JPH1073595A - Method for detecting or measuring presence of immunological active substance and reagent used for method thereof - Google Patents

Method for detecting or measuring presence of immunological active substance and reagent used for method thereof

Info

Publication number
JPH1073595A
JPH1073595A JP23182796A JP23182796A JPH1073595A JP H1073595 A JPH1073595 A JP H1073595A JP 23182796 A JP23182796 A JP 23182796A JP 23182796 A JP23182796 A JP 23182796A JP H1073595 A JPH1073595 A JP H1073595A
Authority
JP
Japan
Prior art keywords
reagent
voltage
carrier
latex
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23182796A
Other languages
Japanese (ja)
Inventor
Keisuke Iwata
恵助 岩田
Yoshinori Yoshimura
佳典 吉村
Masao Karube
征夫 軽部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A & T Kk
Tokuyama Corp
Original Assignee
A & T Kk
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A & T Kk, Tokuyama Corp filed Critical A & T Kk
Priority to JP23182796A priority Critical patent/JPH1073595A/en
Publication of JPH1073595A publication Critical patent/JPH1073595A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve the highly sensitive detection quickly by using the reagent, which detects immunological active substance, as the carrier having the specified particle diameter, on which a minute voltage is applied beforehand. SOLUTION: Immunological active substance is selected from the substance, which uses latex and the like as a carrier based on immunological aggregation reaction as a carrier. For example, infectious disease marker such as CRP and tumor marker such as D-dimer and the like are used. As the carrier particled, e.g. altex and the like are used. It is recommndable that the average particle diameter of the barrier particles is about 0.01-1μm. As the minute voltage, DC, DC pulses or AC are used. The voltage in the range, wherein the water-based medium containing reagent dose not cause electrolysis, is used. When the pretreating reagent, wherein the minute voltage is applied on the reagent comprising the carrier which is acted by antigen or antibody, is used, it is recommendable that the reagent is used as quickly as possible after the pretreating, desirably immediately after the treatment. The device for applying the minute voltage comprises, e.g. a container with an electrode, an oscilloscope and the like, which can apply the arbitrary voltage such as a DC voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は担体粒子を用いた免
疫学的凝集反応により、免疫学的反応性物質を検出又は
測定する方法に関する。更に詳しくは、予め微小電圧を
印加された試薬を用いることにより、免疫学的反応物質
を迅速且つ簡便にしかも高感度で検出又は測定する方法
に関する。
The present invention relates to a method for detecting or measuring an immunologically reactive substance by an immunological agglutination reaction using carrier particles. More specifically, the present invention relates to a method for detecting or measuring an immunological reactant quickly and simply and with high sensitivity by using a reagent to which a minute voltage is applied in advance.

【0002】[0002]

【従来の技術】免疫学的反応性物質は、免疫学的凝集反
応により、不溶性凝集塊を形成するのでこれを検出する
ことにより、免疫学的反応性物質の存在を検出又は測定
することが可能である。免疫学的反応性物質を検出又は
測定する方法として、例えば、酵素免疫測定法、放射線
免疫測定法が従来から用いられている。これらの方法は
高感度であり精度も高い。しかし、酵素や放射線を使用
するため試薬が不安定であることや保管・保存上の規制
があることから、測定において細かい配慮や技術あるい
は特別な設備等が要求されるので、より簡便な方法が求
められていた。また、これらの方法は測定に時間を要す
るため、緊急検査においては対処が困難とされ、高感度
且つ迅速な方法が盛んに研究されるようになった。
2. Description of the Related Art Since an immunologically reactive substance forms an insoluble aggregate by an immunological agglutination reaction, it is possible to detect or measure the presence of the immunologically reactive substance by detecting this. It is. As a method for detecting or measuring an immunologically reactive substance, for example, an enzyme immunoassay and a radioimmunoassay have been conventionally used. These methods have high sensitivity and high accuracy. However, reagents are unstable due to the use of enzymes and radiation, and there are restrictions on storage and preservation, so detailed considerations, techniques and special equipment are required for measurement. Was sought. In addition, since these methods require time for measurement, it is difficult to deal with them in an emergency test, and high-sensitivity and quick methods have been actively studied.

【0003】1970年以降、ラテックス、リボソーム
等の担体を用いた免疫学的凝集反応を測定する方法とし
て光学的分析法(比濁法やカウンティング法)が開発さ
れている。これら免疫学的凝集反応は、一般に撹拌翼等
で撹拌されることにより開始され、37℃〜45℃の温
度下で行われている。このとき測定(反応)に要する時
間は5〜20分である。これは酵素免疫測定や放射線免
疫測定に比べ迅速であるが、測定感度・特異性等におい
て、段階的に改善されつつあるものの前記方法に劣り、
応用範囲が限定される。
[0003] Since 1970, an optical analysis method (turbidimetric method or counting method) has been developed as a method for measuring an immunological agglutination reaction using a carrier such as latex or ribosome. These immunological agglutination reactions are generally started by stirring with a stirring blade or the like, and are performed at a temperature of 37 ° C to 45 ° C. At this time, the time required for the measurement (reaction) is 5 to 20 minutes. This is quicker than enzyme immunoassay or radioimmunoassay, but in measurement sensitivity, specificity, etc., is gradually improving, but inferior to the above method,
The range of application is limited.

