JPH1073670A - Weather discrimination method and device - Google Patents
Weather discrimination method and deviceInfo
- Publication number
- JPH1073670A JPH1073670A JP22845996A JP22845996A JPH1073670A JP H1073670 A JPH1073670 A JP H1073670A JP 22845996 A JP22845996 A JP 22845996A JP 22845996 A JP22845996 A JP 22845996A JP H1073670 A JPH1073670 A JP H1073670A
- Authority
- JP
- Japan
- Prior art keywords
- weather
- temperature
- discriminating
- neural network
- weather condition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Traffic Control Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、気温、気圧、路面
温度などの気象状態の変化と関連の深い要因から、場所
毎に癖を持った気象状態を正確に判別することのできる
気象判別方法とその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a meteorological discrimination method capable of accurately discriminating a peculiar weather condition for each location from factors closely related to changes in weather conditions such as air temperature, air pressure, and road surface temperature. And its equipment.
【0002】[0002]
【従来の技術】安全、かつ、円滑な道路交通を確保する
ためには、路面状況、視程、交通流、気象状態などの道
路運転環境にかかわる要因を精度良く検出し、これらの
情報を道路利用者や道路管理者に目的に応じた形で提供
することが望まれる。路面状態、視程および交通流など
の状態変化と気象状態の変化との間には相関関係があ
り、気象状態の検出は道路運転環境などにおいて重要な
役割を担うものである。2. Description of the Related Art In order to ensure safe and smooth road traffic, factors related to the road driving environment such as road surface conditions, visibility, traffic flow, and weather conditions are accurately detected, and the information is used for road use. It is desired to provide the information to people and road managers in a form suitable for the purpose. There is a correlation between a change in the state of the road surface, visibility, traffic flow, and the like, and a change in the weather state, and the detection of the weather state plays an important role in a road driving environment and the like.
【0003】道路運転環境などにおいて特に知りたい気
象情報は、道路利用者が現在おかれあるいは極めて近い
将来におかれるであろう道路運転環境がいかなる気象状
態にあるかという点であり、この意味で気象状態の判別
は極めて重要である。[0003] The weather information that the user particularly wants to know in the road driving environment and the like is the weather condition of the road driving environment where the road user is currently located or will be located in the very near future. Determination of weather conditions is extremely important.
【0004】従来、このような気象状態を判別するため
の手法として、気温、気圧、路面温度などの気象状態の
変化と関連の深い要因と気象状態との間に線形性を仮定
し、多変量解析に代表される統計的な解析手法を用いて
判別しているのが一般的であった。Conventionally, as a method for determining such a weather condition, linearity is assumed between a weather condition and factors closely related to changes in the weather condition such as air temperature, barometric pressure, road surface temperature, etc. It is common to make a determination using a statistical analysis method represented by analysis.
【0005】[0005]
【発明が解決しようとする課題】しかし、気象状態の変
化と、気温、気圧、路面温度などとの関係は必ずしも線
形ではなく、非線形的な要素を含んでいる。特に、山間
部や山麓部などの内陸部では、さほど距離が離れていな
いにもかかわらず、気象状態がまったく異なるというよ
うな現象が多々見られる。従来の統計的な解析手法で
は、このような局所的な気象状態の変化に対して十分に
対処することができなかった。However, the relationship between the change in weather conditions and the temperature, pressure, road surface temperature, etc., is not necessarily linear, but includes non-linear elements. In particular, inland areas such as mountainous areas and foothills, there are many phenomena in which the weather conditions are completely different even though the distance is not so large. Conventional statistical analysis methods cannot sufficiently cope with such local changes in weather conditions.
【0006】本発明は、上記のような問題を解決するた
めになされたもので、非線形処理が可能な階層型のニュ
ーラルネットワークを気象状態の判別に利用し、局所的
な気象状態の判別が可能で、しかも精度の高い判別を行
うことのできる気象判別方法とその装置を提供すること
を目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. A hierarchical neural network capable of performing non-linear processing is used for determining weather conditions, and local weather conditions can be determined. It is another object of the present invention to provide a weather discriminating method and a device capable of performing discrimination with high accuracy.
