拌装
置を用いて撹拌回転数450回転/分で撹拌しながら、
1Nの硫酸を用いてpHを1.95に調整した。その後
ダブルジェット法を用いてS−201液とX−201液
を一定の流量で1分間で添加し核形成を行った。
(Preparation of Comparative Emulsion Em-200) [Nucleation] The following gelatin solution B-201 was kept at 28 ° C., and the stirring speed was 450 rpm using a mixing and stirring apparatus described in JP-A-62-160128. While stirring in minutes,
The pH was adjusted to 1.95 with 1N sulfuric acid. Thereafter, the S-201 solution and the X-201 solution were added at a constant flow rate for one minute by using a double jet method to form nuclei.

【0078】 (B−201) 酸化処理ゼラチン(平均分子量10万) 2.100g 臭化カリウム 0.932g H2O 839.9ml (S−201) 硝酸銀 1.624g H2O 18.747ml (X−201) 臭化カリウム 1.138g H2O 18.708ml 〔熟成〕上記添加終了後にG−201液を加え、30分
間を要して60℃に昇温した。60℃でさらに20分間
保持した。この間溶液の銀電位を0.5Nの臭化カリウ
ム溶液を用いて6mVに制御した。
(B-201) Oxidized gelatin (average molecular weight 100,000) 2.100 g Potassium bromide 0.932 g H 2 O 839.9 ml (S-201) Silver nitrate 1.624 g H 2 O 18.747 ml (X- 201) G-201 was added to the potassium bromide 1.138g H 2 O 18.708ml [aging] the additive after completion, the temperature was raised to 60 ° C. over a period of 30 minutes. Hold at 60 ° C. for another 20 minutes. During this time, the silver potential of the solution was controlled at 6 mV using a 0.5N potassium bromide solution.

【0079】 (G−201) アルカリ処理不活性ゼラチン(平均分子量10万) 4.478g 前記(化合物A)の10重量%メタノール溶液 2.312ml H2O 103.0ml 〔成長〕熟成終了後、1Nの水酸化カリウムを用いてp
Hを5.8に調整した。続いてダブルジェット法を用い
てS−202液とX−202液を流量を加速しながら
(終了時と開始時の添加流量の比が約10倍)41分間
で添加した。添加終了後にG−202液を加え、引き続
いてS−203液とX−203液を流量を加速しながら
(終了時と開始時の添加流量の比が約8.7倍)121
分間で添加した。この間溶液の銀電位を1.0Nの臭化
カリウム溶液を用いて8mVに制御した。
(G-201) Alkali-treated inert gelatin (average molecular weight: 100,000) 4.478 g 10 wt% methanol solution of the above (Compound A) 2.312 ml H 2 O 103.0 ml [Growth] After ripening, 1N Using potassium hydroxide
H was adjusted to 5.8. Subsequently, the S-202 solution and the X-202 solution were added using the double jet method for 41 minutes while accelerating the flow rates (the ratio of the addition flow rates at the end and at the start was about 10 times). After the addition is completed, the G-202 solution is added, and subsequently the S-203 solution and the X-203 solution are accelerated in flow rate (the ratio of the addition flow rate at the end to the start is about 8.7 times).
Minutes. During this time, the silver potential of the solution was controlled at 8 mV using a 1.0 N potassium bromide solution.

【0080】 (S−202) 硝酸銀 20.60g H2O 92.27ml (X−202) 臭化カリウム 14.43g H2O 91.77ml (G−202) アルカリ処理不活性ゼラチン(平均分子量10万) 20.76g H2O 170.7ml (S−203) 硝酸銀 577.8g H2O 834.0ml (X−203) 臭化カリウム 396.7g 沃化カリウム 11.29g H2O 824.2ml 上記成長終了後に常法に従い脱塩・水洗処理を施し、ゼ
ラチンを加えて良く分散し、pHを5.8、pAgを
8.1に調整した。かくして得られた乳剤をEm−20
0とする。
(S-202) Silver nitrate 20.60 g H 2 O 92.27 ml (X-202) Potassium bromide 14.43 g H 2 O 91.77 ml (G-202) Alkali-treated inert gelatin (average molecular weight 100,000) 20.76 g H 2 O 170.7 ml (S-203) silver nitrate 577.8 g H 2 O 834.0 ml (X-203) potassium bromide 396.7 g potassium iodide 11.29 g H 2 O 824.2 ml After completion, the mixture was subjected to desalting / washing treatment according to a conventional method, and gelatin was added to the mixture, which was dispersed well, and the pH and pAg were adjusted to 5.8 and 8.1, respectively. The emulsion thus obtained was em-20
Set to 0.

【0081】(比較乳剤Em−300の調製) 〔核形成〕下記ゼラチン溶液B−301を28℃に保
ち、特開昭62−160128号公報記載の混合撹拌装
置を用いて撹拌回転数450回転/分で撹拌しながら、
1Nの硫酸を用いてpHを1.95に調整した。その後
ダブルジェット法を用いてS−301液とX−301液
を一定の流量で1分間で添加し核形成を行った。
(Preparation of Comparative Emulsion Em-300) [Nucleation] The following gelatin solution B-301 was kept at 28 ° C., and the stirring speed was 450 rpm using a mixing and stirring apparatus described in JP-A-62-160128. While stirring in minutes,
The pH was adjusted to 1.95 with 1N sulfuric acid. Thereafter, the S-301 solution and the X-301 solution were added at a constant flow rate for one minute by using a double jet method to form nuclei.

【0082】 (B−301) 酸化処理ゼラチン(平均分子量10万) 2.100g 臭化カリウム 0.932g 前記(化合物A)の10重量%メタノール溶液 2.312ml H2O 837.5ml (S−301) 硝酸銀 1.624g H2O 18.747ml (X−301) 臭化カリウム 1.138g H2O 18.708ml 〔熟成〕上記添加終了後にG−301液を加え、30分
間を要して60℃に昇温した。60℃でさらに20分間
保持した。この間溶液の銀電位を0.5Nの臭化カリウ
ム溶液を用いて6mVに制御した。
(B-301) Oxidized gelatin (average molecular weight 100,000) 2.100 g Potassium bromide 0.932 g 10% by weight methanol solution of (Compound A) 2.312 ml H 2 O 837.5 ml (S-301 ) Silver nitrate 1.624 g H 2 O 18.747 ml (X-301) Potassium bromide 1.138 g H 2 O 18.708 ml [Aging] After the addition is completed, add G-301 solution and take 30 minutes to 60 ° C. The temperature rose. Hold at 60 ° C. for another 20 minutes. During this time, the silver potential of the solution was controlled at 6 mV using a 0.5N potassium bromide solution.

【0083】 (G−301) アルカリ処理不活性ゼラチン(平均分子量10万) 4.478g H2O 105.4ml 〔成長〕熟成終了後、1Nの水酸化カリウムを用いてp
Hを5.8に調整した。続いてダブルジェット法を用い
てS−302液とX−302液を流量を加速しながら
(終了時と開始時の添加流量の比が約10倍)41分間
で添加した。添加終了後にG−302液を加え、引き続
いてS−303液とX−303液の80%相当量を流量
を加速しながら添加した。この間溶液の銀電位を1.0
Nの臭化カリウム溶液を用いて8mVに制御した。反応
容器内の温度を20分を要して40℃に降温した。その
後、1.5NのKBr水溶液を用いて反応容器内の銀電
位を−32mVに調整し、平均粒径0.05μmのAg
I微粒子乳剤を0.058モル相当量加えた後、残りの
S−303液とX−303液を7分間で添加した。
(G-301) Alkali-treated inert gelatin (average molecular weight 100,000) 4.478 g H 2 O 105.4 ml [Growth] After ripening, p was added using 1N potassium hydroxide.
H was adjusted to 5.8. Subsequently, the S-302 solution and the X-302 solution were added by using the double jet method for 41 minutes while accelerating the flow rates (the ratio of the addition flow rates at the end and at the start was about 10 times). After the addition was completed, the G-302 solution was added, and subsequently, 80% equivalents of the S-303 solution and the X-303 solution were added while accelerating the flow rate. During this time, the silver potential of the solution was set to 1.0
It was controlled at 8 mV using a potassium bromide solution of N. The temperature in the reaction vessel was lowered to 40 ° C. over 20 minutes. Thereafter, the silver potential in the reaction vessel was adjusted to -32 mV using a 1.5 N KBr aqueous solution, and Ag having an average particle size of 0.05 µm was used.
After adding 0.058 mol of the I fine grain emulsion, the remaining solution S-303 and solution X-303 were added over 7 minutes.

