JPH1072649A - High strength ferrous sintered alloy excellent in wear resistance and its production - Google Patents
High strength ferrous sintered alloy excellent in wear resistance and its productionInfo
- Publication number
- JPH1072649A JPH1072649A JP23072096A JP23072096A JPH1072649A JP H1072649 A JPH1072649 A JP H1072649A JP 23072096 A JP23072096 A JP 23072096A JP 23072096 A JP23072096 A JP 23072096A JP H1072649 A JPH1072649 A JP H1072649A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- weight
- sintered alloy
- sic
- wear resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、自動車部品およ
びコンプレッサー部品などの各種機械部品の材料として
使用される軽量、高引張り強度(以下、簡単に高強度と
いう)で、かつ耐摩耗性に優れた鉄基焼結合金およびそ
の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight, high tensile strength (hereinafter simply referred to as "high strength") used as a material for various mechanical parts such as automobile parts and compressor parts, and excellent wear resistance. The present invention relates to an iron-based sintered alloy and a method for producing the same.
【0002】[0002]
【従来の技術】従来技術として、一般に自動車部品およ
びコンプレッサー部品などの各種機械部品の材料として
鉄基焼結合金が用いられており、この鉄基焼結合金の高
強度化の手法の1つに合金鋼粉を用いる方法が知られて
いるが、特開平5−287452号公報に示されるC:
0.1重量%以下、Mn:0.08重量%以下、Cr:
0.5〜3重量%、Mo:0.1〜2重量%、S:0.
01重量%以下、P:0.01重量%以下、O:0.2
重量%以下を含有し、さらにNi:0.2〜2.5重量
%およびCu:0.5〜2.5重量%の内の1種または
2種を含有し、残りがFeおよび不可避不純物からなる
組成を有する鉄基焼結合金の様にCr、Moなどの成分
を含むものが高強度化材料として知られている。2. Description of the Related Art As a prior art, an iron-based sintered alloy is generally used as a material for various mechanical parts such as an automobile part and a compressor part. A method using an alloy steel powder is known, but C: described in JP-A-5-287452:
0.1% by weight or less, Mn: 0.08% by weight or less, Cr:
0.5-3% by weight, Mo: 0.1-2% by weight, S: 0.
01% by weight or less, P: 0.01% by weight or less, O: 0.2
% Or less, and further contains one or two of Ni: 0.2 to 2.5% by weight and Cu: 0.5 to 2.5% by weight, with the balance being Fe and unavoidable impurities. A material containing components such as Cr and Mo, such as an iron-based sintered alloy having a specific composition, is known as a high-strength material.
【0003】[0003]
【発明が解決しようとする課題】しかし、近年、自動車
部品およびコンプレッサー部品などの各種機械部品の材
料として、複雑形状部品を精度良く、大量生産すること
が可能な鉄基焼結合金材料が広く用いられる様になって
来ており、部品の高性能化、従来は鉄基焼結材料の使用
が困難であった部品への適用に対応するため、鉄基焼結
合金のなお一層軽量で高強度と共に耐摩耗性向上に対す
る要求はますます高まって来ている。しかしこれら要求
に対して、前記特開平5−287452号公報記載の鉄
基焼結合金では、合金鋼粉を用いて均一な組織を得るこ
とが可能な結果、高強度化は図れるが、耐摩耗性の一層
の向上には難しさがあり、上記要求に十分に答えること
が出来ず問題であった。However, in recent years, iron-based sintered alloy materials capable of accurately and mass-producing complicated-shaped parts with high precision have been widely used as materials for various mechanical parts such as automobile parts and compressor parts. In order to improve the performance of parts and to apply to parts where iron-based sintered materials have been difficult to use in the past, iron-based sintered alloys are even lighter and have higher strength. At the same time, there is an increasing demand for improved wear resistance. However, in response to these requirements, in the iron-based sintered alloy described in the above-mentioned Japanese Patent Application Laid-Open No. 5-287452, it is possible to obtain a uniform structure by using alloy steel powder. There was difficulty in further improving the properties, and it was not possible to sufficiently respond to the above demand, which was a problem.