【0007】[0007]
【課題を解決するための手段】前記課題を解決するため
に、本発明の気象判別方法は、気温、気圧、路面温度等
の現在の気象状態と、前記気象状態の過去の推移傾向と
を階層型のニューラルネットワークの入力層に入力して
気象状態の判別を行うことを特徴とする。なお、前記過
去の推移傾向としては気温と気圧を用いることが望まし
い。In order to solve the above-mentioned problems, a weather discriminating method according to the present invention comprises a hierarchical structure of current weather conditions such as air temperature, air pressure, road surface temperature and the like, and past transition trends of the weather conditions. It is characterized in that it is inputted to an input layer of a neural network of the type to determine weather conditions. It is desirable to use temperature and pressure as the past transition tendency.
【0008】また、本発明の気象判別装置は、気温、気
圧、路面温度等の気象状態を検出して出力する気象セン
サ部と、前記気象状態の過去の推移傾向を出力する推移
傾向出力部と、該気象センサ部と推移傾向出力部から入
力される信号を基に階層型のニューラルネットワークを
用いて気象状態の判別を行う気象判別部と、該気象判別
部の判別結果に応じて気象状態の表示を行う表示部とを
備えたことを特徴とする。なお、前記過去の推移傾向と
しては気温と気圧を用いることが望ましい。The weather discriminating apparatus according to the present invention includes a weather sensor unit for detecting and outputting weather conditions such as air temperature, air pressure, and road surface temperature, and a transition trend output unit for outputting past transition trends of the weather conditions. A weather discriminating unit that discriminates a weather condition using a hierarchical neural network based on signals input from the weather sensor unit and the transition tendency output unit, and a weather condition based on the discrimination result of the weather discriminating unit. A display unit for performing display. It is desirable to use temperature and pressure as the past transition tendency.
【0009】前記構成の方法および装置とした場合、予
め教師データを用いてニューラルネットワークに学習さ
せておき、この学習後のニューラルネットワークにより
気象状態の判別を行わせることにより、非線形的な要素
を含む気象状態を精度良く判別することができる。[0009] In the case of the method and the apparatus having the above-described configuration, the neural network is trained in advance using teacher data, and the weather condition is discriminated by the neural network after the learning, so that nonlinear elements are included. The weather condition can be accurately determined.
【0010】[0010]
【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して説明する。図1は、本発明方法を適
用して構成した本発明に係る気象判別装置の一実施形態
のブロック図である。この気象判別装置は、気象センサ
部1Aと、過去の推移傾向出力部1Bと、気象判別部2
と、表示部3から構成されている。気象センサ部1Aは
少なくとも、気温センサ11、気圧センサ12、路面温
度センサ13などの気象状態の変化と関連の深い要因を
検出するための複数のセンサを備えている。なお、現在
の状態のみならず、過去の推移傾向も上述の非線形な要
素を含む気象状態の変化と深い関係を持つと考えられる
ため、本発明では、前記各センサで得られた気温、気
圧、路面温度などの物理量を平均処理などで加工し、こ
の得られたデータを過去の推移傾向を示す信号として気
象判別部2に出力する過去の推移傾向入力1Bとか構成
している。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an embodiment of a weather discriminating apparatus according to the present invention configured by applying the method of the present invention. This weather discriminating apparatus includes a weather sensor section 1A, a past transition tendency output section 1B, and a weather discriminating section 2.
And a display unit 3. The weather sensor unit 1A includes at least a plurality of sensors for detecting factors closely related to a change in weather conditions, such as a temperature sensor 11, an air pressure sensor 12, and a road surface temperature sensor 13. In addition, since not only the current state, but also the past transition tendency is considered to have a deep relationship with the change in the weather state including the above-described nonlinear element, in the present invention, the temperature, pressure, A physical quantity such as a road surface temperature is processed by averaging or the like, and the obtained data is used as a past transition tendency input 1B which is output to the weather discriminating unit 2 as a signal indicating the past transition tendency.
【0011】気象判別部2は、図2にその詳細を示すよ
うに、入力層21、中間層22、出力層23からなる階
層型のニューラルネットワークにより構成されている。
前記気象センサ部1からの各信号は入力層21に入力さ
れ、この入力信号に基づいて気象状態の判別を行い、そ
の結果が出力層23から表示部3へ出力される。As shown in detail in FIG. 2, the weather discriminator 2 is constituted by a hierarchical neural network including an input layer 21, an intermediate layer 22, and an output layer 23.