【0004】該反応系に直流パルスや交流電圧を印加す
ることによって、免疫学的凝集反応を迅速にしかも高感
度で測定する方法が知られている。例えば、民谷らによ
るBiosensors、3(3)、139−146頁(198
8)には、ヒト免疫グロブリンGを1.0μmラテック
ス粒子に結合させた試薬と免疫グロブリンGを電極を備
えたセルにて混合後、波高値200V(電界強度200
V/mm)の直流パルス電圧を印加して、10分後に5
0%の凝集度が得られたと記載されている。また、特開
平7−83928号では、10mM以上の塩の共存下に
5〜50V/mmの電界強度になるように交流電圧を該
反応系に印加する方法を提案している。いずれも、これ
ら変動する電圧を印加することによって、担体粒子のパ
ールチェイン化により、凝集塊の形成を促進させる効果
による。
There is known a method for measuring an immunological agglutination reaction quickly and with high sensitivity by applying a DC pulse or an AC voltage to the reaction system. For example, Biosensors by Tamiya et al., 3 (3), pp. 139-146 (198)
8) In a cell equipped with electrodes, a reagent in which human immunoglobulin G was bound to 1.0 μm latex particles and immunoglobulin G were mixed, and the peak value was 200 V (electric field intensity 200
V / mm) and a DC pulse voltage of
It is stated that a cohesion of 0% was obtained. Also, Japanese Patent Application Laid-Open No. 7-83928 proposes a method in which an alternating voltage is applied to the reaction system so that the electric field strength becomes 5 to 50 V / mm in the presence of a salt of 10 mM or more. In any case, the application of these fluctuating voltages causes the carrier particles to form a pearl chain, thereby promoting the formation of aggregates.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、免疫学
的凝集反応に汎用されているラテックス試薬(粒子径1
μm未満)では、パールチェイン化は困難であり、高感
度化は期待できない。前記特許公開公報にも、好ましい
担体粒子の平均径は0.5〜10μmと記載されてい
る。本発明者らは、一般に高感度で迅速且つ簡便である
と評価されているラテックス比濁法に使用されている
0.1〜0.5μmの担体粒子からなる試薬を用いて、従
来法よりも更に迅速にしかも高感度で免疫学的反応性物
質の存在を検出又は測定する方法を知見し、本発明に到
達した。
However, a latex reagent (particle size: 1) generally used for immunological agglutination reaction is used.
(less than μm), it is difficult to form a pearl chain, and high sensitivity cannot be expected. The above-mentioned patent publication also describes that the preferable average diameter of the carrier particles is 0.5 to 10 μm. The present inventors have compared the conventional method using a reagent consisting of carrier particles of 0.1 to 0.5 μm used in the latex turbidimetric method, which is generally evaluated as being highly sensitive, rapid and simple. The present inventors have found a method for detecting or measuring the presence of an immunologically reactive substance more quickly and with high sensitivity, and have reached the present invention.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、担
体に抗原もしくは抗体を感作した試薬を用いて、免疫学
的凝集反応により免疫学的反応性物質を検出又は測定す
る方法であって、該試薬として予め微小電圧を印加した
試薬を用いる方法である。また、本発明は該方法に使用
するための予め微小電圧が印加された、抗原もしくは抗
体で感作された担体からなる試薬を提供するものでもあ
る。本発明において、免疫学的凝集反応とは、抗原抗体
反応、特異的レセプターとの反応等を利用した方法であ
り、定性法及び定量法の両方を含むものである。
That is, the present invention relates to a method for detecting or measuring an immunologically reactive substance by immunological agglutination using a reagent prepared by sensitizing a carrier to an antigen or an antibody. And a method in which a reagent to which a minute voltage is applied in advance is used as the reagent. The present invention also provides a reagent for use in the method, comprising a carrier to which a microvoltage has been applied in advance and which has been sensitized with an antigen or an antibody. In the present invention, the immunological agglutination reaction is a method utilizing an antigen-antibody reaction, a reaction with a specific receptor, and the like, and includes both a qualitative method and a quantitative method.

【0007】本発明における免疫学的反応性物質とは、
上記の免疫学的凝集反応によってラテックス、リボソー
ム等を担体として使用する凝集法で測定され得る物質か
ら選択できる。例えば、CRP、HBs抗原、HBs抗
体、HCV抗体、HIV抗体、TP抗体等の感染症マー
カー、D−ダイマー、プロテインC、プロテインS、A
TIII等の凝固線溶系マーカー、AFP、CEA、CA
19−9等の腫瘍マーカー、TSH、プロラクチン、イ
ンスリン等のホルモン、β2m、ミオグロビン、ミオシ
ン等の組織成分、DNA等の核酸が挙げられる。また、
検出可能な濃度は、概ね0.05ng/ml〜50μg
/ml、好ましくは0.1ng/ml〜10μg/ml
である。感作する抗原もしくは抗体としては、上記免疫
学的反応性物質を免疫学的に認識しうる抗原又は抗体が
用いられる。
[0007] The immunologically reactive substance in the present invention is:
The substance can be selected from substances that can be measured by the agglutination method using latex, ribosome, or the like as a carrier by the above-described immunological agglutination reaction. For example, infectious disease markers such as CRP, HBs antigen, HBs antibody, HCV antibody, HIV antibody, TP antibody, D-dimer, protein C, protein S, A
Coagulated fibrinolytic markers such as TIII, AFP, CEA, CA
Tumor markers such as 19-9; hormones such as TSH, prolactin and insulin; tissue components such as β2m, myoglobin and myosin; and nucleic acids such as DNA. Also,
Detectable concentrations are generally between 0.05 ng / ml and 50 μg.
/ Ml, preferably 0.1 ng / ml to 10 μg / ml
It is. As the antigen or antibody to be sensitized, an antigen or antibody capable of immunologically recognizing the immunologically reactive substance is used.