【0004】[0004]
【課題を解決するための手段】そこで、本発明者らは、
上述のような観点から、自動車部品およびコンプレッサ
ー部品などの各種機械部品の材料として軽量、高強度
で、かつ耐摩耗性にも優れた鉄基焼結合金を得るべく研
究を行った結果、原料として、Fe−Mo合金粉末、C
粉末、Ni粉末、Cu粉末などの要素粉末を用意し、こ
れら選択した原料粉末をSiC粉末とともに混合し、成
形し、焼結し、焼結中にSiCの一部を分解し、素地中
にSiおよびCとして固溶せしめ、他部を素地中にSi
Cとして分散残留せしめた組織を持つ鉄基焼結合金は、
従来同様の強度を有すると共に、耐摩耗性にも優れた高
強度鉄基焼結合金となるとの知見を得たのである。Means for Solving the Problems Accordingly, the present inventors have:
From the above viewpoints, we conducted research to obtain iron-based sintered alloys that are lightweight, high-strength, and have excellent wear resistance as materials for various mechanical parts such as automobile parts and compressor parts. , Fe-Mo alloy powder, C
Powder, Ni powder, Cu powder, etc. are prepared, these selected raw material powders are mixed with SiC powder, molded, sintered, a part of SiC is decomposed during sintering, and Si And C as a solid solution, and the other part is
An iron-based sintered alloy having a structure that remains dispersed as C is
It has been found that a high-strength iron-based sintered alloy having the same strength as the conventional one and having excellent wear resistance is obtained.
【0005】この発明は、かかる知見に基づいてなされ
たものであって、 (1) 重量%で、Ni:1〜5%、Mo:0.5〜4
%、Si:0.3〜3%、C:0.3〜1%を含有し、
残りがFeおよび不可避不純物からなる組成を有し、密
度6.8〜7.4g/ccで、組織中にSiCが分散し
た耐摩耗性に優れた高強度鉄基焼結合金。 (2) 重量%で、Ni:1〜5%、Mo:0.5〜4
%、Si:0.3〜3%、C:0.3〜1%を含有し、
さらにCu:1〜3%を含有し、残りがFeおよび不可
避不純物からなる組成を有し、密度6.8〜7.4g/
ccで、組織中にSiCが分散した耐摩耗性に優れた高
強度鉄基焼結合金。 (3) 前記鉄基焼結合金で、組織中にSiCが組成全
体に占める割合で、0.03〜0.3重量%分散した
(1)または(2)に記載の耐摩耗性に優れた高強度鉄
基焼結合金。 (4) 原料として、Ni粉末、SiC粉末、C粉末、
Cu粉末およびFe−Mo粉末の中から選択した粉末を
用い、これを混合、成形した後、焼結し、焼結中にSi
C一部を素地中にSiおよびCとして固溶せしめ、他部
をSiCとして素地中に分散残留させる(1)、(2)
あるいは(3)の中のいずれかに記載の耐摩耗性に優れ
た高強度鉄基焼結合金の製造方法。 に特徴を有するものである。The present invention has been made on the basis of the above findings. (1) Ni: 1 to 5% and Mo: 0.5 to 4% by weight.
%, Si: 0.3-3%, C: 0.3-1%,
A high-strength iron-based sintered alloy having a composition consisting of Fe and inevitable impurities, a density of 6.8 to 7.4 g / cc, and SiC dispersed in the structure and having excellent wear resistance. (2) Ni: 1 to 5%, Mo: 0.5 to 4 by weight%
%, Si: 0.3-3%, C: 0.3-1%,
Further, it has a composition containing Cu: 1 to 3%, the balance being Fe and unavoidable impurities, and a density of 6.8 to 7.4 g /
A high-strength iron-based sintered alloy with excellent wear resistance in which SiC is dispersed in the structure. (3) The iron-based sintered alloy has excellent wear resistance according to (1) or (2), wherein SiC is dispersed in the structure by 0.03 to 0.3% by weight based on the entire composition. High strength iron-based sintered alloy. (4) Ni powder, SiC powder, C powder,
Using a powder selected from Cu powder and Fe-Mo powder, mixing and molding the powder, sintering,
A part of C is dissolved in the base material as Si and C, and the other part is dispersed and remains in the base material as SiC (1), (2)
Alternatively, the method for producing a high-strength iron-based sintered alloy excellent in wear resistance according to any one of (3). It is characterized by the following.