Each signal from the weather sensor unit 1 is input to the input layer 21, the weather state is determined based on the input signal, and the result is output from the output layer 23 to the display unit 3.
【0012】前記判別を行うには、予め、ニューラルネ
ットワークに入力教師信号と出力教師信号を与えて学習
させ、各階層のニューロンを結ぶシナプスの結合係数を
最適な値に設定しておく必要がある。この学習により、
入出力間の関係がネットワーク内に構築され、気象の判
別が可能となる。このとき、気象状態の判別を行いたい
場所についての教師データを用いて学習を行えば、場所
毎に異なる気象状態の癖を組み込んだネットワークが構
築されるので、局所的な気象状態の判別が可能となる。In order to perform the discrimination, it is necessary to provide an input teacher signal and an output teacher signal to a neural network for learning, and set a coupling coefficient of a synapse connecting neurons of each hierarchy to an optimum value. . With this learning,
The relationship between input and output is established in the network, and the weather can be determined. At this time, if learning is performed using the teacher data for the place where the weather condition is to be determined, a network incorporating different weather condition habits for each location is constructed, so that local weather condition can be determined. Becomes
【0013】前記学習方法としては、例えば、バックプ
ロパゲーション法などの学習アルゴリズムを利用し、実
際の気温、気圧、路面温度、過去の推移傾向などで構成
された入力教師信号24と、この入力教師信号に対する
実際の気象状態を与える出力教師信号25のデータの組
を教師信号として用意し、その判別誤差26が最小とな
るように各層のニューロンを結ぶシナプスの結合係数を
決定すればよい。As the learning method, for example, a learning algorithm such as a back propagation method is used, and an input teacher signal 24 composed of actual temperature, atmospheric pressure, road surface temperature, past transition tendency, and the like, A data set of the output teacher signal 25 that gives the actual weather condition for the signal is prepared as a teacher signal, and the coupling coefficient of the synapse connecting the neurons of each layer may be determined so that the discrimination error 26 is minimized.
【0014】上記のように教師データによって学習した
ニューラルネットワークの入力層21に、気象センサ部
1Aにおいて実際に検出した現在の気温、気圧、路面温
度および過去の推移傾向出力部1Bからの信号を入力し
てやることにより、出力層23から判別された気象状態
が出力される。この判別される気象状態としては、「晴
天」、「曇天」、「降雨」、「降雪」、「霧」などがあ
る。表示部3では、気象判別部2から送られてくる判別
結果を所望の表示形式でモニタ画面やプリンタなどに出
力して表示する。As described above, the current temperature, atmospheric pressure, road surface temperature, and signals from the past transition tendency output unit 1B actually detected by the weather sensor unit 1A are input to the input layer 21 of the neural network learned by the teacher data. By doing so, the weather condition determined from the output layer 23 is output. The weather conditions to be discriminated include “fine weather”, “cloudy weather”, “rainfall”, “snowfall”, “mist”, and the like. The display unit 3 outputs the determination result sent from the weather determination unit 2 in a desired display format to a monitor screen, a printer, or the like for display.
【0015】[0015]
【実施例】前記図1および図2の構成になる気象判別装
置を用い、実際のフィールドにおいて収集した実測デー
タを用いて気象状態を判別した場合の具体的な実施例を
以下に示す。図3は学習データとなる実測データを示す
もので、気圧,気温,路面温度からなる実測データ31
と、これに対応する実際の気象状態32の変化状態を図
示したものである。実測データ31は、15分毎の気
温、気圧、路面温度を収集したものであり、その全サン
プル数は1995年12月19日から12月21日にお
ける163サンプルである。気象状態32については、
“降雪なし”と“降雪あり”の2つの事象に着目した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A concrete embodiment in which the weather condition is determined by using the weather determination device having the structure shown in FIGS. 1 and 2 and actual measurement data collected in an actual field will be described below. FIG. 3 shows actual measurement data serving as learning data, and includes actual measurement data 31 consisting of air pressure, air temperature, and road surface temperature.