【0084】 (S−302) 硝酸銀 20.60g H2O 92.27ml (X−302) 臭化カリウム 14.43g H2O 91.77ml (G−302) アルカリ処理不活性ゼラチン(平均分子量10万) 20.76g H2O 170.7ml (S−303) 硝酸銀 577.8g H2O 834.0g (X−303) 臭化カリウム 396.7g 沃化カリウム 11.29g H2O 824.2ml 上記成長終了後に常法に従い脱塩・水洗処理を施し、ゼ
ラチンを加えて良く分散し、pHを5.8、pAgを
8.1に調整した。かくして得られた乳剤をEm−30
0とする。
(S-302) Silver nitrate 20.60 g H 2 O 92.27 ml (X-302) Potassium bromide 14.43 g H 2 O 91.77 ml (G-302) Alkali-treated inert gelatin (average molecular weight 100,000) ) 20.76g H 2 O 170.7ml (S -303) Silver nitrate 577.8g H 2 O 834.0g (X- 303) potassium bromide 396.7g iodide 11.29g H 2 O 824.2ml said growth After completion, the mixture was subjected to desalting / washing treatment according to a conventional method, and gelatin was added to the mixture, which was dispersed well, and the pH and pAg were adjusted to 5.8 and 8.1, respectively. The emulsion thus obtained was em-30
Set to 0.

【0085】(本発明乳剤Em−400の調製) 〔核形成〕下記ゼラチン溶液B−401を28℃に保
ち、特開昭62−160128号公報記載の混合撹拌装
置を用いて撹拌回転数450回転/分で撹拌しながら、
1Nの硫酸を用いてpHを1.95に調整した。その後
ダブルジェット法を用いてS−401液とX−401液
を一定の流量で1分間で添加し核形成を行った。
(Preparation of Emulsion Em-400 of the Present Invention) [Nucleation] The following gelatin solution B-401 was maintained at 28 ° C., and the number of revolutions was 450 using a mixing and stirring apparatus described in JP-A-62-160128. / Min while stirring
The pH was adjusted to 1.95 with 1N sulfuric acid. Thereafter, the S-401 solution and the X-401 solution were added at a constant flow rate for one minute by using a double jet method to form nuclei.

【0086】 (B−401) 酸化処理ゼラチン(平均分子量10万) 2.100g 臭化カリウム 0.932g H2O 839.9ml (S−401) 硝酸銀 1.624g H2O 18.747ml (X−401) 臭化カリウム 1.138g H2O 18.708ml 〔熟成〕上記添加終了後にG−401液を加え、30分
間を要して60℃に昇温した。60℃でさらに20分間
保持した。この間溶液の銀電位を0.5Nの臭化カリウ
ム溶液を用いて6mVに制御した。
(B-401) Oxidized gelatin (average molecular weight 100,000) 2.100 g Potassium bromide 0.932 g H 2 O 839.9 ml (S-401) Silver nitrate 1.624 g H 2 O 18.747 ml (X- 401) Potassium bromide 1.138 g H 2 O 18.708 ml [Aging] After the completion of the above addition, G-401 solution was added, and the temperature was raised to 60 ° C. over 30 minutes. Hold at 60 ° C. for another 20 minutes. During this time, the silver potential of the solution was controlled at 6 mV using a 0.5N potassium bromide solution.

【0087】 (G−401) アルカリ処理不活性ゼラチン(平均分子量10万) 4.478g 前記(化合物A)の10重量%メタノール溶液 2.312ml H2O 103.0ml 〔成長〕熟成終了後、1Nの水酸化カリウムを用いてp
Hを5.8に調整した。続いてダブルジェット法を用い
てS−402液とX−402液を流量を加速しながら
(終了時と開始時の添加流量の比が約10倍)41分間
で添加した。添加終了後にG−402液を加え、引き続
いてS−403液とX−403液の80%相当量を流量
を加速しながら添加した。この間溶液の銀電位を1.0
Nの臭化カリウム溶液を用いて8mVに制御した。反応
容器内の温度を20分を要して40℃に降温した。その
後、1.5NのKBr水溶液を用いて反応容器内の銀電
位を−32mVに調整し、平均粒径0.05μmのAg
I微粒子乳剤を0.053モル相当量加えた後、残りの
S−403液とX−403液を7分間で添加した。
(G-401) Alkali-treated inert gelatin (average molecular weight: 100,000) 4.478 g 10 wt% methanol solution of the above (Compound A) 2.312 ml H 2 O 103.0 ml [Growth] After ripening, 1N Using potassium hydroxide
H was adjusted to 5.8. Subsequently, the S-402 solution and the X-402 solution were added using the double jet method for 41 minutes while accelerating the flow rate (the ratio of the addition flow rate at the end to the start was about 10 times). After completion of the addition, the G-402 solution was added, and subsequently, 80% equivalents of the S-403 solution and the X-403 solution were added while accelerating the flow rate. During this time, the silver potential of the solution was set to 1.0
It was controlled at 8 mV using a potassium bromide solution of N. The temperature in the reaction vessel was lowered to 40 ° C. over 20 minutes. Thereafter, the silver potential in the reaction vessel was adjusted to -32 mV using a 1.5 N KBr aqueous solution, and Ag having an average particle size of 0.05 µm was used.
After adding 0.053 mol equivalent of the I fine grain emulsion, the remaining S-403 solution and X-403 solution were added over 7 minutes.

【0088】 (S−402) 硝酸銀 20.60g H2O 92.27ml (X−402) 臭化カリウム 14.43g H2O 91.77ml (G−402) アルカリ処理不活性ゼラチン(平均分子量10万) 20.76g H2O 170.7ml (S−403) 硝酸銀 577.8g H2O 834.0ml (X−403) 臭化カリウム 396.7g 沃化カリウム 11.29g H2O 824.2ml 上記成長終了後に常法に従い脱塩・水洗処理を施し、ゼ
ラチンを加えて良く分散し、pHを5.8、pAgを
8.1に調整した。かくして得られた乳剤をEm−40
0とする。
(S-402) Silver nitrate 20.60 g H 2 O 92.27 ml (X-402) Potassium bromide 14.43 g H 2 O 91.77 ml (G-402) Alkali-treated inert gelatin (average molecular weight 100,000) ) 20.76g H 2 O 170.7ml (S -403) Silver nitrate 577.8g H 2 O 834.0ml (X- 403) potassium bromide 396.7g iodide 11.29g H 2 O 824.2ml said growth After completion, the mixture was subjected to desalting / washing treatment according to a conventional method, and gelatin was added to the mixture, which was dispersed well, and the pH and pAg were adjusted to 5.8 and 8.1. The emulsion thus obtained was em-40
Set to 0.

【0089】(比較乳剤Em−500の調製) 〔核形成〕下記ゼラチン溶液B−501を28℃に保
ち、特開昭62−160128号公報記載の混合撹拌装
置を用いて撹拌回転数450回転/分で撹拌しながら、
1Nの硫酸を用いてpHを1.95に調整した。その後
ダブルジェット法を用いてS−501液とX−501液
を一定の流量で1分間で添加し核形成を行った。
(Preparation of Comparative Emulsion Em-500) [Nucleation] The following gelatin solution B-501 was kept at 28 ° C., and the stirring speed was 450 rpm using a mixing stirrer described in JP-A-62-160128. While stirring in minutes,
The pH was adjusted to 1.95 with 1N sulfuric acid. Thereafter, the S-501 solution and the X-501 solution were added at a constant flow rate for one minute by using a double jet method to form nuclei.