【0006】この発明の高強度鉄基焼結合金は、原料と
して、Fe−Mo合金粉末、SiC粉末、C粉末、Ni
粉末、およびCu粉末を用意し、これら原料粉末を混合
し、成形し、焼結することにより作られる。この発明の
高強度鉄基焼結合金は、原料としてSiC粉末を使用す
ることにより、焼結中にSiCの一部を分解させ、素地
中にSiおよびCとして固溶せしめると共に、他部を硬
質のSiCとして素地中に分散残留させることにより、
従来の高強度を保持したまま耐摩耗性を向上せしめるこ
とが出来たのである。[0006] The high-strength iron-based sintered alloy according to the present invention comprises, as raw materials, Fe-Mo alloy powder, SiC powder, C powder, Ni powder.
A powder and a Cu powder are prepared, and these raw material powders are mixed, molded and sintered. The high-strength iron-based sintered alloy of the present invention uses SiC powder as a raw material, so that a part of SiC is decomposed during sintering and is dissolved in the base material as Si and C, and the other part is hardened. By dispersing and remaining in the substrate as SiC of
It was possible to improve the wear resistance while maintaining the conventional high strength.
【0007】[0007]
【発明の実施の形態】以下、本発明の実施の形態につい
て、説明する。本発明の高強度鉄基焼結合金は、まず原
料粉末として、Fe−Mo合金粉末、SiC粉末、Ni
粉末、C粉末、およびCu粉末を用意し、これら原料粉
末を金型成形時の潤滑剤であるステアリン酸亜鉛粉末ま
たはエチレンビスステアラミドとともに混合し、プレス
にて圧粉成形する。成形密度は6.8〜7.4g/cc
が好ましい。この圧粉成形体を例えば窒素、水素混合雰
囲気などの還元雰囲気で1100〜1150℃の温度範
囲で焼結する。Embodiments of the present invention will be described below. The high-strength iron-based sintered alloy of the present invention is obtained by first using Fe-Mo alloy powder, SiC powder, Ni
Powder, C powder, and Cu powder are prepared, and these raw material powders are mixed with zinc stearate powder or ethylenebisstearamide, which is a lubricant at the time of molding, and compacted by pressing. Molding density is 6.8-7.4 g / cc
Is preferred. The green compact is sintered in a reducing atmosphere such as a mixed atmosphere of nitrogen and hydrogen in a temperature range of 1100 to 1150 ° C.
【0008】この温度で焼結すると、原料として添加し
たSiCは一部SiとCに分解する。Siは通常易酸化
性のため焼結を阻害し、焼結中での合金化が困難である
が、本発明においては、Si近傍のCにより還元される
ため、素地への拡散、合金化が容易となると考えられ
る。分解されるSiCの量と素地に分散残留するSiC
の量を調整することにより、本発明の高強度鉄基焼結合
金は、マルテンサイト、ベイナイト、パーライト、フェ
ライト、オーステナイト、SiCの全部またはその一部
の混合組織となり、高強度を保持したまま、優れた耐摩
耗性を合わせ持つ焼結体となる。また、製品によって更
に強度が必要とされる場合は、焼結体に焼き入れおよび
焼戻しの熱処理を行っても良い。When sintered at this temperature, SiC added as a raw material partially decomposes into Si and C. Si usually hinders sintering due to its easy oxidizability and is difficult to alloy during sintering. However, in the present invention, since it is reduced by C in the vicinity of Si, diffusion into the substrate and alloying are difficult. It will be easier. Amount of decomposed SiC and residual SiC dispersed in the substrate
By adjusting the amount of, the high-strength iron-based sintered alloy of the present invention, martensite, bainite, pearlite, ferrite, austenite, a mixed structure of all or a part of SiC, while maintaining high strength, It becomes a sintered body that has both excellent wear resistance. If the product requires more strength, the sintered body may be subjected to heat treatment of quenching and tempering.