And a corresponding change state of the actual weather condition 32. The actual measurement data 31 is obtained by collecting the air temperature, the atmospheric pressure, and the road surface temperature every 15 minutes, and the total number of the samples is 163 samples from December 19 to December 21, 1995. For weather condition 32,
We focused on two events, "no snowfall" and "with snowfall".
【0016】まず、上記図3の163サンプル中から、
降雪のある場合について20サンプル、降雪のない場合
について20サンプル、計40サンプルを取り出し、こ
のサンプルデータを教師データとして図2のニューラル
ネットワークの学習を行う。図3中の符号33で示すエ
リアに、この学習に使用した教師データについての40
個のサンプル位置を黒色の縦棒線で示した。First, from among the 163 samples shown in FIG.
Twenty samples in the case of snowfall and 20 samples in the case of no snowfall are taken out, for a total of 40 samples, and learning of the neural network of FIG. 2 is performed using the sample data as teacher data. The area indicated by reference numeral 33 in FIG.
Each sample position is indicated by a black vertical bar line.
【0017】前述したように、ニューラルネットワーク
に入力する気象状態の変化と関連のある要因としては、
前記気温、気圧、路面温度に加え、これらの過去の推移
傾向も重要な情報であると考えられる。この推移傾向に
関しては、図3中の実測データ31を見れば、気温と路
面温度はほぼ同様な推移傾向を示しているため、路面温
度についての過去の推移傾向は不要とし、気温と気圧に
ついて図5のサンプリングの手法によって30分毎の平
均値を過去6時間まで遡って各々12の入力情報を同時
に与えるようにした。すなわち、本実施例の場合、気
温、気圧、路面温度の実測データと、気温および気圧の
過去の推移傾向により、“降雪あり”と“降雪なし”を
判別するようにした。As described above, factors related to a change in weather conditions input to the neural network include:
In addition to the air temperature, the atmospheric pressure, and the road surface temperature, these past trends are also considered important information. Regarding this transition tendency, if the actual measurement data 31 in FIG. 3 shows that the temperature and the road surface temperature show almost the same transition tendency, the past transition tendency of the road surface temperature is unnecessary, and the temperature and the atmospheric pressure are plotted. By using the sampling method of 5, the average value every 30 minutes is retroactive to the past 6 hours, and 12 pieces of input information are simultaneously provided. That is, in the case of the present embodiment, "with snowfall" and "without snowfall" are determined based on the actual measurement data of the temperature, the atmospheric pressure, and the road surface temperature, and the past transition trends of the temperature and the atmospheric pressure.
【0018】次に、上記のようにして学習した気象判別
装置による実際の気象状態の判別結果について示す。前
記学習後のニューラルネットワーク(気象判別部2)の
入力層21に、前記図3の気温、気圧、路面温度、およ
び気温と気圧についての過去の推移傾向を入力すること
により、気象状態の判別を行った。図4は、図3に示し
た163サンプルの全サンプルについてその気象状態を
判別した結果である。図4において、41は実際の気象
状態、42は本発明の気象判別装置による判別結果を示
している。また、下記の表1に、実際の気象状態と、本
発明による気象状態の判別結果との一致度合いを全サン
プル数に対する割合で表した判別正解率を示す。Next, the results of the actual weather condition discrimination by the weather discriminator learned as described above will be described. By inputting the temperature, pressure, road surface temperature, and past transition trends of temperature and pressure in FIG. 3 into the input layer 21 of the learned neural network (weather discriminating unit 2), the weather condition can be discriminated. went. FIG. 4 shows the result of determining the weather condition of all the 163 samples shown in FIG. In FIG. 4, reference numeral 41 denotes an actual weather condition, and reference numeral 42 denotes a determination result obtained by the weather determination device of the present invention. Further, Table 1 below shows a discrimination correct answer rate in which the degree of coincidence between the actual weather condition and the discrimination result of the weather condition according to the present invention is represented by a ratio to the total number of samples.
