JPH1070393A - Manufacture of electromagnetic shielding material and electromagnetic shielding technique - Google Patents

Manufacture of electromagnetic shielding material and electromagnetic shielding technique

Info

Publication number
JPH1070393A
JPH1070393A JP26908996A JP26908996A JPH1070393A JP H1070393 A JPH1070393 A JP H1070393A JP 26908996 A JP26908996 A JP 26908996A JP 26908996 A JP26908996 A JP 26908996A JP H1070393 A JPH1070393 A JP H1070393A
Authority
JP
Japan
Prior art keywords
conductive metal
electromagnetic shielding
spraying
film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26908996A
Other languages
Japanese (ja)
Inventor
Atsuo Mochizuki
淳夫 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP26908996A priority Critical patent/JPH1070393A/en
Publication of JPH1070393A publication Critical patent/JPH1070393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize an electromagnetic shielding material which is thin enough, high in electromagnetic shielding properties, lightweight, and manufactured at a low cost by a method wherein a conductive metal spraying film is formed on a material by spraying conductive metal through a normal temperature metal spraying method. SOLUTION: Conductive metal is sprayed on a material such as a veneer as thick as a few μm or above through a normal temperature metal spraying method for the formation of an electromagnetic shielding material. This electromagnetic shielding property imparting method is applicable to all materials such as wood, plastic, metal and so on. Therefore, when a space is demarcated by walls, all the walls are enhanced in electromagnetical shielding properties, whereby the space can be easily and electromagnetically shielded. A conductive metal spraying film formed as above is porous, so that the porous parts of the film are sealed up with sealing material so as to enable the film to be improved in stability and strength. Base coating material is previously applied onto the surface of a material so as to enhance adhesion of the sprayed film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、携帯電話等の発
する電磁波による医療機関、音楽ホ−ル等での機器等の
トラブルを防止する電磁波シ−ルド材の製造方法及び電
磁波シ−ルド工法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an electromagnetic shield material and a method of shielding electromagnetic waves for preventing troubles in medical equipment, music halls and the like caused by electromagnetic waves emitted from a portable telephone or the like. Things.

【0002】[0002]

【従来の技術】最近、携帯電話、PHS、無線LAN等
が、急速に普及している。それに伴い、これらが発する
電磁波によるトラブルが問題となっている。このような
トラブルの一例として、病院の医療機器の誤動作や音楽
会演奏中での電話等の発信音発生等の問題が挙げられ
る。従って、空間における電磁波のシ−ルドに対するニ
−ズが高まりつつある。
2. Description of the Related Art Recently, portable telephones, PHSs, wireless LANs, and the like have rapidly spread. Along with this, troubles caused by electromagnetic waves generated by these have become a problem. Examples of such troubles include problems such as malfunctions of medical equipment in hospitals and generation of telephone call sounds during music concerts. Therefore, the need for shielding electromagnetic waves in space is increasing.

【0003】現在のところ、空間における電磁波のシ−
ルド法としては、以下に示す方法が提案されている。 (1)金属製の導電性材料で空間を覆う。 (2)炭素繊維不織布やこれを基材とした複合材で空間
を覆う。 (3)まだ実施されていないが、木繊維セメント板とア
ルミエキスパンドメタルによる打ち込み型枠工法が考案
されている。
At present, the electromagnetic wave in space is
The following method has been proposed as a rule method. (1) Cover the space with a conductive material made of metal. (2) The space is covered with a carbon fiber nonwoven fabric or a composite material using the same as a base material. (3) Although not yet implemented, a driving form method using a wood fiber cement board and aluminum expanded metal has been devised.