【0090】 (B−501) 酸化処理ゼラチン(平均分子量10万) 2.100g 臭化カリウム 0.932g 前記(化合物A)の10重量%メタノール溶液 2.312ml H2O 837.5ml (S−501) 硝酸銀 1.624g H2O 18.747ml (X−501) 臭化カリウム 1.138g H2O 18.708ml 〔熟成〕上記添加終了後にG−501液を加え、30分
間を要して60℃に昇温した。60℃でさらに20分間
保持した。この間溶液の銀電位を0.5Nの臭化カリウ
ム溶液を用いて6mVに制御した。
(B-501) Oxidized gelatin (average molecular weight 100,000) 2.100 g Potassium bromide 0.932 g 10% by weight methanol solution of (Compound A) 2.312 ml H 2 O 837.5 ml (S-501) ) nitrate 1.624g H 2 O 18.747ml (X- 501) the G-501 was added after potassium bromide 1.138g H 2 O 18.708ml [aging] the end of the addition, 60 ° C. over a period of 30 minutes The temperature rose. Hold at 60 ° C. for another 20 minutes. During this time, the silver potential of the solution was controlled at 6 mV using a 0.5N potassium bromide solution.

【0091】 (G−501) アルカリ処理不活性ゼラチン(平均分子量10万) 4.478g H2O 105.4ml 〔成長〕熟成終了後、1Nの水酸化カリウムを用いてp
Hを5.8に調整した。続いてダブルジェット法を用い
てS−502液とX−502液を流量を加速しながら
(終了時と開始時の添加流量の比が約10倍)41分間
で添加した。添加終了後にG−502液を加え、引き続
いてS−503液とX−503液の80%相当量を流量
を加速しながら添加した。この間溶液の銀電位を1.0
Nの臭化カリウム溶液を用いて8mVに制御した。反応
容器内の温度を20分を要して40℃に降温した。その
後、1.5NのKBr水溶液を用いて反応容器内の銀電
位を−32mVに調整し、平均粒径0.05μmのAg
I微粒子乳剤を0.058モル相当量加えた後、残りの
S−503液とX−503液を7分間で添加した。
(G-501) Alkali-treated inert gelatin (average molecular weight 100,000) 4.478 g H 2 O 105.4 ml [Growth] After ripening, p was added using 1N potassium hydroxide.
H was adjusted to 5.8. Subsequently, the S-502 solution and the X-502 solution were added using the double jet method for 41 minutes while accelerating the flow rates (the ratio of the addition flow rates at the end and at the start was about 10 times). After the addition was completed, the G-502 solution was added, and subsequently, 80% equivalents of the S-503 solution and the X-503 solution were added while accelerating the flow rate. During this time, the silver potential of the solution was set to 1.0
It was controlled at 8 mV using a potassium bromide solution of N. The temperature in the reaction vessel was lowered to 40 ° C. over 20 minutes. Thereafter, the silver potential in the reaction vessel was adjusted to -32 mV using a 1.5 N KBr aqueous solution, and Ag having an average particle size of 0.05 µm was used.
After adding 0.058 mol of the I fine grain emulsion, the remaining S-503 solution and X-503 solution were added over 7 minutes.

【0092】 (S−502) 硝酸銀 20.60g H2O 92.27ml (X−502) 臭化カリウム 14.43g H2O 91.77ml (G−502) アルカリ処理不活性ゼラチン(平均分子量10万) 20.76g H2O 170.7ml (S−503) 硝酸銀 577.8g H2O 834.0g (X−503) 臭化カリウム 396.7g 沃化カリウム 11.29g H2O 824.2ml 上記成長終了後に常法に従い脱塩・水洗処理を施し、ゼ
ラチンを加えて良く分散し、pHを5.8、pAgを
8.1に調整した。かくして得られた乳剤をEm−50
0とする。
(S-502) Silver nitrate 20.60 g H 2 O 92.27 ml (X-502) Potassium bromide 14.43 g H 2 O 91.77 ml (G-502) Alkali-treated inert gelatin (average molecular weight 100,000) ) 20.76g H 2 O 170.7ml (S -503) Silver nitrate 577.8g H 2 O 834.0g (X- 503) potassium bromide 396.7g iodide 11.29g H 2 O 824.2ml said growth After completion, the mixture was subjected to desalting / washing treatment according to a conventional method, and gelatin was added to the mixture, which was dispersed well, and the pH and pAg were adjusted to 5.8 and 8.1. The emulsion thus obtained was em-50
Set to 0.

【0093】(比較乳剤Em−600の調製) 〔核形成〕下記ゼラチン溶液B−601を28℃に保
ち、特開昭62−160128号公報記載の混合撹拌装
置を用いて撹拌回転数450回転/分で撹拌しながら、
1Nの硫酸を用いてpHを1.95に調整した。その後
ダブルジェット法を用いてS−601液とX−601液
を一定の流量で1分間で添加し核形成を行った。
(Preparation of Comparative Emulsion Em-600) [Nucleation] The following gelatin solution B-601 was kept at 28 ° C., and the stirring speed was 450 rpm using a mixing stirrer described in JP-A-62-160128. While stirring in minutes,
The pH was adjusted to 1.95 with 1N sulfuric acid. Thereafter, the S-601 solution and the X-601 solution were added at a constant flow rate for one minute by using the double jet method to form nuclei.

【0094】 (B−601) 酸化処理ゼラチン(平均分子量10万) 2.100g 臭化カリウム 0.932g H2O 839.9ml (S−601) 硝酸銀 1.624g H2O 18.747ml (X−601) 臭化カリウム 1.138g H2O 18.708ml 〔熟成〕上記添加終了後にG−601液を加え、30分
間を要して60℃に昇温した。60℃でさらに20分間
保持した。この間溶液の銀電位を0.5Nの臭化カリウ
ム溶液を用いて6mVに制御した。
(B-601) Oxidized gelatin (average molecular weight 100,000) 2.100 g Potassium bromide 0.932 g H 2 O 839.9 ml (S-601) Silver nitrate 1.624 g H 2 O 18.747 ml (X- 601) 1.138 g of potassium bromide 18.708 ml of H 2 O [Aging] After the completion of the addition, the G-601 solution was added, and the temperature was raised to 60 ° C. over 30 minutes. Hold at 60 ° C. for another 20 minutes. During this time, the silver potential of the solution was controlled at 6 mV using a 0.5N potassium bromide solution.

【0095】 (G−601) アルカリ処理不活性ゼラチン(平均分子量10万) 4.478g 前記(化合物A)の10重量%メタノール溶液 2.312ml H2O 103.0ml 〔成長〕熟成終了後、1Nの水酸化カリウムを用いてp
Hを5.8に調整した。続いてダブルジェット法を用い
てS−602液とX−602液を流量を加速しながら
(終了時と開始時の添加流量の比が約10倍)41分間
で添加した。添加終了後にG−602液を加え、引き続
いてS−603液とX−603液の80%相当量を流量
を加速しながら添加した。この間溶液の銀電位を1.0
Nの臭化カリウム溶液を用いて8mVに制御した。反応
容器内の温度を20分を要して40℃に降温した。その
後、1.5NのKBr水溶液を用いて反応容器内の銀電
位を−32mVに調整し、平均粒径0.05μmのAg
I微粒子乳剤を0.053モル相当量加えた後、残りの
S−603液とX−603液を7分間で添加した。
(G-601) Alkali-treated inert gelatin (average molecular weight: 100,000) 4.478 g 10% by weight methanol solution of (Compound A) 2.312 ml H 2 O 103.0 ml [Growth] After ripening, 1N Using potassium hydroxide
H was adjusted to 5.8. Subsequently, the S-602 solution and the X-602 solution were added using the double jet method in 41 minutes while accelerating the flow rates (the ratio of the addition flow rate at the end to the addition at the start was about 10 times). After the addition was completed, the G-602 solution was added, and subsequently, 80% equivalents of the S-603 solution and the X-603 solution were added while accelerating the flow rate. During this time, the silver potential of the solution was set to 1.0
It was controlled at 8 mV using a potassium bromide solution of N. The temperature in the reaction vessel was lowered to 40 ° C. over 20 minutes. Thereafter, the silver potential in the reaction vessel was adjusted to -32 mV using a 1.5 N KBr aqueous solution, and Ag having an average particle size of 0.05 µm was used.
After adding 0.053 mol of the I fine grain emulsion, the remaining S-603 solution and X-603 solution were added over 7 minutes.