【0009】つぎに、この発明の高強度鉄基焼結合金の
成分組成を上記のごとく限定した理由について説明す
る。Next, the reason why the component composition of the high-strength iron-based sintered alloy of the present invention is limited as described above will be described.
【0010】(a)Ni Niは、強度び靱性向上に効果があるが、その含有量が
1重量%未満ではその効果が十分でなく、一方、5重量
%を越えて含有してもその効果が少ない。したがって、
その含有量を1〜5重量%に定めた。この含有量の一層
好ましい範囲は1.5〜4.5重量%である。(A) Ni Ni is effective in improving the strength and toughness, but its effect is not sufficient if its content is less than 1% by weight, while its effect is exceeded even if its content exceeds 5% by weight. Less is. Therefore,
The content was set to 1 to 5% by weight. A more preferred range for this content is 1.5-4.5% by weight.
【0011】(b)Mo Moは、強度を向上させる効果があるが、その含有量が
0.5重量%未満では強度向上の効果が得られず、一
方、Moが4重量%を越えて含有すると靱性を低下させ
るので、その含有量を0.5〜4重量%に定めた。この
含有量の一層好ましい範囲は0.8〜2.0重量%であ
る。(B) Mo Mo has the effect of improving the strength, but if the content is less than 0.5% by weight, the effect of improving the strength cannot be obtained, while the content of Mo exceeds 4% by weight. Then, the toughness is reduced, so the content is set to 0.5 to 4% by weight. A more preferred range for this content is 0.8-2.0% by weight.
【0012】(c)Si Siは、フェライトおよびマルテンサイトの硬化に効果
があるが、その含有量が0.3重量%未満では硬度向上
の効果がなく、一方、Siが3重量%を越えて含有する
と靱性を低下させるので、その含有量を0.3〜3重量
%に定めた。Siの含有量の一層好ましい範囲は0.5
〜2重量%である。(C) Si Si has an effect on hardening of ferrite and martensite, but if its content is less than 0.3% by weight, there is no effect of improving the hardness. On the other hand, if Si exceeds 3% by weight, If contained, the toughness is reduced, so the content is set to 0.3 to 3% by weight. A more preferred range of the Si content is 0.5.
~ 2% by weight.
【0013】(d)C Cは、強度、硬度向上に効果があるが、その含有量が
0.3重量%未満ではその効果がなく、一方、1重量%
を越えて含有すると靱性を低下させるので、その含有量
を0.3〜1重量%に定めた。Cの含有量の一層好まし
い範囲は0.4〜0.8重量%である。(D) C C has the effect of improving the strength and hardness, but has no effect if its content is less than 0.3% by weight, while 1% by weight
If the content is more than 0.1%, the toughness is reduced. Therefore, the content is set to 0.3 to 1% by weight. A more preferable range of the content of C is 0.4 to 0.8% by weight.
【0014】(e)Cu Cuは、強度向上と共に、焼結体を膨脹させ、寸法を調
整させる作用があるので必要に応じて添加されるが、そ
の含有量が1重量%未満ではその効果が十分でなく、一
方、3重量%を越えると寸法のバラツキが大きくなり、
靱性も低下するところから、Cuの含有量は1〜3重量
%に定めた。Cuの含有量の一層好ましい範囲は1.5
〜2.5重量%である。(E) Cu Cu is added as necessary because it has the effect of improving the strength, expanding the sintered body, and adjusting the dimensions. If its content is less than 1% by weight, the effect is reduced. On the other hand, if it exceeds 3% by weight, the dimensional variation becomes large,
Since the toughness also decreases, the content of Cu is set to 1 to 3% by weight. A more preferred range for the Cu content is 1.5.
~ 2.5% by weight.
【0015】(f)SiC SiCは、焼結体の素地に分散して存在することによ
り、焼結体の耐摩耗性を向上させる効果があるが、その
含有量が0.03重量%未満ではその効果があまり大き
くなく、一方、その含有量が0.3重量%を越えると強
度の低下が現れ始めるので、その含有量を0.03〜
0.3重量%と定めた。(F) SiC SiC has the effect of improving the wear resistance of the sintered body when dispersed in the base material of the sintered body, but if its content is less than 0.03% by weight. The effect is not so great. On the other hand, when the content exceeds 0.3% by weight, a decrease in strength starts to appear.
It was determined to be 0.3% by weight.
【0016】(g)密度 密度は、焼結体の重量を調整する作用をするが、その値
が、6.8g/cc未満では焼結体の所望の高強度がえ
られず、一方その値が、7.4g/ccを越えると、焼
結体軽量化の効果が低下する様になるので、その値を
6.8〜7.4g/ccに定めた。(G) Density The density acts to adjust the weight of the sintered body. If the value is less than 6.8 g / cc, the desired high strength of the sintered body cannot be obtained. However, if it exceeds 7.4 g / cc, the effect of reducing the weight of the sintered body will decrease, so the value is set to 6.8 to 7.4 g / cc.
【0017】[0017]
【実施例】以下、本発明の実施例について、具体的に説
明する。原料粉末として、平均粒径:45μmのFe−
Mo粉末、平均粒径:3μmのSiC粉末、平均粒径:
6μmのNi粉末、平均粒径:17μmのC粉末および
平均粒径:22μmのCu粉末を用意し、これら原料粉
末を表1〜表2に示される配合組成となるように配合
し、さらに金型成形時の潤滑剤であるステアリン酸亜鉛
粉末またはエチレンビスステアラミドを所定量添加して
混合し、プレス成形して10mm×10mm×50mm
の寸法を有する成形体を作製した。この成形体をN2 −
20%H2 の混合雰囲気中、温度:1125℃、60分
保持の条件で焼結し、表3〜表4に示される成分組成お
よび密度を有する本発明の耐摩耗性に優れた鉄基焼結合
金1〜15(以下、簡単に本発明焼結合金1〜15とい
う)を作製した。また従来焼結合金を製作するために表
2に示す組成の合金鋼粉末を用意し、これら合金鋼粉末
に、C粉末:0.85重量%、ステアリン酸亜鉛粉末:
1重量%を添加混合したのち、圧縮成形により10mm
×10mm×50mmの寸法を有する成形体を作製し
た。これらの成形体をN2−20%H2の混合雰囲気中、
温度:1125℃、60分保持の条件で焼結し、表5に
示される成分組成および密度を有する従来の鉄基焼結合
金1〜3(以下、簡単に従来焼結合金1〜3という)を
作製した。EXAMPLES Examples of the present invention will be specifically described below. As raw material powder, average particle size: Fe-
Mo powder, average particle size: 3 μm SiC powder, average particle size:
A 6 μm Ni powder, a C powder having an average particle diameter of 17 μm, and a Cu powder having an average particle diameter of 22 μm were prepared, and these raw material powders were mixed so as to have a compounding composition shown in Tables 1 and 2, and further a mold was prepared. A predetermined amount of a zinc stearate powder or ethylene bisstearamide as a lubricant at the time of molding is added and mixed, and the mixture is press-molded to 10 mm × 10 mm × 50 mm.
A molded article having the following dimensions was produced. This molded body is N 2 −
Sintered in a mixed atmosphere of 20% H 2 at a temperature of 1125 ° C. for 60 minutes, and having the component composition and density shown in Tables 3 and 4 and having excellent wear resistance according to the present invention. Bonding metals 1 to 15 (hereinafter simply referred to as sintered alloys 1 to 15 of the present invention) were produced. In addition, in order to produce a conventional sintered alloy, alloy steel powders having the compositions shown in Table 2 were prepared.
After adding and mixing 1% by weight, 10 mm is compression molded.
A molded body having dimensions of × 10 mm × 50 mm was produced. These compacts are placed in a mixed atmosphere of N 2 -20% H 2
Temperature: 1125 ° C, sintering for 60 minutes, and the conventional iron-based sintered alloys 1 to 3 having the component composition and density shown in Table 5 Was prepared.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【表2】 [Table 2]
【0020】[0020]
【表3】 [Table 3]
【0021】[0021]
【表4】 [Table 4]
【0022】[0022]
【表5】 [Table 5]
【0023】得られた本発明焼結合金1〜15および従
来焼結合金1〜3を研磨により摩耗試験片をそれぞれ作
製した後、耐摩耗性を評価するために荷重:3.2k
g、距離:200m、速度:0.78m/s、相手材:
S45C、ドライの条件で、それぞれ大越式摩耗試験を
行い、それらの比摩耗量を表6に示した。また、機械加
工により平行部:Φ4.5mmの引張試験片をそれぞれ
作製した後、引張速度:1.5mm/minで、それぞ
れ引張試験を行い、それらの引張強さを表6に示した。Abrasion test pieces were prepared by polishing the obtained sintered alloys 1 to 15 of the present invention and the conventional sintered alloys 1 to 3 respectively, and then a load of 3.2 k was applied to evaluate wear resistance.
g, distance: 200 m, speed: 0.78 m / s, partner material:
An Ogoshi type abrasion test was performed under the conditions of S45C and dry, respectively, and their specific abrasion amounts are shown in Table 6. Further, a tensile test piece having a parallel part: 4.5 mm in diameter was prepared by machining, and then a tensile test was performed at a tensile speed of 1.5 mm / min, and their tensile strengths are shown in Table 6.
【0024】[0024]
【表6】 [Table 6]
【0025】[0025]
【発明の効果】表6から明かな様に、本発明焼結合金1
〜15と従来焼結合金1〜3を比較すると、本発明焼結
合金1〜15は従来焼結合金1〜3と比べて、耐摩耗性
に優れていることが分かる。上述のように、この発明の
焼結合金は、軽量で、高強度を有し、かつ耐摩耗性に優
れているので、自動車部品およびコンプレッサー部品な
どの各種機械部品の材料として利用された場合に優れた
効果をもたらすものである。As is clear from Table 6, the sintered alloy 1 of the present invention
Comparing the conventional sintered alloys 1 to 3 with the conventional sintered alloys 1 to 3, it is understood that the sintered alloys 1 to 15 of the present invention are more excellent in wear resistance than the conventional sintered alloys 1 to 3. As described above, the sintered alloy of the present invention is lightweight, has high strength, and is excellent in wear resistance, so that it is used as a material for various mechanical parts such as automobile parts and compressor parts. It has excellent effects.
Claims (4)
5〜4%、Si:0.3〜3%、C:0.3〜1%を含
有し、残りがFeおよび不可避不純物からなる組成を有
し、密度6.8〜7.4g/ccで、組織中にSiCが
分散したことを特徴とする耐摩耗性に優れた高強度鉄基
焼結合金。(1) Ni: 1 to 5% and Mo: 0.
5 to 4%, Si: 0.3 to 3%, C: 0.3 to 1%, with the balance being Fe and unavoidable impurities, having a density of 6.8 to 7.4 g / cc. A high-strength iron-based sintered alloy having excellent wear resistance, characterized in that SiC is dispersed in the structure.
5〜4%、Si:0.3〜3%、C:0.3〜1%を含
有し、さらにCu:1〜3%を含有し、残りがFeおよ
び不可避不純物からなる組成を有し、密度6.8〜7.
4g/ccで、組織中にSiCが分散したことを特徴と
する耐摩耗性に優れた高強度鉄基焼結合金。2. Ni: 1 to 5% by weight, Mo: 0.1% by weight.
5 to 4%, Si: 0.3 to 3%, C: 0.3 to 1%, further contains Cu: 1 to 3%, the balance being Fe and inevitable impurities, Density 6.8-7.
A high-strength iron-based sintered alloy having a wear resistance of 4 g / cc, wherein SiC is dispersed in the structure.
組成全体に占める割合で、0.03〜0.3重量%分散
したことを特徴とする請求項1または2に記載の耐摩耗
性に優れた高強度鉄基焼結合金。3. The steel according to claim 1, wherein in the iron-based sintered alloy, SiC is dispersed in the structure in an amount of 0.03 to 0.3% by weight based on the total composition. High-strength iron-based sintered alloy with excellent wear properties.
粉末、Cu粉末およびFe−Mo粉末の中から選択した
粉末を用い、これを混合、成形した後、焼結し、焼結中
にSiCの一部を素地中にSiおよびCとして固溶せし
め、他部をSiCとして素地中に分散残留させることを
特徴とする請求項1、2あるいは3の中のいずれかに記
載の耐摩耗性に優れた高強度鉄基焼結合金の製造方法。4. Raw materials such as Ni powder, SiC powder, C
Using a powder selected from powder, Cu powder and Fe-Mo powder, mixing and molding, sintering, and dissolving a part of SiC as Si and C in the base material during sintering, The method for producing a high-strength iron-based sintered alloy having excellent wear resistance according to any one of claims 1, 2 and 3, wherein the other part is dispersed and remained in the substrate as SiC.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23072096A JPH1072649A (en) | 1996-08-30 | 1996-08-30 | High strength ferrous sintered alloy excellent in wear resistance and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23072096A JPH1072649A (en) | 1996-08-30 | 1996-08-30 | High strength ferrous sintered alloy excellent in wear resistance and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1072649A true JPH1072649A (en) | 1998-03-17 |
Family
ID=16912259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23072096A Pending JPH1072649A (en) | 1996-08-30 | 1996-08-30 | High strength ferrous sintered alloy excellent in wear resistance and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1072649A (en) |
-
1996
- 1996-08-30 JP JP23072096A patent/JPH1072649A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6146548B1 (en) | Method for producing mixed powder for powder metallurgy, method for producing sintered body, and sintered body | |
JP2799235B2 (en) | Valve seat insert for internal combustion engine and method of manufacturing the same | |
JP5958144B2 (en) | Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body | |
JP2017226921A (en) | Alloy steel powder for powder metallurgy and sintered body | |
CA2922018C (en) | Alloy steel powder for powder metallurgy and method of producing iron-based sintered body | |
WO2014196123A1 (en) | Alloy steel powder for powder metallurgy and production method for iron-based sintered body | |
JP2005530037A (en) | Prealloy iron-based powder and method for producing one or more sintered parts | |
JP5929967B2 (en) | Alloy steel powder for powder metallurgy | |
WO2005102564A1 (en) | Mixed powder for powder metallurgy | |
JP6819624B2 (en) | Iron-based mixed powder for powder metallurgy, its manufacturing method, and sintered body with excellent tensile strength and impact resistance | |
JPH06340942A (en) | Production of high strength ferrous sintered body | |
JP6515955B2 (en) | Method of manufacturing mixed powder for powder metallurgy and iron-based sintered body | |
US7347884B2 (en) | Alloy steel powder for powder metallurgy | |
JPH10504353A (en) | Iron-based powder containing chromium, molybdenum and manganese | |
CN110267754B (en) | Mixed powder for powder metallurgy, sintered body, and method for producing sintered body | |
JP5929084B2 (en) | Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same | |
JP7039692B2 (en) | Iron-based mixed powder for powder metallurgy and iron-based sintered body | |
JP3351844B2 (en) | Alloy steel powder for iron-based sintered material and method for producing the same | |
JP2000064001A (en) | Powder mixture for high strength sintered parts | |
JP2006241533A (en) | Iron based mixed powder for high strength sintered component | |
US6652618B1 (en) | Iron based mixed power high strength sintered parts | |
JPH1180803A (en) | Ferrous mixed powder for powder metallurgy | |
JPH09157805A (en) | High strength iron base sintered alloy | |
JP3303026B2 (en) | High strength iron-based sintered alloy and method for producing the same | |
JP4615191B2 (en) | Method for producing iron-based sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031028 |