【0004】[0004]

【発明が解決しようとする課題】上記従来工法で電磁波
シ−ルドを施す場合、既存の壁、ドア等を取り壊して、
シ−ルドを施した壁材、ドア等を取り付けなければなら
ず、また、部材どうしの継目のシ−ルドもしなければな
らないので、施工に手間がかかる問題があった。それば
かりか、金属製の材料を使用した以外のシ−ルド法で
は、100db前後の高いシ−ルド性能を得るのは非常
に困難であった。
When an electromagnetic wave shield is applied by the above-mentioned conventional method, existing walls, doors and the like are demolished.
A wall material, a door, and the like having a shield must be attached, and a joint between members must be shielded. In addition, it was very difficult to obtain a high shielding performance of about 100 db by a shielding method other than using a metal material.

【0005】また、シ−ルドを施こした材料の製造にお
いても、シ−ルド材としての厚みが必要になると共に金
属系の素材を使用した場合は、重量の増加が問題となる
等の欠点があった。そのため、これらの方法が使用でき
ない場合が生じる問題があった。そればかりか、シ−ル
ド材の製作に手間がかかり、コスト高になる問題があっ
た。
[0005] Also, in the production of a material subjected to shielding, the thickness as a shield material is required, and when a metal material is used, an increase in weight becomes a problem. was there. Therefore, there is a problem that these methods cannot be used. In addition, there was a problem that the production of the shield material was troublesome and the cost was increased.

【0006】この発明のうち請求項1に記載の発明は、
厚さが問題とならない薄い厚さで電磁波シ−ルド性能を
付与することができ、しかも軽くて低コストで製造可能
な電磁波シ−ルド材の製造方法を提供することを目的と
する。また、請求項4に記載の発明は、上記目的に加え
て、既存の壁、ドア、床等にそのまま施工可能な電磁波
シ−ルド工法を提供することを目的とする。
[0006] The invention according to claim 1 of the present invention is:
It is an object of the present invention to provide a method of manufacturing an electromagnetic shield material that can provide electromagnetic wave shielding performance with a small thickness that does not cause a problem and is light and can be manufactured at low cost. Another object of the present invention is to provide, in addition to the above object, an electromagnetic shielding method which can be directly applied to existing walls, doors, floors and the like.

【0007】[0007]

【課題を解決するための手段】本発明者等は、薄い厚さ
で導電性を付与し得る方法につき鋭意研究の結果、シ−
ルドしようとする材料に、常温金属溶射法によって、導
電性金属を溶射して、前記材料に形成した導電性金属溶
射皮膜が、極めて効果的な電磁波シ−ルド特性を示すこ
とを見いだし、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on a method capable of imparting conductivity with a small thickness, and as a result, have found that a method for forming a conductive film can be used.
According to the present invention, it has been found that a conductive metal sprayed film formed on a material to be shielded by spraying a conductive metal by a room temperature metal spraying method exhibits extremely effective electromagnetic wave shielding characteristics. Reached.

【0008】薄い厚さで電磁波シ−ルド能を付与し得る
導電塗料及び導電性高分子を使用する等の他の方法につ
いても検討したが、これらの方法では、産業上利用し得
る程度の電磁波シ−ルド能は得られなかった。
Although other methods such as the use of a conductive paint and a conductive polymer which can provide an electromagnetic wave shielding ability with a small thickness have been studied, these methods are not suitable for industrial use. No shielding ability was obtained.

【0009】本発明のうちで、請求項1に記載の発明
は、電磁波シ−ルドする材料に、常温金属溶射法によっ
て、導電性金属を溶射して、前記材料に導電性金属容射
皮膜を形成したことを特徴とする。また、請求項4に記
載の発明は、電磁波シ−ルドする空間を囲う壁材等に、
常温金属溶射法によって、導電性金属を溶射して、壁材
等に導電性金属容射皮膜を形成し、前記空間を電磁波シ
−ルドすることを特徴とする。
According to the first aspect of the present invention, a conductive metal is sprayed on a material to be shielded by electromagnetic waves by a cold metal spraying method, and a conductive metal spray coating is formed on the material. It is characterized by having been formed. In addition, the invention according to claim 4 is a method for forming a wall material surrounding a space for shielding electromagnetic waves,
The method is characterized in that a conductive metal is sprayed by a room temperature metal spraying method to form a conductive metal spray coating on a wall material or the like, and the space is shielded by electromagnetic waves.