【0019】[0019]
【表1】 [Table 1]
【0020】この表1に示すように、過去の推移傾向の
情報を入力しない場合の82.2%に対して本発明の気
象判別装置によるときは95.1%という高い判別正解
率が得られた。これから、極めて精度の高い気象判別が
実行されていることが分かる。また、図4において誤判
別した個所は、“降雪あり”、“降雪なし”のどちらの
状態とも言い難い部分に該当するものがほとんどであっ
た。As shown in Table 1, a high discrimination accuracy rate of 95.1% is obtained with the weather discriminator according to the present invention, compared with 82.2% when no past transition tendency information is input. Was. From this, it can be seen that extremely accurate weather discrimination has been performed. In addition, most of the erroneously determined locations in FIG. 4 correspond to portions that are hard to say in either the “with snowfall” state or the “without snowfall” state.
【0021】さらに、図4中の気象状態の変化する境界
部分における判別結果に注目すると、いずれの場合も、
時間的に少し早めに判別する傾向が見られ、予測効果を
持った判別がなされていることが分かる。したがって、
この予測結果を利用すれば、気象状態の変化に先立っ
て、早め早めに対策を講ずることが可能となり、実際の
道路交通などにおいて極めて有用なものとなる。Furthermore, focusing on the discrimination result at the boundary portion where the weather condition changes in FIG.
There is a tendency to make a distinction slightly earlier in time, indicating that a distinction having a predictive effect has been made. Therefore,
If this prediction result is used, it is possible to take measures as soon as possible prior to a change in the weather condition, which is extremely useful in actual road traffic and the like.
【0022】なお、前記した実施の形態による他、前後
のデータを微分処理によってデータの増減の変化を求
め、過去所定時間の変化を変化量の推移傾向として気象
判別部2に入力してもよい。In addition to the above-described embodiment, a change in data increase / decrease may be obtained by differentiating data before and after, and a change in a predetermined time in the past may be input to the weather discriminating unit 2 as a change tendency. .
【0023】[0023]
【発明の効果】以上説明したように、請求項1および2
記載の気象判別方法によるときは、気温、気圧、路面温
度等の現在の気象状態と、過去の前記気象状態の推移傾
向とを入力層に入力し、階層型のニューラルネットワー
クを用いて気象状態の判別を行うようにしたので、気
温、気圧、路面温度および過去の推移傾向などに基づい
て非線形的な要素を含む気象状態の判別を精度良く行う
ことができる。また、その地域の学習データを用いて学
習させることにより、局所的な気象判別を行うことがで
き、有用性と適応性に富んだ気象判別方法を提供するこ
とができる。As described above, claims 1 and 2
When according to the described weather determination method, the current weather condition such as temperature, pressure, road surface temperature, and the past trend of the weather condition are input to the input layer, and the weather condition is determined using a hierarchical neural network. Since the determination is performed, it is possible to accurately determine the weather condition including a non-linear element based on the temperature, the atmospheric pressure, the road surface temperature, the past transition tendency, and the like. Further, by performing learning using the learning data of the area, local weather discrimination can be performed, and a weather discrimination method that is rich in usefulness and adaptability can be provided.
【0024】請求項3および4記載の気象判別装置によ
るときは、気温、気圧、路面温度等の気象状態を検出し
て出力する気象センサ部と、過去の前記気象状態の推移
傾向を出力する推移傾向出力部と、該気象センサ部から
送られてくる信号を基に階層型のニューラルネットワー
クを用いて気象状態の判別を行う気象判別部と、該気象
判別部の判別結果に応じて気象状態の表示を行う表示部
とから構成したので、気温、気圧、路面温度および過去
の推移傾向などに基づいて非線形的な要素を含む気象状
態の判別を精度良く行うことができる。また、その地域
の学習データを用いて学習させることにより、局所的な
気象判別を行うことができ、有用性と適応性に富んだ気
象判別装置を提供することができる。According to the weather discriminating apparatus according to the third and fourth aspects, a weather sensor section for detecting and outputting weather conditions such as air temperature, air pressure, road surface temperature and the like, and a transition for outputting past trends of the weather conditions. A trend output unit, a weather discriminating unit that discriminates a weather condition using a hierarchical neural network based on a signal sent from the weather sensor unit, and a weather condition based on a discrimination result of the weather discriminating unit. Since the display unit includes a display unit for performing display, it is possible to accurately determine a weather condition including a non-linear element based on the temperature, the atmospheric pressure, the road surface temperature, the past transition tendency, and the like. Further, by performing learning using the learning data of the area, local weather discrimination can be performed, and a weather discriminating apparatus that is highly useful and adaptable can be provided.