【0008】本発明で用いられる担体粒子としては、例
えばラテックス、リポソーム、金コロイド等が挙げられ
るが、好ましくはラテックス粒子である。ラテックス粒
子としては、一般に免疫学的凝集法に用いられ、知られ
ているものが使用できる。担体粒子の平均径は、ラテッ
クス粒子の場合、0.01〜1μmが好ましい。より好
ましくは、0.05〜0.5μmである。最も好ましく
は、0.1〜0.3μmである。平均径が1μmを超える
と粒子のブラウン運動等が起こりにくくなるので好まし
くない。ラテックス粒子への抗体もしくは抗原の感作
は、例えば、従来周知ないし公知の方法で吸着又は結合
させることにより実施することができる。
[0008] The carrier particles used in the present invention include, for example, latex, liposome, colloidal gold and the like, and preferably latex particles. As the latex particles, those which are generally used in immunological agglutination and are known can be used. The average diameter of the carrier particles is preferably from 0.01 to 1 μm in the case of latex particles. More preferably, it is 0.05 to 0.5 μm. Most preferably, it is 0.1 to 0.3 μm. When the average diameter exceeds 1 μm, Brownian motion of the particles and the like hardly occur, which is not preferable. The sensitization of the latex particles with the antibody or antigen can be carried out, for example, by adsorbing or binding by a conventionally well-known or known method.

【0009】本発明の微小電圧は直流、直流パルスもし
くは交流に由来するものであり、試薬を含む水系媒体が
電気分解を実質的に起こさない範囲の電圧、例えば試薬
を含む水系媒体の電気伝導度が17.4mS/cm(生
理食塩水相当)のとき、電界強度2.4V/mmの直流
パルス電圧(パルス幅10μS、10KHz)等であ
る。しかし、前記した電圧は電極の材質、面積、印加時
間等により変動する。本発明における交流電圧の波形
は、連続波、パルス波のいずれであってもよく、また任
意の形状とし得るが、好ましくは正弦波、方形波、矩形
波である。交流電圧の周波数は、検討した範囲内では、
免疫学的凝集反応の速度に大きく影響しないが、好まし
くは1KHz〜1MHzの周波数である。
The minute voltage of the present invention is derived from a direct current, a direct current pulse or an alternating current, and is a voltage within a range in which the aqueous medium containing the reagent does not substantially cause electrolysis, for example, the electric conductivity of the aqueous medium containing the reagent. Is 17.4 mS / cm (equivalent to physiological saline), a DC pulse voltage (pulse width 10 μS, 10 KHz) with an electric field strength of 2.4 V / mm, and the like. However, the aforementioned voltage varies depending on the material, area, application time, and the like of the electrode. The waveform of the AC voltage in the present invention may be a continuous wave or a pulse wave, and may have an arbitrary shape, but is preferably a sine wave, a square wave, or a rectangular wave. The frequency of the AC voltage is within the range considered.
It does not significantly affect the speed of the immunological agglutination reaction, but preferably has a frequency of 1 KHz to 1 MHz.

【0010】本発明において、抗原もしくは抗体で感作
された担体からなる試薬に予め微小電圧を印加した前処
理試薬を該測定系に用いるとき、前処理後できるだけ速
やかに、好ましくは前処理後約10分以内に使用するこ
とが好ましい。前処理直後に使用するのがより好まし
い。
In the present invention, when a pretreatment reagent in which a microvoltage is applied in advance to a reagent comprising a carrier sensitized with an antigen or an antibody is used in the measurement system, the pretreatment reagent should be used as soon as possible after the pretreatment, preferably after the pretreatment. Preferably, it is used within 10 minutes. More preferably, it is used immediately after the pretreatment.

【0011】本発明において、試薬に微小電圧を印加す
る装置は、例えば図1又は図4に示すように、直流パル
ス電圧、交流電圧、直流電圧等の任意電圧が印加できる
電源装置、試薬に微小電圧を印加するための容器内側面
に電極を貼り付けた電極付き容器、電圧、周波数、パル
ス幅をモニタするためのオシロスコープ等からなる。電
源装置としては、任意のパルス発生装置、例えば市販の
ファンクションジェネレータや細胞刺激装置等を使用す
ることができる。電極付き容器としては、ガラス、プラ
スティック等の絶縁性容器を用いることができ、電極材
料としては、白金、ニッケル等を用いることができる。
In the present invention, as shown in FIG. 1 or FIG. 4, for example, a device for applying an arbitrary voltage such as a DC pulse voltage, an AC voltage, a DC voltage, etc. It consists of a container with electrodes with electrodes attached to the inside surface of the container for applying voltage, an oscilloscope for monitoring voltage, frequency and pulse width. As the power supply device, an arbitrary pulse generator, for example, a commercially available function generator or cell stimulator can be used. As a container with electrodes, an insulating container such as glass or plastic can be used, and as an electrode material, platinum, nickel, or the like can be used.

【0012】免疫学的反応性物質の存在を検出又は測定
する方法としては、通常、検体を緩衝液を主成分とする
溶液に加え、室温〜37℃で、0.5〜3分間処理した
後、上記前処理試薬を加え、濁度測定を行う分光光度計
を用いて、濁度変化量を求める方法により実施される。
As a method for detecting or measuring the presence of an immunologically reactive substance, usually, a sample is added to a solution containing a buffer as a main component, and treated at room temperature to 37 ° C. for 0.5 to 3 minutes. The above-mentioned pretreatment reagent is added, and the turbidity is measured using a spectrophotometer that measures the turbidity.

【0013】本発明に用いられる試薬は、通常、水系媒
体中に分散して用いられる。試薬を含む水系媒体中の塩
濃度は特に規定されないが、好ましくは、電気伝導度0
〜100mS/cmとなる濃度である。より好ましく
は、2〜60mS/cmである。塩としては、塩化ナト
リウム、塩化カリウム、硝酸ナトリウム、硝酸アンモニ
ウム等が挙げられるが、特に塩化ナトリウム、塩化カリ
ウムが好ましい。試薬を含む水系媒体の組成としては、
当業者にはよく知られている組成が使用できる。例え
ば、アルブミン等のタンパク、ポリエチレングリコール
等の高分子、ツイーン、トライトン等の界面活性剤、塩
化コリン等の塩化物、アルギニン、アスパラギン等のア
ミノ酸類、アジ化ナトリウム等の防腐剤等が添加されて
いてもよい。電気伝導度を小さくした方が、印加できる
電界強度が大きくできるので免疫学的凝集反応の促進効
果が得られ易く望ましい。
The reagent used in the present invention is usually used by dispersing it in an aqueous medium. The concentration of the salt in the aqueous medium containing the reagent is not particularly limited, but is preferably 0.
The concentration is な る 100 mS / cm. More preferably, it is 2 to 60 mS / cm. Examples of the salt include sodium chloride, potassium chloride, sodium nitrate, ammonium nitrate and the like, and sodium chloride and potassium chloride are particularly preferable. As the composition of the aqueous medium containing the reagent,
Compositions well known to those skilled in the art can be used. For example, proteins such as albumin, polymers such as polyethylene glycol, surfactants such as Tween and Triton, chlorides such as choline chloride, amino acids such as arginine and asparagine, and preservatives such as sodium azide are added. You may. It is desirable to reduce the electric conductivity since the applied electric field strength can be increased and the effect of promoting the immunological agglutination reaction can be easily obtained.

【0014】[0014]

【実施例】以下、実施例及び比較例をもって本発明を詳
細に説明するが、これらは本発明を限定するものではな
い。 実施例1 (1)β2mラテックス試薬の調製 10mgの抗β2m抗体を9.5mlのグリシン緩衝液
(以下GBSと略す)に溶解し、0.5mlのラテック
ス(粒子径0.12μm、固形分10%懸濁液)を加
え、37℃で一夜、インキュベーションした後、感作し
たラテックス懸濁液を遠心分離して上清を除去した。沈
殿をGBS20mlに懸濁させ、β2mラテックス試薬
を調製した。 (2)直流パルス電圧印加装置 図1の実験装置を使用して、直流パルス電圧を印加し
た。(電極間の距離4mm)
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples, but these do not limit the present invention. Example 1 (1) Preparation of β2m latex reagent 10 mg of anti-β2m antibody was dissolved in 9.5 ml of glycine buffer (hereinafter abbreviated as GBS), and 0.5 ml of latex (particle diameter 0.12 μm, solid content 10%) Suspension) was added thereto, and the mixture was incubated at 37 ° C. overnight. After that, the sensitized latex suspension was centrifuged to remove the supernatant. The precipitate was suspended in 20 ml of GBS to prepare a β2m latex reagent. (2) DC pulse voltage applying device A DC pulse voltage was applied using the experimental device of FIG. (4mm distance between electrodes)

【0015】(3)測定方法 β2mラテックス試薬を電極を張り合わせた容器に入
れ、予め直流パルス電圧(波高値4.5V、パルス幅1
0μ秒、周波数10KHz)を2分間印加した。印加1
5秒後に、前処理試薬300μlを、GBS600μl
に検体45μlを加えた溶液に混和した。直ちに、分光
光度計(日立U−3200)を用いて濁度変化のタイム
コースを測定した。なお、0.2%牛血清アルブミン含
有グリシン緩衝液(以下0.2%BSA−GBSと略
す)を用いて、β2m標準を希釈してβ2m濃度0ng
/ml、12.5ng/mlの検体を調整し測定に使用
した。 (4) 結果 表1および図2に示した。図2において、実施例1は、
直流パルス電圧を印加したβ2m濃度12.5ng/m
lの検体についての濁度変化であり、参考例1は、直流
パルス電圧を印加したβ2m濃度が0ng/mlの検体
についての濁度変化である。
(3) Measuring method A β2m latex reagent is placed in a container with electrodes attached, and a DC pulse voltage (peak value 4.5 V, pulse width 1)
0 μsec, frequency 10 KHz) was applied for 2 minutes. Apply 1
Five seconds later, 300 µl of the pretreatment reagent was added to 600 µl of GBS.
Was mixed with a solution obtained by adding 45 μl of the sample to the sample. Immediately, the time course of turbidity change was measured using a spectrophotometer (Hitachi U-3200). The β2m standard was diluted with 0.2% bovine serum albumin-containing glycine buffer (hereinafter abbreviated as 0.2% BSA-GBS) to give a β2m concentration of 0 ng.
/ Ml and 12.5 ng / ml samples were prepared and used for measurement. (4) Results The results are shown in Table 1 and FIG. In FIG. 2, the first embodiment
Β2m concentration 12.5ng / m with DC pulse voltage applied
1 is a change in turbidity of a sample, and Reference Example 1 is a change in turbidity of a sample having a β2m concentration of 0 ng / ml to which a DC pulse voltage is applied.

【0016】比較例1 実施例1で用いたと同じ各検体とβ2mラテックス試薬
を使用した。試薬の電気的前処理を行わない他は、実施
例1と同様に操作して、濁度変化のタイムコースを測定
した。結果を表1および図2に示した。比較例1は、直
流パルス電圧を印加していないβ2m濃度12.5ng
/mlの検体についての濁度変化であり(従来法)、比
較参考例1は、直流パルス電圧を印加していないβ2m
濃度0ng/mlの検体についての濁度変化である。
Comparative Example 1 The same specimens and the β2m latex reagent as used in Example 1 were used. The time course of turbidity change was measured in the same manner as in Example 1 except that the electrical pretreatment of the reagent was not performed. The results are shown in Table 1 and FIG. Comparative Example 1 had a β2m concentration of 12.5 ng where no DC pulse voltage was applied.
/ Ml of the turbidity of the sample (conventional method), and Comparative Reference Example 1 shows β2m without applying a DC pulse voltage.
It is a turbidity change about the test substance of the concentration of 0 ng / ml.

【0017】[0017]

【表1】 [Table 1]

【0018】比較例2 実施例1で用いたと同じ各検体とβ2mラテックス試薬
を使用した。GBS600μlに検体45μlを加え、
電極を張り合わせた容器に入れ、直流パルス電圧(波高
値4.5V、パルス幅10μ秒、周波数10KHz)を
2分間印加した。この電気的前処理を行った検体試液に
β2mラテックス試薬300μlを加え、直ちに、分光
光度計(日立U−3200)を用いて濁度変化のタイム
コースを測定した。結果を表2および図3に示した。な
お、図3には、実施例1の結果も併記した。
Comparative Example 2 The same specimens and the β2m latex reagent as used in Example 1 were used. 45 μl of the sample is added to 600 μl of GBS,
The electrode was placed in a container with the electrodes attached, and a DC pulse voltage (peak value 4.5 V, pulse width 10 μsec, frequency 10 KHz) was applied for 2 minutes. 300 μl of a β2m latex reagent was added to the sample test solution subjected to the electrical pretreatment, and the time course of turbidity change was measured immediately using a spectrophotometer (Hitachi U-3200). The results are shown in Table 2 and FIG. FIG. 3 also shows the results of Example 1.

【0019】[0019]

【表2】 [Table 2]

【0020】図2に示した結果から、本発明は従来の方
法(試薬の電気的前処理を行わず、従来どおりに使用す
る、比較例1)に比べ短時間で且つ高感度に測定するこ
とができることが分かる。また、図3に示した結果か
ら、ラテックスを含む試液に電気的前処理を行うことに
より免疫学的凝集反応を促進化且つ高感度化できること
が分かる。
From the results shown in FIG. 2, it can be seen that the present invention can be measured in a shorter time and with higher sensitivity than the conventional method (Comparative Example 1 in which the reagent is not subjected to the electrical pretreatment and is used as in the conventional method). You can see that it can be done. Further, the results shown in FIG. 3 indicate that the immunological agglutination reaction can be promoted and the sensitivity can be increased by subjecting the test solution containing latex to electrical pretreatment.

【0021】実施例2 (1) AFPラテックス試薬の調製 5mgの抗AFP抗体を9.5mlのグリシン緩衝液
(以下GBSと略す)に溶解し、0.5mlのラテック
ス(粒子径0.22μm、固形分10%懸濁液)を加
え、室温で2時間撹拌した後、感作したラテックス懸濁
液を遠心分離して上清を除去した。沈殿を33mlの
0.2%BSA−GBSに懸濁させ、AFPラテックス
試薬を調製した。 (2) 交流電圧印加装置 図4の実験装置を使用して、交流電圧を印加した。(電
極間の距離3mm)
Example 2 (1) Preparation of AFP latex reagent 5 mg of anti-AFP antibody was dissolved in 9.5 ml of glycine buffer (hereinafter abbreviated as GBS), and 0.5 ml of latex (particle diameter 0.22 μm, solid 10% suspension), and the mixture was stirred at room temperature for 2 hours, and the sensitized latex suspension was centrifuged to remove the supernatant. The precipitate was suspended in 33 ml of 0.2% BSA-GBS to prepare an AFP latex reagent. (2) AC voltage applying device An AC voltage was applied using the experimental device of FIG. (3mm distance between electrodes)

【0022】(3)測定方法 AFPラテックス試薬を電極を張り合わせた容器に入
れ、交流電圧(0V〜±15V、周波数10KHz)を
2分間印加した。印加15秒後に前処理試薬300μl
をりん酸緩衝液(15mMりん酸、0.4%ポリエチレ
ングリコール6000、2%塩化ナトリウム、0.1%
アジ化ナトリウム含有、以下PBSと略す)600μl
に検体60μl加えた溶液に混和した。直ちに、分光光
度計(日立U−3200)を用いて濁度変化のタイムコ
ースを測定し、4分間の濁度差(ΔOD 572nm)
を求めた。なお、0.2%BSA−GBSを用いて、A
FP標準を希釈してAFP濃度2.5ng/mlの検体
を調整し測定に使用した。 (4) 結果 表3および図5に示した結果から、印加電圧としては電
界強度が大きい方が免疫学的凝集反応の促進効果が得ら
れることが分かる。
(3) Measuring method The AFP latex reagent was placed in a container having electrodes attached thereto, and an AC voltage (0 V to ± 15 V, frequency 10 KHz) was applied for 2 minutes. 15 seconds after application, 300 µl of pretreatment reagent
In a phosphate buffer (15 mM phosphate, 0.4% polyethylene glycol 6000, 2% sodium chloride, 0.1%
600 μl containing sodium azide (hereinafter abbreviated as PBS)
Was mixed with a solution obtained by adding 60 μl of a sample to the sample. Immediately, the time course of turbidity change was measured using a spectrophotometer (Hitachi U-3200), and the turbidity difference for 4 minutes (ΔOD 572 nm)
I asked. In addition, using 0.2% BSA-GBS, A
A specimen having an AFP concentration of 2.5 ng / ml was prepared by diluting the FP standard and used for measurement. (4) Results From the results shown in Table 3 and FIG. 5, it can be seen that, as the applied voltage, the higher the electric field strength, the more the effect of promoting the immunological agglutination can be obtained.

【0023】[0023]

【表3】 [Table 3]

【0024】実施例3 (1) AFPラテックス試薬の調製 実施例2と同様して、AFPラテックス試薬を調製し
た。 (2) 交流電圧印加装置 図4の実験装置を使用して、交流電圧を印加した。(電
極間の距離3mm)
Example 3 (1) Preparation of AFP latex reagent In the same manner as in Example 2, an AFP latex reagent was prepared. (2) AC voltage applying device An AC voltage was applied using the experimental device of FIG. (3mm distance between electrodes)

【0025】(3)測定方法 AFPラテックス試薬を電極を張り合わせた容器に入
れ、交流電圧(±15V、周波数10KHz)を2分間
印加した。印加15秒後に前処理試薬300μlをPB
S600μlに検体60μl加えた溶液に混和した。直
ちに、分光光度計(日立U−3200)を用いて濁度変
化のタイムコースを測定し、4分間の濁度差(ΔOD
572nm)を求めた。なお、0.2%BSA−GBS
を用いて、AFP標準を希釈してAFP濃度0ng/m
l、0.625ng/ml、1.25ng/ml、2.5
ng/mlの検体を調整し測定に使用した。 (4) 結果 表4および図6に示した結果から、本発明は従来の方法
(電気的な手法による前処理を行っていない試薬を使
用)に比べ非常に短時間で、且つ高感度に測定すること
ができることが分かる。
(3) Measuring Method An AFP latex reagent was placed in a container having electrodes attached thereto, and an AC voltage (± 15 V, frequency 10 KHz) was applied for 2 minutes. 15 seconds after application, 300 µl of pretreatment reagent is
It mixed with the solution which added 60 microliters of samples to 600 microliters of S. Immediately, the time course of turbidity change was measured using a spectrophotometer (Hitachi U-3200), and the turbidity difference (ΔOD
572 nm). In addition, 0.2% BSA-GBS
The AFP standard was diluted to a concentration of 0 ng / m
1, 0.625 ng / ml, 1.25 ng / ml, 2.5
An ng / ml sample was prepared and used for measurement. (4) Results From the results shown in Table 4 and FIG. 6, the present invention measures in a very short time and with high sensitivity compared to the conventional method (using a reagent that has not been subjected to a pretreatment by an electric method). You can see that it can be done.

【0026】比較例3 実施例3の各検体とAFPラテックス試薬を使用して、
試薬の電気的前処理を行わない他は、実施例2と同様に
操作して濁度変化のタイムコースを測定し、5分間の濁
度差を求めた。結果を表4および図6に示した。
Comparative Example 3 Using each sample of Example 3 and an AFP latex reagent,
The time course of the turbidity change was measured in the same manner as in Example 2 except that the electrical pretreatment of the reagent was not performed, and the turbidity difference for 5 minutes was determined. The results are shown in Table 4 and FIG.

【0027】[0027]

【表4】 [Table 4]

【0028】実施例4 電気分解を誘発する電圧の測定 塩化ナトリウムを精製水に溶解し、塩化ナトリウム濃度
0〜600mMに調整した。各濃度の塩化ナトリウム水
溶液の電気伝導度と電気分解開始電圧を測定した。印加
電圧は、直流パルス電圧(パルス幅10μ秒、周波数1
0KHz)を用いた。結果を表5および図7に示した。
Example 4 Measurement of voltage for inducing electrolysis Sodium chloride was dissolved in purified water, and the concentration of sodium chloride was adjusted to 0 to 600 mM. The electrical conductivity and the electrolysis onset voltage of the sodium chloride aqueous solution of each concentration were measured. The applied voltage is a DC pulse voltage (pulse width 10 μsec, frequency 1
0 KHz). The results are shown in Table 5 and FIG.

【0029】[0029]

【表5】 [Table 5]

【0030】図7(A)から、電気伝導度と塩濃度は比
例関係にあり、また図7(B)から、電気分解を誘発す
る電圧は、電気伝導度と対数関数の関係にあり、試薬の
電気伝導度が小さいほど電気分解を起こしにくいことが
分かる。
From FIG. 7 (A), the electrical conductivity and the salt concentration are in a proportional relationship, and from FIG. 7 (B), the voltage inducing electrolysis is in a logarithmic relationship with the electrical conductivity. It can be seen that the smaller the electrical conductivity of the sample, the less likely it is to cause electrolysis.

【0031】[0031]

【発明の効果】本発明によれば、従来の測定方法よりも
短時間に、しかも高感度で免疫学的反応性物質の存在を
検出又は測定することができる。
According to the present invention, it is possible to detect or measure the presence of an immunologically reactive substance in a shorter time and with higher sensitivity than conventional measurement methods.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で使用した直流パルス電圧印加実験装置
の概略図である。
FIG. 1 is a schematic diagram of a DC pulse voltage application experimental device used in the present invention.

【図2】予め直流パルス電圧をラテックス試薬に印加し
た前処理試薬を用いる本発明方法と、従来法との免疫学
的凝集反応による濁度変化のタイムコースを比較したグ
ラフである。
FIG. 2 is a graph comparing the time course of turbidity change due to immunological agglutination reaction between the method of the present invention using a pretreatment reagent in which a DC pulse voltage is applied to a latex reagent in advance and a conventional method.

【図3】予め直流パルス電圧を印加する前処理を、ラテ
ックスを含む試薬に実施した本発明方法と、ラテックス
を含まない試液に実施した場合(比較例3)との、免疫
学的凝集反応による濁度変化のタイムコースを比較した
グラフである。
FIG. 3 shows the results of an immunological agglutination reaction between the method of the present invention in which a pretreatment in which a DC pulse voltage was previously applied was performed on a reagent containing latex and the case of performing a test solution containing no latex (Comparative Example 3). It is the graph which compared the time course of the turbidity change.

【図4】本発明で使用した交流電圧印加実験装置の概略
図である。
FIG. 4 is a schematic diagram of an AC voltage application experimental device used in the present invention.

【図5】予め交流電圧をラテックス試薬に印加する前処
理を行う際の印加電圧の大きさと濁度変化との関係を表
すグラフである。
FIG. 5 is a graph showing a relationship between a magnitude of an applied voltage and a change in turbidity when performing a pretreatment of applying an AC voltage to a latex reagent in advance.

【図6】ヒトAFP濃度と免疫学的凝集反応による濁度
変化との関係について、予め交流電圧をラテックス試薬
に印加した前処理試薬を用いる本発明方法と、従来法と
の比較を表すグラフである。
FIG. 6 is a graph showing a comparison between the method of the present invention using a pretreatment reagent in which an AC voltage is applied to a latex reagent in advance and the conventional method with respect to the relationship between human AFP concentration and turbidity change due to immunological agglutination. is there.

【図7】(A)塩濃度と電気伝導度との関係を表すグラ
フである。 (B)電気伝導度と電気分解の誘発電圧との関係を表す
グラフである。
FIG. 7A is a graph showing a relationship between salt concentration and electric conductivity. (B) It is a graph showing the relationship between the electric conductivity and the induced voltage of electrolysis.

フロントページの続き (72)発明者 吉村 佳典 茨城県つくば市千現1−13−7 イーグル 1 201号 (72)発明者 軽部 征夫 神奈川県川崎市宮前区東有馬1−3−16Continued on the front page. (72) Yoshinori Yoshimura 1-13-7 Eagle 1-13-7 Sengen, Tsukuba-shi, Ibaraki (72) Inventor Masao Karube 1-3-16 Higashiarima, Miyamae-ku, Kawasaki-shi, Kanagawa

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 担体に抗原もしくは抗体を感作した試薬
を用いて、免疫学的凝集反応により免疫学的反応性物質
を検出又は測定する方法であって、該試薬として予め微
小電圧を印加した試薬を用いることを特徴とする方法。
1. A method for detecting or measuring an immunologically reactive substance by an immunological agglutination reaction using a reagent sensitized to an antigen or an antibody on a carrier, wherein a minute voltage is applied in advance as the reagent. A method comprising using a reagent.
【請求項2】 微小電圧が直流、直流パルスもしくは交
流に由来する請求項1の方法。
2. The method according to claim 1, wherein the minute voltage is derived from a direct current, a direct current pulse or an alternating current.
【請求項3】 微小電圧は試薬を含む水系媒体が電気分
解を実質的に起こさない電圧である請求項1の方法。
3. The method according to claim 1, wherein the minute voltage is a voltage at which the aqueous medium containing the reagent does not substantially cause electrolysis.
【請求項4】 担体の平均粒子径が0.01〜1μmで
ある請求項1の方法。
4. The method according to claim 1, wherein the carrier has an average particle size of 0.01 to 1 μm.
【請求項5】 予め微小電圧が印加された、抗体もしく
は抗原で感作された担体からなる試薬。
5. A reagent comprising a carrier to which a microvoltage has been applied in advance and which has been sensitized with an antibody or an antigen.
JP23182796A 1996-09-02 1996-09-02 Method for detecting or measuring presence of immunological active substance and reagent used for method thereof Withdrawn JPH1073595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23182796A JPH1073595A (en) 1996-09-02 1996-09-02 Method for detecting or measuring presence of immunological active substance and reagent used for method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23182796A JPH1073595A (en) 1996-09-02 1996-09-02 Method for detecting or measuring presence of immunological active substance and reagent used for method thereof

Publications (1)

Publication Number Publication Date
JPH1073595A true JPH1073595A (en) 1998-03-17

Family

ID=16929648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23182796A Withdrawn JPH1073595A (en) 1996-09-02 1996-09-02 Method for detecting or measuring presence of immunological active substance and reagent used for method thereof

Country Status (1)

Country Link
JP (1) JPH1073595A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767376A3 (en) * 1995-10-06 1998-08-12 Isao Karube Method for detecting or measuring an immunologically reactive substance
WO2004088317A1 (en) * 2003-03-31 2004-10-14 Denka Seiken Co. Ltd. IMMUNO-NEPHELOMETRY OF LIPOPROTEIN (a) AND REAGENT THEREFOR
EP1637884A1 (en) * 2003-06-16 2006-03-22 Pulse-Immunotech Corporation Method for measuring substance having affinity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767376A3 (en) * 1995-10-06 1998-08-12 Isao Karube Method for detecting or measuring an immunologically reactive substance
WO2004088317A1 (en) * 2003-03-31 2004-10-14 Denka Seiken Co. Ltd. IMMUNO-NEPHELOMETRY OF LIPOPROTEIN (a) AND REAGENT THEREFOR
AU2004225599B2 (en) * 2003-03-31 2008-09-04 Denka Company Limited Turbidimetric immunoassy for lipoprotein (a) and reagent therefor
EP1637884A1 (en) * 2003-06-16 2006-03-22 Pulse-Immunotech Corporation Method for measuring substance having affinity
EP1637884A4 (en) * 2003-06-16 2007-11-14 Pulse Immunotech Corp Method for measuring substance having affinity

Similar Documents

Publication Publication Date Title
Volanakis et al. Rabbit C1q: purification, functional and structural studies
US5108933A (en) Manipulation of colloids for facilitating magnetic separations
EP0019741B1 (en) Latex reagent, process for its preparation, its application and an agent containing this reagent
EP1930726A1 (en) Method of assaying substance with affinity in sample including step of destroying blood-cell ingredient
JP3300493B2 (en) Method for detecting or measuring the presence of a biologically specific reactive substance
JP2564540B2 (en) Immunoassay method
JPH1073595A (en) Method for detecting or measuring presence of immunological active substance and reagent used for method thereof
JPH1073597A (en) Method for detecting or measuring immunological active substance
EP1637884A1 (en) Method for measuring substance having affinity
CA2157893A1 (en) Immunoassay method utilizing zeta potential and immunoassay kit
EP1930725A1 (en) Method of assaying substance with affinity in sample containing blood-cell ingredient
JPH1073596A (en) Method for detecting or measuring immunological active substance
JP3886639B2 (en) Immunological agglutination reagent and method for suppressing prozone phenomenon using the same
US4350677A (en) Reagent for optimizing agglutination
EP1724583A1 (en) Method of measuring affinity substance
JP3618797B2 (en) Immunoassay
EP0276719B1 (en) Immunoassay utilizing microparticle neutralization
JPH09101307A (en) Method for detecting or measuring immunologically reactive substance
JP4288672B2 (en) Method for measuring affinity substances by particle aggregation and dilution
JP3966615B2 (en) Immunological agglutination reagent and method for suppressing prozone phenomenon using the same
US4403040A (en) Diagnostic test for the detection of a specific tumor antigen with CoA-SPC
JPH09304386A (en) Manufacture of immunity diagnostic drug and immunity diagnostic drug obtained
Uzgiris [11] Probing immune reactions by laser light scattering spectroscopy
JPH11183478A (en) Antibody measuring reagent and its production method
JPH0943239A (en) Method for measuring immunity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104