【0010】常温金属溶射法(以下、MS工法という)
は、従来からある金属溶射法と異なり、常温で溶射を行
うため、木材を含め、あらゆる物質に対して適用可能な
溶射方法である。現在、このMS工法は、金属製品の防
錆、防食用に主として使用されているが、電磁波シ−ル
ド用としては全く使用されていない。
Room temperature metal spraying method (hereinafter referred to as MS method)
Is a thermal spraying method that can be applied to all kinds of materials including wood, because the thermal spraying is performed at room temperature, unlike the conventional metal spraying method. At present, this MS method is mainly used for rust prevention and corrosion prevention of metal products, but is not used for electromagnetic wave shielding at all.

【0011】[0011]

【発明の実施の形態】次に、本発明の実施の形態を説明
する。本発明は、MS工法により、導電性金属をベニヤ
等の材料に、数μm以上の厚さで溶射し、これを電磁波
シ−ルド用として使用するものである。電磁波シ−ルド
能を付与する材料としては、木材、プラスチック、金属
等のあらゆる物質に対して適用可能である。従って、電
磁波シ−ルドしようとする空間を形成する壁材等の全て
に電磁波シ−ルド能を付与すれば、空間を容易に電磁波
シ−ルドすることができる。
Next, an embodiment of the present invention will be described. According to the present invention, a conductive metal is sprayed onto a material such as veneer to a thickness of several μm or more by the MS method, and is used for electromagnetic wave shielding. As a material for imparting the electromagnetic wave shielding ability, any material such as wood, plastic, and metal can be applied. Therefore, if the electromagnetic wave shielding ability is given to all of the wall materials and the like forming the space in which the electromagnetic wave is to be shielded, the space can be easily shielded.

【0012】導電性金属としては、ワイヤ−にできる金
属であればどのような金属でも良く、例えば、亜鉛、
銅、銅系合金、錫、ハンダ、鉄等の導電性金属及び亜
鉛、アルミニウム擬合金が挙げられる。特に、亜鉛、ア
ルミニウム擬合金及び亜鉛が好ましい。
The conductive metal may be any metal as long as it can be made into a wire, for example, zinc,
Examples include conductive metals such as copper, copper-based alloys, tin, solder, and iron, and zinc and aluminum pseudo-alloys. Particularly, zinc, a pseudo-alloy of aluminum and zinc are preferable.

【0013】溶射皮膜は、常温ア−ク溶射機等を使用し
て溶射することにより形成することができる。擬合金溶
射皮膜は、亜鉛とアルミニウムとを同時に溶射すること
により形成することができる。導電性金属の溶射皮膜の
厚さは、数μm〜数百μmとするのが良い。数μmで十
分電磁波シ−ルド性能を発揮するし、厚すぎると、経済
的でないばかりでなく、溶射皮膜がはがれ易くなる欠点
が生じる。
The thermal spray coating can be formed by thermal spraying using a normal temperature arc sprayer or the like. The pseudo alloy spray coating can be formed by simultaneously spraying zinc and aluminum. The thickness of the conductive metal spray coating is preferably several μm to several hundred μm. When the thickness is a few μm, the electromagnetic wave shielding performance is sufficiently exhibited. When the thickness is too large, not only is it not economical, but also the sprayed coating tends to peel off.

【0014】上記のようにして形成した導電性金属溶射
皮膜は、ポ−ラスなため、溶射皮膜を安定させ、強度を
上げるため、ポ−ラス部を、封孔剤若しくは塗料で封孔
処理すると良い。また、溶射皮膜の密着度を向上させる
ため、予め下地塗料を塗布する場合もある。
Since the conductive metal spray coating formed as described above is porous, in order to stabilize the spray coating and increase the strength, the porous portion is sealed with a sealing agent or paint. good. Further, in order to improve the adhesion of the thermal spray coating, a base coating may be applied in advance.