【図1】本発明方法を適用して構成した本発明に係る気
象判別装置の一実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of a weather discriminator according to the present invention configured by applying the method of the present invention.
【図2】気象判別部を構成するニューラルネットワーク
の構成図である。FIG. 2 is a configuration diagram of a neural network constituting a weather discrimination unit.
【図3】学習データとなる実測データを示す図である。FIG. 3 is a diagram showing actually measured data serving as learning data.
【図4】図1の気象判別装置による気象判別結果を示す
図である。FIG. 4 is a diagram illustrating a weather determination result by the weather determination device of FIG. 1;
【図5】過去の推移傾向を示す説明図である。FIG. 5 is an explanatory diagram showing past transition trends.
1A 気象センサ部 1B 過去の推移傾向出力部 2 気象判別部(ニューラルネットワーク) 3 表示部 11 気温センサ 12 気圧センサ 13 路面温度センサ 14 過去の推移傾向 21 入力層 22 中間層 23 出力層 24 入力学習信号 25 出力学習信号 26 判別誤差 DESCRIPTION OF SYMBOLS 1A Meteorological sensor part 1B Past transition tendency output part 2 Weather discrimination part (neural network) 3 Display part 11 Temperature sensor 12 Barometric pressure sensor 13 Road surface temperature sensor 14 Past transition tendency 21 Input layer 22 Middle layer 23 Output layer 24 Input learning signal 25 output learning signal 26 discrimination error
───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉江 昇 愛知県名古屋市昭和区八事本町35−3,1 −203 (72)発明者 上田 浩次 愛知県海部郡美和町大字篠田字面徳29−1 名古屋電機工業株式会社美和工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Noboru Sugie 35-3, 1-203, Yagotohonmachi, Showa-ku, Nagoya-shi, Aichi Prefecture Inside the Miwa factory of Denki Kogyo Co., Ltd.
Claims (4)
態と、前記気象状態の過去の推移傾向とを階層型のニュ
ーラルネットワークの入力層に入力して気象状態の判別
を行うことを特徴とする気象判別方法。1. A weather condition is determined by inputting a current weather condition such as an air temperature, a barometric pressure, a road surface temperature and the like and a past transition tendency of the weather condition to an input layer of a hierarchical neural network. Weather determination method.
前記過去の推移傾向として気温と気圧を用いたことを特
徴とする気象判別方法。2. The method according to claim 1, wherein
A weather discriminating method using temperature and pressure as the past transition tendency.
出して出力する気象センサ部と、 前記気象状態の過去の推移傾向を出力する推移傾向出力
部と、 前記気象センサ部と推移傾向出力部から出力される信号
を基に階層型のニューラルネットワークを用いて気象状
態の判別を行う気象判別部と、 該気象判別部の判別結果に応じて気象状態の表示を行う
表示部とを備えたことを特徴とする気象判別装置。3. A weather sensor unit for detecting and outputting weather conditions such as air temperature, barometric pressure, road surface temperature, and the like; a transition trend output unit for outputting a past transition trend of the weather condition; A weather discriminator for discriminating a weather condition using a hierarchical neural network based on a signal output from the output unit; and a display unit for displaying a weather condition in accordance with the discrimination result of the weather discriminator. A weather discriminator characterized by the following.