【0096】 (S−602) 硝酸銀 20.60g H2O 92.27ml (X−602) 臭化カリウム 14.43g H2O 91.77ml (G−602) アルカリ処理不活性ゼラチン(平均分子量10万) 20.76g H2O 170.7ml (S−603) 硝酸銀 577.8g H2O 834.0ml (X−603) 臭化カリウム 396.7g 沃化カリウム 11.29g H2O 824.2ml 上記成長終了後に常法に従い脱塩・水洗処理を施し、ゼ
ラチンを加えて良く分散し、pHを5.8、pAgを
8.1に調整した。かくして得られた乳剤をEm−60
0とする。
(S-602) Silver nitrate 20.60 g H 2 O 92.27 ml (X-602) Potassium bromide 14.43 g H 2 O 91.77 ml (G-602) Alkali-treated inert gelatin (average molecular weight 100,000) ) 20.76g H 2 O 170.7ml (S -603) Silver nitrate 577.8g H 2 O 834.0ml (X- 603) potassium bromide 396.7g iodide 11.29g H 2 O 824.2ml said growth After completion, the mixture was subjected to desalting / washing treatment according to a conventional method, and gelatin was added to the mixture, which was dispersed well, and the pH and pAg were adjusted to 5.8 and 8.1. The emulsion thus obtained was em-60
Set to 0.

【0097】(比較乳剤Em−700の調製) 〔核形成〕下記ゼラチン溶液B−701を28℃に保
ち、特開昭62−160128号公報記載の混合撹拌装
置を用いて撹拌回転数450回転/分で撹拌しながら、
1Nの硫酸を用いてpHを1.95に調整した。その後
ダブルジェット法を用いてS−701液とX−701液
を一定の流量で1分間で添加し核形成を行った。
(Preparation of Comparative Emulsion Em-700) [Nucleation] The following gelatin solution B-701 was kept at 28 ° C., and the mixture was stirred at 450 rpm using a mixing and stirring apparatus described in JP-A-62-160128. While stirring in minutes,
The pH was adjusted to 1.95 with 1N sulfuric acid. Thereafter, the S-701 solution and the X-701 solution were added at a constant flow rate for one minute by using the double jet method to form nuclei.

【0098】 (B−701) 酸化処理ゼラチン(平均分子量10万) 2.100g 臭化カリウム 0.932g 前記(化合物A)の10重量%メタノール溶液 1.200ml H2O 838.7ml (S−701) 硝酸銀 1.624g H2O 18.747ml (X−701) 臭化カリウム 1.138g H2O 18.708ml 〔熟成〕上記添加終了後にG−701液を加え、30分
間を要して60℃に昇温した。60℃でさらに20分間
保持した。この間溶液の銀電位を0.5Nの臭化カリウ
ム溶液を用いて6mVに制御した。
(B-701) Oxidized gelatin (average molecular weight 100,000) 2.100 g Potassium bromide 0.932 g 10% by weight methanol solution of (Compound A) 1.200 ml H 2 O 838.7 ml (S-701) ) nitrate 1.624g H 2 O 18.747ml (X- 701) the G-701 was added after potassium bromide 1.138g H 2 O 18.708ml [aging] the end of the addition, 60 ° C. over a period of 30 minutes The temperature rose. Hold at 60 ° C. for another 20 minutes. During this time, the silver potential of the solution was controlled at 6 mV using a 0.5N potassium bromide solution.

【0099】 (G−701) アルカリ処理不活性ゼラチン(平均分子量10万) 4.478g H2O 105.4ml 〔成長〕熟成終了後、1Nの水酸化カリウムを用いてp
Hを5.8に調整した。続いてダブルジェット法を用い
てS−702液とX−702液を流量を加速しながら
(終了時と開始時の添加流量の比が約10倍)38分間
で添加した。添加終了後にG−702液を加え、引き続
いてS−703液とX−703液の80%相当量を流量
を加速しながら添加した。この間溶液の銀電位を1.0
Nの臭化カリウム溶液を用いて8mVに制御した。反応
容器内の温度を20分を要して40℃に降温した。その
後、1.5NのKBr水溶液を用いて反応容器内の銀電
位を−32mVに調整し、平均粒径0.05μmのAg
I微粒子乳剤を0.058モル相当量加えた後、残りの
S−703液とX−703液を7分間で添加した。
(G-701) Alkali-treated inert gelatin (average molecular weight: 100,000) 4.478 g H 2 O 105.4 ml [Growth] After ripening, p was added using 1N potassium hydroxide.
H was adjusted to 5.8. Subsequently, the S-702 solution and the X-702 solution were added using the double jet method for 38 minutes while accelerating the flow rates (the ratio of the addition flow rate at the end to the addition at the start was about 10 times). After the addition was completed, the G-702 solution was added, and subsequently, 80% equivalents of the S-703 solution and the X-703 solution were added while accelerating the flow rate. During this time, the silver potential of the solution was set to 1.0
It was controlled at 8 mV using a potassium bromide solution of N. The temperature in the reaction vessel was lowered to 40 ° C. over 20 minutes. Thereafter, the silver potential in the reaction vessel was adjusted to −32 mV using a 1.5 N aqueous KBr solution, and Ag having an average particle size of 0.05 μm was used.
After adding 0.058 mol of the I fine grain emulsion, the remaining S-703 solution and X-703 solution were added over 7 minutes.

【0100】 (S−702) 硝酸銀 20.60g H2O 92.27ml (X−702) 臭化カリウム 14.43g H2O 91.77ml (G−702) アルカリ処理不活性ゼラチン(平均分子量10万) 20.76g H2O 170.7ml (S−703) 硝酸銀 577.8g H2O 834.0ml (X−703) 臭化カリウム 396.7g 沃化カリウム 11.29g H2O 824.2ml 上記成長終了後に常法に従い脱塩・水洗処理を施し、ゼ
ラチンを加えて良く分散し、pHを5.8、pAgを
8.1に調整した。かくして得られた乳剤をEm−70
0とする。
(S-702) Silver nitrate 20.60 g H 2 O 92.27 ml (X-702) Potassium bromide 14.43 g H 2 O 91.77 ml (G-702) Alkali-treated inert gelatin (average molecular weight 100,000) ) 20.76g H 2 O 170.7ml (S -703) Silver nitrate 577.8g H 2 O 834.0ml (X- 703) potassium bromide 396.7g iodide 11.29g H 2 O 824.2ml said growth After completion, the mixture was subjected to desalting / washing treatment according to a conventional method, and gelatin was added to the mixture, which was dispersed well, and the pH and pAg were adjusted to 5.8 and 8.1, respectively. The emulsion thus obtained was em-70
Set to 0.

【0101】(発明例乳剤Em−800の調製) 〔核形成〕下記ゼラチン溶液B−801を28℃に保
ち、特開昭62−160128号公報記載の混合撹拌装
置を用いて撹拌回転数450回転/分で撹拌しながら、
1Nの硫酸を用いてpHを1.95に調整した。その後
ダブルジェット法を用いてS−801液とX−801液
を一定の流量で1分間で添加し核形成を行った。
(Preparation of Inventive Example Emulsion Em-800) [Nucleation] The following gelatin solution B-801 was kept at 28 ° C., and the number of rotations was 450 using a mixing and stirring apparatus described in JP-A-62-160128. / Min while stirring
The pH was adjusted to 1.95 with 1N sulfuric acid. Thereafter, the S-801 solution and the X-801 solution were added at a constant flow rate for one minute by using a double jet method to form nuclei.

【0102】 (B−801) 酸化処理ゼラチン(平均分子量10万) 2.100g 臭化カリウム 0.932g H2O 839.9ml (S−801) 硝酸銀 1.624g H2O 18.747ml (X−801) 臭化カリウム 1.138g H2O 18.708ml 〔熟成〕上記添加終了後にG−801液を加え、30分
間を要して60℃に昇温した。60℃でさらに20分間
保持した。この間溶液の銀電位を0.5Nの臭化カリウ
ム溶液を用いて6mVに制御した。
[0102] (B-801) oxidized gelatin (average molecular weight 100,000) 2.100G Potassium bromide 0.932g H 2 O 839.9ml (S- 801) silver nitrate 1.624g H 2 O 18.747ml (X- 801) 1.138 g of potassium bromide 18.708 ml of H 2 O [Aging] After the completion of the above addition, the G-801 solution was added, and the temperature was raised to 60 ° C. over 30 minutes. Hold at 60 ° C. for another 20 minutes. During this time, the silver potential of the solution was controlled at 6 mV using a 0.5N potassium bromide solution.

【0103】 (G−801) アルカリ処理不活性ゼラチン(平均分子量10万) 4.478g 前記(化合物A)の10重量%メタノール溶液 1.200ml H2O 104.2ml 〔成長〕熟成終了後、1Nの水酸化カリウムを用いてp
Hを5.8に調整した。続いてダブルジェット法を用い
てS−802液とX−802液を流量を加速しながら
(終了時と開始時の添加流量の比が約10倍)38分間
で添加した。添加終了後にG−802液を加え、引き続
いてS−803液とX−803液の80%相当量を流量
を加速しながら添加した。この間溶液の銀電位を1.0
Nの臭化カリウム溶液を用いて8mVに制御した。反応
容器内の温度を20分を要して40℃に降温した。その
後、1.5NのKBr水溶液を用いて反応容器内の銀電
位を−32mVに調整し、平均粒径0.05μmのAg
I微粒子乳剤を0.053モル相当量加えた後、残りの
S−803液とX−803液を7分間で添加した。
(G-801) Alkali-treated inert gelatin (average molecular weight: 100,000) 4.478 g 10% by weight methanol solution of (Compound A) 1.200 ml H 2 O 104.2 ml [Growth] After ripening, 1N Using potassium hydroxide
H was adjusted to 5.8. Subsequently, the S-802 solution and the X-802 solution were added using the double jet method for 38 minutes while accelerating the flow rates (the ratio of the addition flow rates at the end and at the start was about 10 times). After the addition was completed, the G-802 solution was added, and subsequently, 80% equivalents of the S-803 solution and the X-803 solution were added while accelerating the flow rate. During this time, the silver potential of the solution was set to 1.0
It was controlled at 8 mV using a potassium bromide solution of N. The temperature in the reaction vessel was lowered to 40 ° C. over 20 minutes. Thereafter, the silver potential in the reaction vessel was adjusted to -32 mV using a 1.5 N KBr aqueous solution, and Ag having an average particle size of 0.05 µm was used.
After adding 0.053 mol of the I fine grain emulsion, the remaining S-803 solution and X-803 solution were added over 7 minutes.

【0104】 (S−802) 硝酸銀 20.60g H2O 92.27ml (X−802) 臭化カリウム 14.43g H2O 91.77ml (G−802) アルカリ処理不活性ゼラチン(平均分子量10万) 20.76g H2O 170.7ml (S−803) 硝酸銀 577.8g H2O 834.0ml (X−803) 臭化カリウム 396.7g 沃化カリウム 11.29g H2O 824.2ml 上記成長終了後に常法に従い脱塩・水洗処理を施し、ゼ
ラチンを加えて良く分散し、pHを5.8、pAgを
8.1に調整した。かくして得られた乳剤をEm−80
0とする。
(S-802) Silver nitrate 20.60 g H 2 O 92.27 ml (X-802) Potassium bromide 14.43 g H 2 O 91.77 ml (G-802) Alkali-treated inert gelatin (average molecular weight 100,000) ) 20.76g H 2 O 170.7ml (S -803) Silver nitrate 577.8g H 2 O 834.0ml (X- 803) potassium bromide 396.7g iodide 11.29g H 2 O 824.2ml said growth After completion, the mixture was subjected to desalting / washing treatment according to a conventional method, and gelatin was added to the mixture, which was dispersed well, and the pH and pAg were adjusted to 5.8 and 8.1, respectively. The emulsion thus obtained was em-80
Set to 0.

【0105】(本発明乳剤Em−900の調製) 〔核形成〕下記ゼラチン溶液B−901を28℃に保
ち、特開昭62−160128号公報記載の混合撹拌装
置を用いて撹拌回転数450回転/分で撹拌しながら、
1Nの硫酸を用いてpHを1.95に調整した。その後
ダブルジェット法を用いてS−901液とX−901液
を一定の流量で1分間で添加し核形成を行った。
(Preparation of Emulsion Em-900 of the Present Invention) [Nucleation] The following gelatin solution B-901 was maintained at 28 ° C., and the number of revolutions was 450 using a mixing and stirring apparatus described in JP-A-62-160128. / Min while stirring
The pH was adjusted to 1.95 with 1N sulfuric acid. Thereafter, the S-901 solution and the X-901 solution were added at a constant flow rate for one minute by using a double jet method to form nuclei.

【0106】 (B−901) 酸化処理ゼラチン(平均分子量10万) 2.100g 臭化カリウム 0.932g H2O 839.9ml (S−901) 硝酸銀 1.624g H2O 18.747ml (X−901) 臭化カリウム 1.138g H2O 18.708ml 〔熟成〕上記添加終了後にG−901液を加え、30分
間を要して60℃に昇温した。60℃でさらに20分間
保持した。この間溶液の銀電位を0.5Nの臭化カリウ
ム溶液を用いて6mVに制御した。
(B-901) Oxidized gelatin (average molecular weight 100,000) 2.100 g Potassium bromide 0.932 g H 2 O 839.9 ml (S-901) Silver nitrate 1.624 g H 2 O 18.747 ml (X- 901) Potassium bromide 1.138 g H 2 O 18.708 ml [Aging] After completion of the above addition, G-901 solution was added, and the temperature was raised to 60 ° C. over 30 minutes. Hold at 60 ° C. for another 20 minutes. During this time, the silver potential of the solution was controlled at 6 mV using a 0.5N potassium bromide solution.

【0107】 (G−901) アルカリ処理不活性ゼラチン(平均分子量10万) 4.478g 前記(化合物A)の10重量%メタノール溶液 0.600ml H2O 104.8ml 〔成長〕熟成終了後、1Nの水酸化カリウムを用いてp
Hを5.8に調整した。続いてダブルジェット法を用い
てS−902液とX−902液を流量を加速しながら
(終了時と開始時の添加流量の比が約10倍)38分間
で添加した。添加終了後にG−902液を加え、引き続
いてS−903液とX−903液の80%相当量を流量
を加速しながら添加した。この間溶液の銀電位を1.0
Nの臭化カリウム溶液を用いて8mVに制御した。反応
容器内の温度を20分を要して40℃に降温した。その
後、1.5NのKBr水溶液を用いて反応容器内の銀電
位を−32mVに調整し、平均粒径0.05μmのAg
I微粒子乳剤を0.053モル相当量加えた後、残りの
S−903液とX−903液を7分間で添加した。
(G-901) Alkali-treated inert gelatin (average molecular weight 100,000) 4.478 g 10% by weight methanol solution of (Compound A) 0.600 ml H 2 O 104.8 ml [Growth] After ripening, 1N Using potassium hydroxide
H was adjusted to 5.8. Subsequently, the S-902 solution and the X-902 solution were added using the double jet method for 38 minutes while accelerating the flow rates (the ratio of the addition flow rate at the end to the addition at the start was about 10 times). After the completion of the addition, the G-902 solution was added, and subsequently, 80% equivalents of the S-903 solution and the X-903 solution were added while accelerating the flow rate. During this time, the silver potential of the solution was set to 1.0
It was controlled at 8 mV using a potassium bromide solution of N. The temperature in the reaction vessel was lowered to 40 ° C. over 20 minutes. Thereafter, the silver potential in the reaction vessel was adjusted to −32 mV using a 1.5 N aqueous KBr solution, and Ag having an average particle size of 0.05 μm was used.
After adding 0.053 mol of the I fine grain emulsion, the remaining S-903 solution and X-903 solution were added over 7 minutes.

【0108】Em−900の特徴を調べたところ、表面
相の平均沃化銀含有率は7.2モル%、10本以上の転
位線を有するハロゲン化銀粒子の面積比率が、全投影面
積の91%、沃化銀含有率の変動係数が14%であるこ
とがわかった。
When the characteristics of Em-900 were examined, the average silver iodide content of the surface phase was 7.2 mol%, and the area ratio of silver halide grains having 10 or more dislocation lines was determined by the ratio of the total projected area to the total projected area. It was found that the coefficient of variation of the silver iodide content was 91% and the variation coefficient of the silver iodide content was 14%.

【0109】 (S−902) 硝酸銀 20.60g H2O 92.27ml (X−902) 臭化カリウム 14.43g H2O 91.77ml (G−902) アルカリ処理不活性ゼラチン(平均分子量10万) 20.76g 前記(化合物A)の10重量%メタノール溶液 0.60ml H2O 170.1ml (S−903) 硝酸銀 577.8g H2O 834.0ml (X−903) 臭化カリウム 396.7g 沃化カリウム 11.29g H2O 824.2ml 上記成長終了後に常法に従い脱塩・水洗処理を施し、ゼ
ラチンを加えて良く分散し、pHを5.8、pAgを
8.1に調整した。かくして得られた乳剤をEm−90
0とする。
(S-902) Silver nitrate 20.60 g H 2 O 92.27 ml (X-902) Potassium bromide 14.43 g H 2 O 91.77 ml (G-902) Alkali-treated inert gelatin (average molecular weight 100,000) 20.76 g 10% by weight methanol solution of (Compound A) 0.60 ml H 2 O 170.1 ml (S-903) silver nitrate 577.8 g H 2 O 834.0 ml (X-903) potassium bromide 396.7 g Potassium iodide 11.29 g H 2 O 824.2 ml After completion of the above growth, desalting and washing were carried out according to a conventional method, gelatin was added to the mixture, and the mixture was dispersed well. The pH was adjusted to 5.8, and the pAg was adjusted to 8.1. The emulsion thus obtained was em-90
Set to 0.

【0110】以上のように調製した各ハロゲン化銀写真
乳剤の特徴を表5に示す。
Table 5 shows the characteristics of the silver halide photographic emulsions prepared as described above.

【0111】[0111]

【表5】 [Table 5]

【0112】尚、表中の転位線粒子の面積比率とは、
(転位線を有するハロゲン化銀粒子の投影面積の和/ハ
ロゲン化銀粒子の全投影面積)×100(%)をいう。
Incidentally, the area ratio of dislocation line particles in the table is as follows.
(Sum of projected areas of silver halide grains having dislocation lines / total projected area of silver halide grains) × 100 (%).

【0113】〔感光材料試料No.100〜No.90
0の作製〕前記各ハロゲン化銀写真乳剤Em−100〜
Em−900を52℃に保持しながら、下記増感色素S
SD−1、SSD−2、SSD−3を加えた。20分間
熟成した後、チオ硫酸ナトリウムを加え、さらに塩化金
酸とチオシアン酸カリウムを添加した。各ハロゲン化銀
写真乳剤ごとに最適な感度、カブリが得られるように熟
成を行った後、1−フェニル−5−メルカプトテトラゾ
ールと4−ヒドロキシ−6−メチル−1,3,3a,7
−テトラアザインデンを加えて安定化した。各ハロゲン
化銀写真乳剤に対する増感色素、増感剤、安定剤の添加
量と熟成時間は、1/200秒露光時の感度、カブリ関
係が最適になるように設定した。
[Photosensitive material sample No. 100-No. 90
0] The above silver halide photographic emulsions Em-100 to
While maintaining Em-900 at 52 ° C., the following sensitizing dye S
SD-1, SSD-2 and SSD-3 were added. After aging for 20 minutes, sodium thiosulfate was added, and chloroauric acid and potassium thiocyanate were further added. After ripening each silver halide photographic emulsion to obtain optimum sensitivity and fog, 1-phenyl-5-mercaptotetrazole and 4-hydroxy-6-methyl-1,3,3a, 7
-Stabilized by adding tetraazaindene. The amount of sensitizing dye, sensitizer, and stabilizer added to each silver halide photographic emulsion and the ripening time were set so that the sensitivity and fogging relationship at the time of 1/200 second exposure were optimized.

【0114】増感処理を施したEm−100〜Em−9
00の各ハロゲン化銀写真乳剤に、下記カプラーMCP
−1を酢酸エチル、トリクレジルフォスフェートに溶解
しゼラチンを含む水溶液中に乳化分散した分散物、延展
剤、及び硬膜剤等の一般的な写真添加剤を加えて塗布液
を調製し、下塗りを施した三酢酸セルロースフィルム支
持体上に常法に従い塗布し乾燥して感光材料試料No.
100〜No.900を作製した。
Em-100 to Em-9 after sensitization
The following coupler MCP was added to each silver halide photographic emulsion
-1 is dissolved in ethyl acetate, tricresyl phosphate, and a dispersion obtained by emulsifying and dispersing in an aqueous solution containing gelatin, a spreading agent, and a general photographic additive such as a hardening agent are added to prepare a coating solution. It is coated on an undercoated cellulose triacetate film support according to a conventional method, dried and dried.
100-No. 900 were produced.

【0115】[0115]

【化2】 Embedded image

【0116】これらの試料作製直後に各試料に対して、
色温度5400Kの光源を用い東芝ガラスフィルター
(Y−48)を通してウェッジ露光を行い、下記の処理
工程に従って現像処理を行った。また、圧力耐性を評価
するために、各試料を23℃、相対湿度55%の雰囲気
下に24時間保持した後、同条件下で引掻強度試験器
(新東科学製)を用いて、先端の曲率半径が0.025
mmの針に5gの荷重をかけて定速で試料表面を走査
し、同様の処理を施した。さらに、保存安定性を評価す
るために、各試料を強制劣化試験(40℃、相対湿度8
0%の環境下で14日間保存)後、同様の処理を施し
た。
Immediately after the preparation of these samples,
Wedge exposure was performed through a Toshiba glass filter (Y-48) using a light source having a color temperature of 5400K, and development was performed according to the following processing steps. In order to evaluate the pressure resistance, each sample was held for 24 hours in an atmosphere at 23 ° C. and a relative humidity of 55%, and then subjected to a tip test using a scratch strength tester (manufactured by Shinto Kagaku) under the same conditions. Radius of curvature of 0.025
The same process was performed by scanning the surface of the sample at a constant speed while applying a load of 5 g to the needle having a diameter of 5 mm. Further, in order to evaluate the storage stability, each sample was subjected to a forced deterioration test (40 ° C., relative humidity 8).
After storage for 14 days in an environment of 0%), the same treatment was performed.

【0117】 (処理工程) 処理工程 処理時間 処理温度 補充量 発色現像 3分15秒 38±0.3℃ 780ml 漂白 45秒 38±2.0℃ 150ml 定着 1分30秒 38±2.0℃ 830ml 安定 1分 38±5.0℃ 830ml 乾燥 1分 55±5.0℃ − 尚、補充量は感光材料1m2当たりの値である。(Processing step) Processing step Processing time Processing temperature Replenishment amount Color development 3 minutes 15 seconds 38 ± 0.3 ° C. 780 ml Bleaching 45 seconds 38 ± 2.0 ° C. 150 ml Fixing 1 minute 30 seconds 38 ± 2.0 ° C. 830 ml Stable 1 minute 38 ± 5.0 ° C. 830 ml Drying 1 minute 55 ± 5.0 ° C. The replenishment amount is a value per 1 m 2 of the photosensitive material.

【0118】発色現像液、漂白液、定着液、安定液及び
その補充液は、以下のものを使用した。
The following color developing solutions, bleaching solutions, fixing solutions, stabilizing solutions and replenishers were used.

【0119】発色現像液及び発色現像補充液 現像液 補充液 水 800ml 800ml 炭酸カリウム 30g 35g 炭酸水素ナトリウム 2.5g 3.0g 亜硫酸カリウム 3.0g 5.0g 臭化ナトリウム 1.3g 0.4g 沃化カリウム 1.2mg − ヒドロキシルアミン硫酸塩 2.5g 3.1g 塩化ナトリウム 0.6g − 4−アミノ−3−メチル−N−エチル−N− (β−ヒドロキシルエチル)アニリン硫酸塩 4.5g 6.3g ジエチレントリアミン五酢酸 3.0g 3.0g 水酸化カリウム 1.2g 2.0g 水を加えて1lとし、水酸化カリウム又は20%硫酸を
用いて発色現像液はpH10.06に、補充液はpH1
0.18に調整する。
Color developing solution and color developing replenishing solution Developer replenishing solution Water 800 ml 800 ml Potassium carbonate 30 g 35 g Sodium bicarbonate 2.5 g 3.0 g Potassium sulfite 3.0 g 5.0 g Sodium bromide 1.3 g 0.4 g iodide Potassium 1.2 mg-Hydroxylamine sulfate 2.5 g 3.1 g Sodium chloride 0.6 g-4-Amino-3-methyl-N-ethyl-N-([beta] -hydroxylethyl) aniline sulfate 4.5 g 6.3 g Diethylenetriaminepentaacetic acid 3.0 g 3.0 g Potassium hydroxide 1.2 g 2.0 g Water was added to make 1 liter. The color developing solution was adjusted to pH 10.06 using potassium hydroxide or 20% sulfuric acid, and the replenisher was adjusted to pH 1.
Adjust to 0.18.

【0120】漂白液及び漂白補充液 漂白液 補充液 水 700ml 700ml 1,3−ジアミノプロパン四酢酸鉄(III)アンモニウム 125g 175g エチレンジアミン四酢酸 2g 2g 硝酸ナトリウム 40g 50g 臭化アンモニウム 150g 200g 氷酢酸 40g 56g 水を加えて1lとし、アンモニア水又は氷酢酸を用いて
漂白液はpH4.4に、補充液はpH4.0に調整す
る。
Bleach and bleach replenisher Bleach replenisher replenisher water 700 ml 700 ml 1,3-diaminopropanetetraacetic acid ammonium iron (III) 125 g 175 g ethylenediaminetetraacetic acid 2 g 2 g sodium nitrate 40 g 50 g ammonium bromide 150 g 200 g glacial acetic acid 40 g 56 g water And adjust the pH of the bleaching solution to 4.4 and the pH of the replenishing solution to 4.0 using ammonia water or glacial acetic acid.

【0121】定着液及び定着補充液 定着液 補充液 水 800ml 800ml チオシアン酸アンモニウム 120g 150g チオ硫酸アンモニウム 150g 180g 亜硫酸ナトリウム 15g 20g エチレンジアミン四酢酸 2g 2g アンモニア水又は氷酢酸を用いて定着液はpH6.2
に、補充液はpH6.5に調整後、水を加えて1lとす
る。
Fixer Solution and Fixer Replenisher Fixer Replenisher Water 800 ml 800 ml Ammonium thiocyanate 120 g 150 g Ammonium thiosulfate 150 g 180 g Sodium sulfite 15 g 20 g Ethylenediaminetetraacetic acid 2 g 2 g Aqueous solution using ammonia water or glacial acetic acid, pH 6.2
Then, the pH of the replenisher is adjusted to 6.5, and water is added to make 1 l.

【0122】安定液及び安定補充液 水 900ml p−オクチルフェノールのエチレンオキシド10モル付加物 2.0g ジメチロール尿素 0.5g ヘキサメチレンテトラミン 0.2g 1,2−ベンゾイソチアゾリン−3−オン 0.1g シロキサン(UCC製L−77) 0.1g アンモニア水 0.5ml 水を加えて1lとした後、アンモニア水又は50%硫酸
を用いてpH8.5に調整する。
Stabilizing solution and stabilizing replenishing solution water 900 ml p-octylphenol ethylene oxide 10 mol adduct 2.0 g dimethylol urea 0.5 g hexamethylenetetramine 0.2 g 1,2-benzoisothiazolin-3-one 0.1 g siloxane (UCC 0.1 g ammonia water 0.5 ml After adding water to make 1 l, the pH is adjusted to 8.5 using ammonia water or 50% sulfuric acid.

【0123】得られた各試料の感度、カブリを緑色光を
用いて測定した。また、強制劣化試験後の各試料に対し
ても感度、カブリの測定を行い、試料作成直後の各性能
と比較した。測定方法及び条件を以下に示す。
The sensitivity and fog of each of the obtained samples were measured using green light. The sensitivity and fog of each sample after the forced deterioration test were also measured, and compared with each performance immediately after the sample was prepared. The measuring method and conditions are shown below.

【0124】相対感度は、各試料において、最小濃度
(Dmin)+0.2の濃度を与える露光量の逆数を求
め、試料No.100の感度を100とする相対値で示
した(この値が大きいほど高感度であることを意味す
る)。
The relative sensitivity was determined by calculating the reciprocal of the exposure amount that gives the minimum density (Dmin) +0.2 in each sample. The relative value is defined as a relative value with the sensitivity of 100 being 100 (the larger the value, the higher the sensitivity).

【0125】相対カブリは、各試料において、未露光部
の濃度(=Dmin)を測定し、試料No.100のD
min値を100とする相対値で示した(この値が小さ
いほどカブリが低いことを意味する)。
The relative fog was measured by measuring the density (= Dmin) of the unexposed portion of each sample. 100 D
The relative value was set to a minimum value of 100 (the smaller the value, the lower the fog).

【0126】被圧によるカブリ増加は、未露光部におけ
る荷重が加えられた部分の濃度増加量を測定し、試料N
o.100の濃度変化量を100とする相対値(ΔDp
1)で示した(この値が小さいほど被圧によるカブリ増
加が小さいことを意味する)。
The fog increase due to the pressure was measured by measuring the amount of increase in the density of the unexposed portion where the load was applied.
o. A relative value (ΔDp
1) (the smaller the value, the smaller the fog increase due to the pressure being applied).

【0127】被圧による感度低下は、(Dmax−Dm
in)/2の濃度部における荷重が加えられた部分の濃
度低下量を測定し、試料No.100の濃度変化量を1
00とする相対値(ΔDp2)で示した(この値が小さ
いほど被圧による感度低下が小さいことを意味する)。
The decrease in sensitivity due to the pressure being applied is (Dmax−Dm
in) / 2), the amount of decrease in the density of the portion where the load was applied was measured, and the sample No. 100 changes in density
The relative value (ΔDp2) was set to 00 (the smaller the value, the smaller the decrease in sensitivity due to the pressure being applied).

【0128】Δ感度は、各試料における、試料作製直後
の感度と強制劣化試験後の感度の比 (Δ感度=強制劣化試験後の感度/試料作製直後の感
度)×100 で示した(この値が100に近いほど保存による感度変
化が小さいことを意味する)。
The Δ sensitivity was represented by the ratio of the sensitivity immediately after sample preparation to the sensitivity after forced degradation test (Δ sensitivity = sensitivity after forced degradation test / sensitivity immediately after sample fabrication) × 100 in each sample (this value). Is closer to 100 means that the change in sensitivity due to storage is smaller).

【0129】Δカブリは、各試料における、試料作製直
後のDminと強制劣化試験後のDminの比 (Δカブリ=強制劣化試験後のDmin/試料作製直後
のDmin)×100 で示した(この値が100に近いほど保存によるカブリ
変化が小さいことを意味する)。
The Δ fog of each sample was represented by the ratio of Dmin immediately after sample preparation to Dmin after forced deterioration test (Δfog = Dmin after forced deterioration test / Dmin immediately after sample preparation) × 100 (this value). Is closer to 100 means that fog change due to storage is smaller).

【0130】各試料について得られた結果を表6に示
す。
Table 6 shows the results obtained for each sample.

【0131】[0131]

【表6】 [Table 6]

【0132】表5に示した各ハロゲン化銀写真乳剤の特
徴と表6に示した評価結果から以下のことが分かる。
From the characteristics of each silver halide photographic emulsion shown in Table 5 and the evaluation results shown in Table 6, the following can be understood.

【0133】試料No.100〜300を比較すること
により、 1)平板状ハロゲン化銀粒子に転位線を導入することに
よって、高感度化と被圧によるカブリ増加の改良を達成
できるが、同時に被圧による感度低下を著しく劣化させ
る 2)試料No.100〜400を比較することにより、
平板状ハロゲン化銀粒子の粒径と厚さの変動係数を共に
20.0%以下にすることによって、高感度、低カブリ
及び保存性の改良を達成できる 3)試料No.300と400平板状ハロゲン化銀粒子
の厚さの変動係数を20.0%以下にすることによっ
て、転位線を有するハロゲン化銀粒子の被圧による減感
を大きく改良できる。
The sample No. By comparing 100 to 300, 1) by introducing dislocation lines into tabular silver halide grains, it is possible to achieve high sensitivity and improvement of fog increase due to pressure, but at the same time, decrease sensitivity significantly due to pressure. 2) Sample No. By comparing 100-400,
High sensitivity, low fog and improved storage stability can be achieved by setting both the coefficient of variation of the particle size and the thickness of the tabular silver halide grains to 20.0% or less. By setting the variation coefficient of the thickness of the tabular silver halide grains of 300 and 400 to 20.0% or less, the desensitization of silver halide grains having dislocation lines due to pressure can be greatly improved.

【0134】試料No.300〜600を比較すること
により、 4)平均アスペクト比が3.0未満の平板状ハロゲン化
銀粒子では、前記2)及び3)の改良効果は顕著ではな
い。
The sample No. By comparing 300 to 600, 4) In the tabular silver halide grains having an average aspect ratio of less than 3.0, the improvement effects of the above 2) and 3) are not remarkable.

【0135】従って、感度、カブリに優れ、加えて保存
性と圧力耐性の改良されたハロゲン化銀写真乳剤及びハ
ロゲン化銀写真感光材料を提供するという本発明の課題
は、平均アスペクト比が3.0以上で転位線を有する平
板状ハロゲン化銀粒子であり、かつ該ハロゲン化銀粒子
の粒径と厚さの変動係数が共に20.0%以下である本
発明のハロゲン化銀乳剤によって達成されることが分か
る。
Accordingly, it is an object of the present invention to provide a silver halide photographic emulsion and a silver halide photographic light-sensitive material which are excellent in sensitivity and fog, and further have improved storage stability and pressure resistance. This is achieved by the silver halide emulsion of the present invention, which is a tabular silver halide grain having a dislocation line of 0 or more, and both of the variation coefficients of the grain size and the thickness of the silver halide grain are 20.0% or less. You can see that

【0136】また、試料No.300〜400、及びN
o.700〜900を比較することによって、本発明の
課題は、本発明のハロゲン化銀粒子の平均アスペクト比
が6.0以上の場合及び該粒子の厚さの変動係数が1
5.0%以下の場合に、さらに顕著に達成されることが
分かる。
The sample No. 300-400, and N
o. By comparing 700 to 900, the problem of the present invention is that the silver halide grains of the present invention have an average aspect ratio of 6.0 or more and a variation coefficient of the thickness of the grains of 1 or more.
It can be seen that it is more remarkably achieved when the content is 5.0% or less.

【0137】[0137]

【発明の効果】実施例で実証した如く、本発明によるハ
ロゲン化銀写真乳剤及びハロゲン化銀写真感光材料はカ
ブリ、感度に優れ、また保存時のカブリの上昇や感度の
低下が小さく、加えて圧力耐性の改良された優れた効果
を有する。
As demonstrated in the Examples, the silver halide photographic emulsion and the silver halide photographic light-sensitive material of the present invention are excellent in fog and sensitivity, and have little increase in fog and decrease in sensitivity during storage. It has an excellent effect of improved pressure resistance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ハロゲン化銀粒子を含有するハロゲン化
銀写真乳剤において、該ハロゲン化銀粒子が、平均アス
ペクト比が3.0以上ありかつ実質的に転位線を有しか
つ粒径の変動係数が20.0%以下でありかつ厚さの変
動係数が20.0%以下から成ることを特徴とするハロ
ゲン化銀写真乳剤。
1. A silver halide photographic emulsion containing silver halide grains, wherein the silver halide grains have an average aspect ratio of at least 3.0, substantially have dislocation lines, and have a coefficient of variation in grain size. Is 20.0% or less, and the coefficient of variation of thickness is 20.0% or less.
【請求項2】 ハロゲン化銀粒子の平均アスペクト比が
6.0以上であることを特徴とする請求項1に記載のハ
ロゲン化銀写真乳剤。
2. The silver halide photographic emulsion according to claim 1, wherein the average aspect ratio of the silver halide grains is 6.0 or more.
【請求項3】 ハロゲン化銀粒子の厚さの変動係数が1
5.0%以下であることを特徴とする請求項1又は2に
記載のハロゲン化銀写真乳剤。
3. The variation coefficient of the thickness of silver halide grains is 1
3. The silver halide photographic emulsion according to claim 1, wherein the content is not more than 5.0%.
【請求項4】 支持体上に設けられた少なくとも1層の
ハロゲン化銀写真乳剤層中に、請求項1〜3のいずれか
1項に記載のハロゲン化銀写真乳剤を含有することを特
徴とするハロゲン化銀写真感光材料。
4. A silver halide photographic emulsion according to claim 1, which is contained in at least one silver halide photographic emulsion layer provided on a support. Silver halide photographic light-sensitive material.
JP17058097A 1996-06-26 1997-06-26 Silver halide photographic emulsion and silver halide photographic sensitive material Pending JPH1073896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17058097A JPH1073896A (en) 1996-06-26 1997-06-26 Silver halide photographic emulsion and silver halide photographic sensitive material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16604096 1996-06-26
JP8-166040 1996-06-26
JP17058097A JPH1073896A (en) 1996-06-26 1997-06-26 Silver halide photographic emulsion and silver halide photographic sensitive material

Publications (1)

Publication Number Publication Date
JPH1073896A true JPH1073896A (en) 1998-03-17

Family

ID=26490563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17058097A Pending JPH1073896A (en) 1996-06-26 1997-06-26 Silver halide photographic emulsion and silver halide photographic sensitive material

Country Status (1)

Country Link
JP (1) JPH1073896A (en)

Similar Documents

Publication Publication Date Title
JPH0789200B2 (en) Method for producing silver halide emulsion
JP3383397B2 (en) Silver halide emulsion
US6225041B1 (en) Silver halide photographic emulsion and silver halide photographic light sensitive material
JPH07146522A (en) Silver halide emulsion
JPH1073896A (en) Silver halide photographic emulsion and silver halide photographic sensitive material
JPH05313273A (en) Silver halide emulsion
JP3646280B2 (en) Silver halide emulsion and silver halide photographic light-sensitive material
JPH055094B2 (en)
JPH09325441A (en) Manufacture of silver halide grain and sliver halide photographic emulsion and sliver halide photosensitive material
JPH09329860A (en) Silver halide photographic emulsion and silver halide photographic sensitive material
US6171738B1 (en) Method of preparing silver halide emulsion
JPH0446418B2 (en)
JP3084450B2 (en) Direct positive silver halide photographic material
JPH1031277A (en) Silver halide photographic emulsion, and silver halide photographic sensitive material
JP2709799B2 (en) Method for producing silver halide emulsion
JP3388914B2 (en) Silver halide emulsion
JPH1031276A (en) Silver halide photographic emulsion and silver halide photographic sensitive material
JPH07101291B2 (en) Silver halide emulsion and method for producing the same
JPH10339923A (en) Apparatus and method for manufacturing silver halide emulsion
JPH09325442A (en) Silver halide emulsion and silver halide photographic material using same
JPH09179227A (en) Silver halide photographic emulsion and silver halide photographic sensitive material
JPH06308638A (en) Manufacture of silver halide photographic emulsion
JPH09160154A (en) Silver halide photographic emulsion and silver halide photographic sensitive material
JPH11249246A (en) Silver halide emulsion and silver halide sensitized material
JPH1172883A (en) Silver halide color photographic sensitive material

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040302

Free format text: JAPANESE INTERMEDIATE CODE: A02