【0015】[0015]

【実施例】【Example】

実施例1 本発明の電磁波シ−ルド材料を製造し、電磁波シ−ルド
特性と、磁気シ−ルド特性とを測定した。
Example 1 An electromagnetic shield material of the present invention was manufactured, and an electromagnetic shield characteristic and a magnetic shield characteristic were measured.

【0016】(シ−ルド材の製造)紙に、常温ア−ク溶
射機を使用して、亜鉛とアルミニウムとを溶射皮膜が、
アルミニウム55%、亜鉛45%のガルバリウム組成と
なるように同時に溶射して、50μm及び100μmの
擬合金溶射皮膜を形成した。比較のため、紙に導電性高
分子を3mmの厚さに塗布したものと、紙にNi系導電
塗料を40μmの厚さに塗布したものとを作った。
(Manufacture of shield material) A sprayed coating of zinc and aluminum is applied to paper using a room-temperature arc spraying machine.
Simultaneous thermal spraying was performed so as to have a galvalume composition of 55% aluminum and 45% zinc to form sprayed pseudo-alloy films of 50 μm and 100 μm. For comparison, a paper in which a conductive polymer was applied to a thickness of 3 mm on paper and a paper in which a Ni-based conductive paint was applied to a thickness of 40 μm on paper were prepared.

【0017】(測定法)シ−ルドボックスの間に、試料
を取り付けたときと、試料を取り付けていない時との差
を、受信機(スペクトラムアナライザ−)にて測定し、
減衰値(dB)とした。
(Measurement method) The difference between when a sample is mounted and when no sample is mounted between the shield boxes is measured by a receiver (spectrum analyzer).
The attenuation value (dB) was used.

【0018】受信機(SA)は、電磁波(50KHz)
の測定には、横河−ヒュ−レットパッカ−ド(株)製T
ype/8553Bを使用し、磁気(50〜1000K
Hz)の測定には、HEWLETT PACARD製T
ype/8554Bを使用した。尚、標準信号発生器
(SSG)としては、安立電気KK製Type/MG6
45Aを使用した。
The receiver (SA) is an electromagnetic wave (50 KHz)
Is measured using a Yokogawa-Hullet Packard Co., Ltd. T
Using ype / 8553B, magnetic (50-1000K
Hz) is measured by using HEWLETT PACARD T
ype / 8554B was used. As a standard signal generator (SSG), Type / MG6 manufactured by Anritsu Electric KK
45A was used.

【0019】上記試料について、上記測定法によって、
電磁波シ−ルド特性及び磁気シ−ルド特性を測定した。
結果を、図1及び図2に示す。 図中、+印:100μmZn/Al擬合金溶射紙 □印:50μmZn/Al擬合金溶射紙 △印:3mm導電性高分子 ○印:40μmNi系導電塗料
With respect to the above-mentioned sample, by the above-mentioned measuring method,
The electromagnetic wave shield characteristics and the magnetic shield characteristics were measured.
The results are shown in FIGS. In the figure, + mark: 100 µm Zn / Al pseudo alloy sprayed paper □ mark: 50 µm Zn / Al pseudo alloy sprayed paper △ mark: 3 mm conductive polymer ○ mark: 40 µm Ni-based conductive paint

【0020】上記結果から明らかなように、本発明の電
磁波シ−ルド材は、著しく優れた電磁波シ−ルド能を示
す。これに対し、同様に薄い被膜により電磁波シ−ルド
能を発揮する導電性高分子及びNi系導電塗料は、産業
上利用し得る程度の電磁波シ−ルド能を示さなかった。
As is clear from the above results, the electromagnetic wave shielding material of the present invention exhibits remarkably excellent electromagnetic wave shielding ability. On the other hand, the conductive polymer and the Ni-based conductive paint, which similarly exhibit an electromagnetic wave shielding ability by a thin film, did not exhibit the electromagnetic shielding ability to be industrially usable.

【0021】実施例2 電波無反射室内で、本発明のシ−ルド材の電磁波遮蔽試
験を行った。 (シ−ルド材の製造)厚さ8mmのベニヤ板に、常温ア
−ク溶射機を使用して、亜鉛単独の約100μmの溶射
皮膜と、亜鉛とアルミニウムとを溶射皮膜が、アルミニ
ウム55%、亜鉛45%のガルバリウム組成となるよう
に同時に溶射して、約100μmの擬合金溶射皮膜を形
成し、それぞれこれを試験に供した。
Example 2 An electromagnetic wave shielding test of the shield material of the present invention was performed in a radio wave anechoic chamber. (Manufacture of shield material) Using a room temperature arc spraying machine, a spray coating of about 100 μm of zinc alone, a spray coating of zinc and aluminum, 55% of aluminum, zinc on an 8 mm thick plywood Thermal spraying was carried out simultaneously so as to have a galvalume composition of 45% to form a pseudo-alloy sprayed film of about 100 μm, which was subjected to a test.

【0022】(測定条件) (1)図3に示す形状の金属製の箱4及び試験機器の配
置とした。また、可能な限り遠方電磁界の測定ができる
ようにするため、送・受信アンテナ1、2間距離と、箱
4の大きさ等についての扱いの容易性を考慮し、定周波
数範囲を300MHz以上とした。
(Measurement Conditions) (1) A metal box 4 having the shape shown in FIG. 3 and test equipment were arranged. In order to measure the far electromagnetic field as far as possible, the constant frequency range is set to 300 MHz or more in consideration of the distance between the transmitting and receiving antennas 1 and 2 and the ease of handling of the size of the box 4 and the like. And

【0023】(2)各々イメ−ジとの相互誘導による影
響を可能な限り低減化させるため、シ−ルド材3と送・
受信アンテナ1、2との間の距離及び送・受信アンテナ
1、2の種類を下記のようにして行った。 (ア)測定対象とする周波数範囲が300MHzから1
GHzの場合 送・受信アンテナ1、2として、対数周期ダイボ−ルア
レイアンテナ(通称ログベリ)を使用し、周波数下限3
00MHz(波長1m)のとき、被試験シ−ルド材3と
の間の距離は、送信アンテナ1で1m(1λ)、箱内部
の受信アンテナ2で0.6m(0.6λで周囲金属箱4
とは0.75λ)が確保できるようにした。したがっ
て、周波数が300MHzより高くなれば、一層相互誘
導は低減化されることになる。
(2) In order to minimize the influence of mutual induction with the image as much as possible,
The distance between the receiving antennas 1 and 2 and the types of the transmitting and receiving antennas 1 and 2 were determined as follows. (A) The frequency range to be measured is from 300 MHz to 1
In the case of GHz, a log-periodic diball array antenna (commonly called log veri) is used as the transmitting and receiving antennas 1 and 2, and the lower frequency limit is 3
At 00 MHz (wavelength 1 m), the distance between the shield material 3 to be tested is 1 m (1λ) for the transmitting antenna 1 and 0.6 m (0.6 λ for the surrounding metal box 4 at the receiving antenna 2 inside the box).
0.75λ) can be secured. Therefore, when the frequency is higher than 300 MHz, mutual induction is further reduced.

【0024】(イ)測定対象とする周波数範囲が1GH
zから3GHzの場合 送・受信アンテナ1、2として、ダブルリジッドガイド
アンテナを使用し、周波数下限1GHz(波長0.3
m)のとき、送信アンテナ1で0.3m(1λ)、受信
アンテナ2で0.15m(0.5λ)の距離を確保し
た。この場合も、上記(ア)と同様に、周波数が高くな
れば、相互誘導は一層低減化される。
(A) The frequency range to be measured is 1 GHz
In the case of 3 GHz to 3 GHz, a double rigid guide antenna is used as the transmitting / receiving antennas 1 and 2 and the lower frequency limit is 1 GHz (wavelength 0.3
m), a distance of 0.3 m (1λ) was secured by the transmitting antenna 1 and a distance of 0.15 m (0.5λ) was secured by the receiving antenna 2. In this case, as in (a) above, the mutual induction is further reduced as the frequency increases.

【0025】送信アンテナ1に関して、平面波となるた
めの条件として、アンテナの寸法Dと距離Rとの関係
は、次式が定式化されている。 R≧2D2/λ 上記(ア)の場合は、λ≦1m、D=0.75mである
から、R≧1.1mとなり、上記(イ)の場合は、λ≦
0.3m、D=0.14mであるから、R≧0.13m
となる。送信アンテナ1と被試験シ−ルド材1との距離
は、先に示したように、各々1m(ログベリの最長エレ
メントからは1.3m)及び0.3mとしてあるので、
この場合の条件も満たされている。
As for the transmitting antenna 1, as a condition for forming a plane wave, the relationship between the dimension D and the distance R of the antenna is formulated as follows. R ≧ 2D 2 / λ In the above case (A), λ ≦ 1 m and D = 0.75 m, so that R ≧ 1.1 m, and in the above case (A), λ ≦
Since 0.3 m and D = 0.14 m, R ≧ 0.13 m
Becomes As shown above, the distance between the transmitting antenna 1 and the shield material 1 to be tested is 1 m (1.3 m from the longest element of Logberg) and 0.3 m, respectively.
The condition in this case is also satisfied.

【0026】(3)被試験シ−ルド材3の大きさは、
(2)のアンテナ間距離において周波数300MHzの
とき、第1フレネルゾ−ンの幅を十分含む1.2mを基
本の大きさとした。また、一辺が1.2mの立方体の場
合の一次モ−ドの共振周波数は、216MHzであるの
で、上記周波数範囲300MHz以上の設定は、この点
からも妥当である。
(3) The size of the shield material 3 to be tested is
When the frequency is 300 MHz at the distance between the antennas of (2), the basic size is 1.2 m which sufficiently includes the width of the first Fresnel zone. In addition, since the resonance frequency in the primary mode in the case of a cube having a side of 1.2 m is 216 MHz, setting the above frequency range of 300 MHz or more is appropriate from this point as well.

【0027】(4)更に内部の不要な反射を防止するた
め、基本型を変形させて、試験シ−ルド材3取り付け部
で一辺が1.5mで対向する奥の部分の辺が、0.85
m×0.65mのホ−ン型とし、後面及び側面に電波吸
収材を設置することにより、内部のQを下げ、高次のモ
−ドの共振を低減化させるようにした。
(4) Further, in order to prevent unnecessary reflection inside, the basic mold is deformed so that the side of the deep portion which is 1.5 m on one side and 0. 85
By adopting a horn type of mx 0.65 m and installing radio wave absorbers on the rear and side surfaces, the internal Q is lowered, and the resonance of higher mode is reduced.

【0028】(5)送信アンテナ1は、床面から1.4
mの高さに設定し、且つ300MHzから1GHzの場
合は、床面に電波吸収材を敷き、反射による影響を取り
除いた。 (6)被被試験シ−ルド材3の箱への取り付け面の接触
は、網線(幅3.5cm、厚さ0.2cm)を箱のフラ
ンジ部分5と被被試験シ−ルド材3との間に挟んだ。上
記のようにして測定した結果を、次表1及び図4に示
す。
(5) The transmitting antenna 1 is 1.4 mm from the floor.
When the height was set to m and the frequency was from 300 MHz to 1 GHz, a radio wave absorbing material was laid on the floor to remove the influence of reflection. (6) For the contact of the mounting surface of the shielded material 3 to the box with the box under test, a mesh line (3.5 cm wide, 0.2 cm thick) is drawn with the flange portion 5 of the box and the shielded material 3 under test. Sandwiched between. The results measured as described above are shown in the following Table 1 and FIG.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明の請求項1に記載の発明によれ
ば、厚さが問題とならない薄い厚さで効果的な電磁波シ
−ルド性能を付与することができると共に、軽くて低コ
ストで製造できる等、従来のこの種の電磁波シ−ルド材
の製造方法と比べて著しく顕著な効果を奏する。
According to the first aspect of the present invention, it is possible to provide an effective electromagnetic wave shielding performance at a small thickness where the thickness does not matter, and at the same time it is light and low cost. For example, it can produce a remarkably remarkable effect as compared with a conventional method of manufacturing this kind of electromagnetic shielding material.

【0031】また、請求項4に記載の発明によれば、上
記効果に加えて、既存の壁、ドア、床等にそのまま容易
に現場で施工することができるので、電磁波シ−ルド空
間を容易に形成することができる。
According to the fourth aspect of the present invention, in addition to the above-described effects, the electromagnetic wave shield space can be easily constructed on the existing wall, door, floor, or the like as it is. Can be formed.

【0032】[0032]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で測定した電磁波シ−ルド特性の線図
を示す。
FIG. 1 shows a diagram of electromagnetic wave shield characteristics measured in Example 1.

【図2】実施例1で測定した磁気シ−ルド特性の線図を
示す。
FIG. 2 shows a diagram of a magnetic shield characteristic measured in Example 1.

【図3】実施例2で測定した電磁波シ−ルド特性の線図
を示す。
FIG. 3 shows a diagram of electromagnetic wave shield characteristics measured in Example 2.

【符号の説明】[Explanation of symbols]

+印:100μmZn/Al擬合金溶射紙 □印:50μmZn/Al擬合金溶射紙 △印:3mm導電性高分子 ○印:40μmNi系導電塗料 + Mark: 100 μm Zn / Al pseudo alloy sprayed paper □ mark: 50 μm Zn / Al pseudo alloy sprayed paper △: 3 mm conductive polymer ○: 40 μm Ni-based conductive paint

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年12月6日[Submission date] December 6, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で測定した電磁波シールド特性の線図
を示す。
FIG. 1 shows a diagram of electromagnetic wave shielding characteristics measured in Example 1.

【図2】実施例1で測定した磁気シールド特性の線図を
示す。
FIG. 2 shows a diagram of magnetic shield characteristics measured in Example 1.

【図3】実施例2の測定に使用した測定系の構成を示す
斜視図である。
FIG. 3 is a perspective view illustrating a configuration of a measurement system used for measurement in Example 2.

【図4】実施例2で測定した電磁波シールド特性の線図
を示す。
FIG. 4 shows a diagram of electromagnetic wave shielding characteristics measured in Example 2.

【符号の説明】 +印:100μmZn/Al擬合金溶射紙 □印:50μmZn/Al擬合金溶射紙 △印:3mm導電性高分子 ○印:40μmNi系導電塗料[Explanation of symbols] +: 100 μm Zn / Al pseudo alloy sprayed paper □: 50 μm Zn / Al pseudo alloy sprayed paper △: 3 mm conductive polymer ○: 40 μm Ni-based conductive paint

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電磁波シ−ルドする材料に、常温金属溶射
法によって、導電性金属を溶射して、前記材料に導電性
金属溶射皮膜を形成したことを特徴とする電磁波シ−ル
ド材の製造方法。
1. A method of manufacturing an electromagnetic shield material, comprising: spraying a conductive metal onto a material to be shielded by a room temperature metal spraying method to form a conductive metal sprayed coating on the material. Method.
【請求項2】前記導電性金属が、亜鉛、アルミニウム擬
合金または亜鉛である請求項1に記載のシ−ルド材の製
造方法。
2. The method according to claim 1, wherein the conductive metal is zinc, a pseudo-alloy of aluminum or zinc.
【請求項3】前記導電性金属溶射皮膜のポ−ラス部を、
封孔剤若しくは塗料で封孔処理してなる請求項1または
2に記載のシ−ルド材の製造方法。
3. A porous portion of the conductive metal spray coating,
3. The method for producing a shield material according to claim 1, wherein the sealing material is sealed with a sealing agent or a paint.
【請求項4】電磁波シ−ルドする空間を囲う壁材等に、
常温金属溶射法によって、導電性金属を溶射して、壁材
等に導電性金属溶射皮膜を形成し、前記空間を電磁波シ
−ルドすることを特徴とする電磁波シ−ルド工法。
4. A wall material or the like surrounding a space for shielding electromagnetic waves,
An electromagnetic wave shielding method comprising spraying a conductive metal by a room temperature metal spraying method, forming a conductive metal sprayed coating on a wall material or the like, and shielding the space by electromagnetic waves.
【請求項5】前記導電性金属が、亜鉛、アルミニウム擬
合金または亜鉛である請求項4に記載のシ−ルド工法。
5. The method according to claim 4, wherein said conductive metal is zinc, an aluminum pseudo-alloy or zinc.
【請求項6】前記導電性金属容射皮膜のポ−ラス部を、
封孔剤若しくは塗料で封孔処理してなる請求項4または
5に記載のシ−ルド工法。
6. A porous portion of said conductive metal spray coating,
The shielding method according to claim 4 or 5, wherein the sealing process is performed with a sealing agent or a paint.
JP26908996A 1996-06-19 1996-09-20 Manufacture of electromagnetic shielding material and electromagnetic shielding technique Pending JPH1070393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26908996A JPH1070393A (en) 1996-06-19 1996-09-20 Manufacture of electromagnetic shielding material and electromagnetic shielding technique

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17722196 1996-06-19
JP8-177221 1996-06-19
JP26908996A JPH1070393A (en) 1996-06-19 1996-09-20 Manufacture of electromagnetic shielding material and electromagnetic shielding technique

Publications (1)

Publication Number Publication Date
JPH1070393A true JPH1070393A (en) 1998-03-10

Family

ID=26497841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26908996A Pending JPH1070393A (en) 1996-06-19 1996-09-20 Manufacture of electromagnetic shielding material and electromagnetic shielding technique

Country Status (1)

Country Link
JP (1) JPH1070393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076701A (en) * 2014-10-07 2016-05-12 ジャパンファインスチール株式会社 Electromagnetic wave shield film and compact including the same
JP2020155685A (en) * 2019-03-22 2020-09-24 株式会社イノアックコーポレーション Binding material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076701A (en) * 2014-10-07 2016-05-12 ジャパンファインスチール株式会社 Electromagnetic wave shield film and compact including the same
JP2020155685A (en) * 2019-03-22 2020-09-24 株式会社イノアックコーポレーション Binding material

Similar Documents

Publication Publication Date Title
US4890083A (en) Shielding material and shielded room
USH526H (en) Non-metallic chassis structure with electromagnetic field attenuating capability
JP2510880B2 (en) Multilayer type electromagnetic wave absorber and anechoic chamber consisting of the electromagnetic wave absorber
US7948424B2 (en) Radio wave absorber and producing method thereof
KR20030007399A (en) Radio-wave absorber
JP2776753B2 (en) Plastic shielded housing
JPH02153598A (en) Electromagnetically shielded room provided with reflective plate
US5198290A (en) Electromagnetic wave shielding material
JPH1070393A (en) Manufacture of electromagnetic shielding material and electromagnetic shielding technique
JP2007091859A (en) Conductive paint
CA1236542A (en) Electronic article surveillance system having microstrip antennas
JPH10126091A (en) Window glass with electromagnetic shielding capability
US4155066A (en) Transducer structure
JPH09186485A (en) Room for radio communication
JPH02232997A (en) Outer wall structure of ground building
JP2005281357A (en) Conductive coating
JPS6243560B2 (en)
US20030198800A1 (en) Plastic element for the confinement of HF reflections
JP2003060383A (en) Electromagnetic wave absorbing sheet
JP2000196288A (en) Electromagnetic shielding structure
JP3141099B2 (en) Plastic flooring with electromagnetic shielding performance
Oda Radio wave absorptive building materials for depressing multipath indoors
JPH0236320Y2 (en)
JPH10335878A (en) Electromagnetic shield structure for openings
KR100341058B1 (en) Shield for protecting magnetic field of monitor and the method of manufacturing thereof