前記過去の推移傾向として気温と気圧を用いたことを特
徴とする気象判別装置。4. The weather discriminating apparatus according to claim 3,
A weather discriminator characterized by using temperature and pressure as the past transition tendency.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22845996A JP4118352B2 (en) | 1996-08-29 | 1996-08-29 | Weather discrimination method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22845996A JP4118352B2 (en) | 1996-08-29 | 1996-08-29 | Weather discrimination method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1073670A true JPH1073670A (en) | 1998-03-17 |
JP4118352B2 JP4118352B2 (en) | 2008-07-16 |
Family
ID=16876825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22845996A Expired - Fee Related JP4118352B2 (en) | 1996-08-29 | 1996-08-29 | Weather discrimination method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4118352B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2559687A (en) * | 2017-02-08 | 2018-08-15 | Ford Global Tech Llc | Tornado detection systems and methods |
WO2019049601A1 (en) * | 2017-09-06 | 2019-03-14 | 国立研究開発法人宇宙航空研究開発機構 | Thunder threat information providing device, thunder threat information providing method, and program |
JP2019219236A (en) * | 2018-06-19 | 2019-12-26 | 株式会社東芝 | Processing device, processing method, and program |
-
1996
- 1996-08-29 JP JP22845996A patent/JP4118352B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2559687A (en) * | 2017-02-08 | 2018-08-15 | Ford Global Tech Llc | Tornado detection systems and methods |
WO2019049601A1 (en) * | 2017-09-06 | 2019-03-14 | 国立研究開発法人宇宙航空研究開発機構 | Thunder threat information providing device, thunder threat information providing method, and program |
JP2019045403A (en) * | 2017-09-06 | 2019-03-22 | 国立研究開発法人宇宙航空研究開発機構 | Device for providing lightning threat information, and method and program for providing lighting threat information |
JP2021185391A (en) * | 2017-09-06 | 2021-12-09 | 国立研究開発法人宇宙航空研究開発機構 | Device for providing lightning threat information, method for providing lightning threat information, and program |
US11822049B2 (en) | 2017-09-06 | 2023-11-21 | Japan Aerospace Exploration Agency | Lightning threat information-providing apparatus, lightning threat information-providing method, and program |
JP2019219236A (en) * | 2018-06-19 | 2019-12-26 | 株式会社東芝 | Processing device, processing method, and program |
Also Published As
Publication number | Publication date |
---|---|
JP4118352B2 (en) | 2008-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mourad et al. | A method for automatic validation of long time series of data in urban hydrology | |
CN114168906B (en) | Mapping geographic information data acquisition system based on cloud computing | |
CN110849807B (en) | Monitoring method and system suitable for road visibility based on deep learning | |
CN114463947B (en) | Convective disaster-causing strong wind early warning and forecasting method based on space-time network convolution model | |
CN116308958A (en) | Carbon emission online detection and early warning system and method based on mobile terminal | |
CN114882069A (en) | Taxi track abnormity detection method based on LSTM network and attention mechanism | |
CN114639064B (en) | Water level identification method and device | |
JPH1073670A (en) | Weather discrimination method and device | |
CN107729293A (en) | A kind of geographical space method for detecting abnormal based on Multivariate adaptive regression splines | |
Jyväsjärvi et al. | Palaeolimnological validation of estimated reference values for a lake profundal macroinvertebrate metric (Benthic Quality Index) | |
CN117171128A (en) | Aquatic organism protection threshold identification method based on four-water coupling model | |
CN116756503A (en) | Structural health monitoring earthquake event identification and abnormal data diagnosis method | |
CN113965618B (en) | Abnormal track detection method based on fuzzy theory | |
CN105118289A (en) | Traffic situation assessment method | |
CN111832548B (en) | Train positioning method | |
Collins | Complex quality control of significant level rawinsonde temperatures | |
Batterman | Optimal estimators for ambient air quality levels | |
JP3194996B2 (en) | Flaw inspection device | |
Qadir et al. | Comparison between SARIMA and SARIMAX time series Models with application on Groundwater in Sulaymaniyah | |
CN118155000B (en) | Urban road surface damage monitoring method | |
CN115081341B (en) | Basin flood simulation early warning method and system | |
JPH07280792A (en) | Water turbidity measuring method and turbidity measuring instrument | |
CN118397798B (en) | Image analysis-based slope landslide risk rapid assessment and early warning method | |
CN118209605B (en) | Arsenic intelligent monitoring method and system based on electrochemical sensor | |
CN111735528B (en) | Method for accurately positioning disturbance point based on KNN voting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050808 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060314 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060801 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070814 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071015 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080218 |
|
A072 | Dismissal of procedure |
Free format text: JAPANESE INTERMEDIATE CODE: A072 Effective date: 20080318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080415 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080423 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140502 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |