JPH1070098A - Planarization method - Google Patents

Planarization method

Info

Publication number
JPH1070098A
JPH1070098A JP22699296A JP22699296A JPH1070098A JP H1070098 A JPH1070098 A JP H1070098A JP 22699296 A JP22699296 A JP 22699296A JP 22699296 A JP22699296 A JP 22699296A JP H1070098 A JPH1070098 A JP H1070098A
Authority
JP
Japan
Prior art keywords
polishing
layer
substrate
easy
concave portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22699296A
Other languages
Japanese (ja)
Inventor
Naoki Nagashima
直樹 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22699296A priority Critical patent/JPH1070098A/en
Publication of JPH1070098A publication Critical patent/JPH1070098A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To polish a substrate where wide and narrow recesses are mixed uniformly by employing a method for temporarily achieving planarization in the way of first polishing for a second easy polishing layer and a third polishing stop layer and then achieving complete planarization by continuing second polishing. SOLUTION: A first polishing stop layer 21, a first easy polishing layer 31, a second polishing stop layer 22, a second easy polishing layer 32 and a third polishing stop layer 23 are deposited sequentially. The third polishing stop layer 23 and the second easy polishing layer 32 are then polished by first polishing, i.e., chemical mechanical polishing, until the second polishing stop layer 22 is exposed at a protrusion on a substrate 10. After achieving temporary planarization by first polishing, second polishing, i.e., chemical mechanical polishing, is performed. More specifically, the second polishing stop layer 22, the first easy polishing layer 31 and the second easy polishing layer 32 are polished until the first polishing stop layer 21 at a protrusion on the substrate and the second polishing stop layer 22 at a recess in the substrate are exposed. Uniform polishing can be performed by taking account of each polishing speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置のいわ
ゆるトレンチ素子分離領域の平坦化、層間絶縁膜の平坦
化に適用できる平坦化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planarization method applicable to planarization of a so-called trench element isolation region of a semiconductor device and planarization of an interlayer insulating film.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、半導体装置の素子分離としていわゆるLOCOS法
が用いられているが、このLOCOS法は、製造の際に
窒化シリコン膜で覆われている部分の末端にも酸化膜が
食い込み、バーズビークが生じるため、バーズビークの
面積が不要な面積となり、微細化や大容量化に不利であ
る。
2. Description of the Related Art Heretofore, a so-called LOCOS method has been used as an element isolation of a semiconductor device. However, this LOCOS method has a problem that a portion covered with a silicon nitride film at the time of manufacturing. Since the oxide film penetrates into the ends of the substrate, bird's beak is generated, and the area of the bird's beak becomes unnecessary, which is disadvantageous for miniaturization and large capacity.

【0003】そのため、半導体基板に反応性イオンエッ
チングなどで垂直に溝部を形成し、この溝部内を含んで
絶縁膜を堆積し、その後溝部以外の部分をCMP(化学
的機械研磨法)等の研磨方法で削り取り、溝部内に絶縁
膜を残し、これにより溝部を絶縁膜で埋め込むいわゆる
トレンチ素子分離方法がある。この方法によれば、バー
ズビークがなく、集積度を向上させるには有利である。
[0003] Therefore, a groove is formed vertically in a semiconductor substrate by reactive ion etching or the like, an insulating film is deposited including the inside of the groove, and the other parts than the groove are polished by CMP (chemical mechanical polishing) or the like. There is a so-called trench element isolation method in which the trench is polished by a method to leave an insulating film in the trench, thereby filling the trench with the insulating film. According to this method, there is no bird's beak, which is advantageous for improving the degree of integration.

【0004】しかしながら、このトレンチ素子分離法
は、図3に示すように、基板10にトレンチ幅が広い部
分WTと狭い部分NTが混在する場合、基板の凹凸部を
埋める絶縁層ILをCMP等で研磨する際、同図の破線
に示すように、トレンチ幅の広い溝部WTの絶縁膜が過
剰に研削されてしまい、半導体装置全体での平坦化が不
十分になるという問題がある。
However, in this trench element isolation method, as shown in FIG. 3, when the substrate 10 has a portion WT having a large trench width and a portion NT having a small trench width, the insulating layer IL filling the uneven portion of the substrate is formed by CMP or the like. During polishing, as shown by a broken line in the figure, there is a problem that the insulating film of the trench WT having a large trench width is excessively ground, and the planarization of the entire semiconductor device becomes insufficient.

【0005】一方、半導体装置の層間絶縁膜に凹凸があ
ると、フォトリソグラフィーの露光深度を超え、レジス
トパターンの線幅などが変動して所定のパターンが得ら
れない場合が生じる。また、配線を乗せる層間絶縁膜に
凹凸があると、段差部でステップカバレッジが悪くな
り、歩留まりが低下したり、配線層の抵抗が上昇すると
いう問題がある。そのため、層間絶縁膜の平坦化技術は
重要であり、その平坦化技術の中でも機械研磨や化学的
機械研磨法は、BPSGのリフローなどより一層均一な
平坦化方法であるが、やはり上述した広い面積の凹部が
ある場合、その広い部分で研磨が進行して平坦化が不十
分になるという問題がある。
On the other hand, if the interlayer insulating film of the semiconductor device has irregularities, it may exceed the exposure depth of photolithography, and the line width of the resist pattern may fluctuate, and a predetermined pattern may not be obtained. Further, if the interlayer insulating film on which the wiring is provided has irregularities, there is a problem that the step coverage deteriorates at the step portion, the yield decreases, and the resistance of the wiring layer increases. Therefore, the planarization technique of the interlayer insulating film is important, and among the planarization techniques, the mechanical polishing and the chemical mechanical polishing are more uniform planarization methods such as BPSG reflow. In the case where there is a concave portion, there is a problem that polishing proceeds in a wide portion thereof and planarization becomes insufficient.

【0006】本発明は、上記事情に鑑みなされたもの
で、広い面積の凹部と狭い面積の凹部とが混在する基体
に対して均一に研磨できる平坦化方法を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a flattening method capable of uniformly polishing a substrate having a mixture of a large-area concave portion and a small-area concave portion.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、凹部と凸部を有する基体の少なくとも凸
部に第1の研磨停止層を形成し、該第1の研磨停止層よ
りも研磨速度が大きい第1の易研磨層で該第1の研磨停
止層を含む基体の凹凸部を被覆し、該第1の易研磨層の
上に第1の易研磨層より研磨速度が小さい第2の研磨停
止層を形成し、該第2の研磨停止層の上に該第2の研磨
停止層より研磨速度が大きい第2の易研磨層を形成し、
該第2の易研磨層の上に第2の易研磨層より研磨速度が
小さい第3の研磨停止層を形成し、上記基体の凹部に存
する第3の研磨停止層と基体の凸部に存する第2の研磨
停止層とに達するまで上記第3の研磨停止層と第2の易
研磨層とを研磨する第1の研磨工程と、該第1の研磨工
程後、上記基体の凹部に存する第2の研磨停止層と基体
の凸部に存する第1の研磨停止層とに達するまで上記第
3の研磨停止層と第2の易研磨層と第2の研磨停止層と
を研磨する第2の研磨工程とを有することを特徴とする
平坦化方法を提供する。
According to the present invention, in order to achieve the above object, a first polishing stopper layer is formed on at least a convex portion of a substrate having a concave portion and a convex portion. The first polishing layer having a higher polishing rate covers the uneven portion of the substrate including the first polishing stopper layer, and the polishing rate is higher than that of the first polishing layer on the first polishing layer. Forming a small second polishing stop layer, forming a second easy polishing layer having a higher polishing rate than the second polishing stop layer on the second polishing stop layer,
A third polishing stopper layer having a lower polishing rate than that of the second polishing layer is formed on the second polishing layer, and the third polishing stopper layer exists in the concave portion of the base and the convex portion of the substrate. A first polishing step of polishing the third polishing stop layer and the second easy-polishing layer until the second polishing stop layer is reached; and after the first polishing step, a first polishing step existing in the concave portion of the base. Polishing the third polishing stop layer, the second easy-polishing layer, and the second polishing stop layer until reaching the second polishing stop layer and the first polishing stop layer existing in the convex portion of the base. And a polishing step.

【0008】本発明の平坦化方法は、基体の凸部に第1
の研磨停止層を形成し、その後、基体の凹凸を覆って第
1の易研磨層、第2の研磨停止層、第2の易研磨層、第
3の研磨停止層を順次積層する。2層の易研磨層は、3
層の研磨停止層より研磨速度が大きい。この場合、基体
凹部における第3の研磨停止層の上面と、基体凸部にお
ける第2の研磨層上面の基体凹部底面からの高さをほぼ
等しくする。また、基体凹部における第2の研磨停止層
の上面と、基体凸部における第1の研磨停止層上面の基
体凹部底面からの高さをほぼ等しくする。
According to the planarization method of the present invention, the first projection is formed on the projection of the base.
Then, a first easy-polishing layer, a second polishing-stopping layer, a second easy-polishing layer, and a third polishing-stopping layer are sequentially laminated so as to cover the irregularities of the substrate. The two easy polishing layers are 3
The polishing rate is higher than the polishing stop layer of the layer. In this case, the height of the upper surface of the third polishing stop layer in the concave portion of the substrate and the height of the upper surface of the second polishing layer in the convex portion of the substrate from the bottom surface of the concave portion of the substrate are made substantially equal. Further, the height of the upper surface of the second polishing stopper layer in the concave portion of the substrate and the height of the upper surface of the first polishing stopper layer in the convex portion of the substrate from the bottom surface of the concave portion of the substrate are made substantially equal.

【0009】このように基体に各層を形成した後、ま
ず、第1の研磨を行い、第3の研磨停止層と第2の易研
磨層とを研磨する。すると、基体の凸部においては、第
3の研磨停止層がまず削られ、続いて第2の易研磨層が
削られる。第2の易研磨層は、研磨されやすいので、研
磨は速く進行する。そして、凹部における第3の研磨停
止層と凸部における第2の研磨停止層の上面はほぼ同じ
高さであるので、基体の凸部においては第2の研磨停止
層が露出すると共に、基体の凹部においては第3の研磨
停止層の研磨が始まる。これらの第2の研磨停止層と第
3の研磨停止層とは研磨の速度が遅いので、ここで一旦
研磨の速度が遅くなる。そのため、第1の研磨の終了は
容易に判断できる。この第1の研磨が終了したときは、
基体の凹部、凸部両方に研磨停止層があるので、凹部の
面積が広くても、凹部の研磨が急速に行われることはな
く、全体に均一な厚さの研磨が達成される。
After forming each layer on the substrate as described above, first, the first polishing is performed, and the third polishing stop layer and the second easy-polishing layer are polished. Then, in the convex portion of the base, the third polishing stopper layer is firstly shaved, and then the second easy-polishing layer is shaved. Since the second easy-polishing layer is easily polished, the polishing proceeds quickly. Since the upper surface of the third polishing stopper layer in the concave portion and the upper surface of the second polishing stopper layer in the convex portion are substantially the same height, the second polishing stopper layer is exposed in the convex portion of the base, and In the recess, polishing of the third polishing stopper layer starts. Since the second polishing stop layer and the third polishing stop layer have a low polishing speed, the polishing speed is temporarily reduced here. Therefore, the end of the first polishing can be easily determined. When this first polishing is completed,
Since there is a polishing stopper layer on both the concave portion and the convex portion of the base, even if the area of the concave portion is large, polishing of the concave portion is not performed rapidly, and polishing of a uniform thickness is achieved as a whole.

【0010】次に、第2の研磨を行う。第1の研磨で均
一な厚さの研磨が達成されているので、第2の研磨では
全体に均一な研磨となるように研磨を行うことが好まし
い。第2の研磨で、まず、基体の凹部に存する第3の研
磨停止層と基体の凸部に存する第2の研磨停止層が削ら
れる。そして、基体の凸部に存する第1の易研磨層と基
体の凹部における第2の易研磨層が主として削られてい
く。好ましくは、これらの第1の易研磨層と第2の易研
磨層の研磨速度を同じ程度にする。そして、凹部におけ
る第2の研磨停止層と凸部における第1の研磨停止層の
上面はほぼ同じ高さであるので、基体の凸部に存する第
1の研磨停止層が露出すると共に、基体の凹部における
第2の研磨停止層が露出する。これらの研磨停止層は研
磨速度が遅いので、ここで研磨を容易に停止することが
できる。
Next, a second polishing is performed. Since polishing with a uniform thickness has been achieved in the first polishing, it is preferable to perform polishing in the second polishing so that the entire polishing is uniform. In the second polishing, first, the third polishing stopper layer existing in the concave portion of the substrate and the second polishing stopper layer existing in the convex portion of the substrate are removed. Then, the first easy-polishing layer existing in the convex portion of the base and the second easy-polishing layer in the concave portion of the base are mainly scraped. Preferably, the polishing rates of the first easy-polishing layer and the second easy-polishing layer are set to be approximately the same. Since the upper surface of the second polishing stopper layer in the concave portion and the upper surface of the first polishing stopper layer in the convex portion are substantially the same height, the first polishing stopper layer existing in the convex portion of the base is exposed, and The second polishing stop layer in the recess is exposed. Since these polishing stopper layers have a low polishing rate, the polishing can be easily stopped here.

【0011】その結果、基体の凹部においては、第2の
研磨停止層が凹部がそれ以上研磨されることを防止し、
基体の凸部においては、第1の研磨停止層がそれ以上の
研磨を防止するため、面積の広い凹部があっても、基体
の凹凸部全体での均一な研磨を達成することができる。
As a result, in the concave portion of the base, the second polishing stopper layer prevents the concave portion from being further polished,
In the convex portion of the substrate, the first polishing stopper layer prevents further polishing, so that even if there is a concave portion having a large area, uniform polishing can be achieved over the entire concave / convex portion of the substrate.

【0012】この場合、1回目の研磨と2回目の研磨と
は、同一の条件で連続して行うことができ、必ずしも別
の研磨を意味するものではない。このように、本発明の
平坦化方法は、研磨の途中で一旦平坦化を達成(第1の
研磨)した後、更に研磨を続けて平坦化を達成(第2の
研磨)する手法を採用している。そのため、局所的な研
磨を防止し、被研磨面の均一な研磨が可能であり、被研
磨面全体での平坦化を達成することができる。
In this case, the first polishing and the second polishing can be performed continuously under the same conditions, and do not necessarily mean different polishing. As described above, the planarization method of the present invention employs a method of achieving planarization once (first polishing) during polishing, and then continuing polishing to achieve planarization (second polishing). ing. Therefore, local polishing can be prevented, the surface to be polished can be uniformly polished, and the entire surface to be polished can be flattened.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明するが、本発明は、下記の実施の形態に限定され
るものではない。本発明の平坦化方法は、研磨停止層と
易研磨層とを組み合わせて、平坦化を達成するものであ
る。ここでいう研磨停止層と易研磨層とは、相対的な研
磨速度が、それぞれ小さい、大きいという意味であり、
研磨方法によっても変動する相対的なものである。例え
ばCMPを用いると研磨速度が大きくなるが、通常の機
械研磨では研磨速度が小さくなるものもある。 [第1実施形態]この実施形態では、いわゆるトレンチ
素子分離領域を形成するための平坦化方法を図1を参照
して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments. The planarization method of the present invention achieves planarization by combining a polishing stopper layer and an easy polishing layer. Here, the polishing stop layer and the easy-polishing layer mean that the relative polishing rates are small and large, respectively.
This is a relative value that varies depending on the polishing method. For example, when CMP is used, the polishing rate increases, but in some cases, the polishing rate decreases in normal mechanical polishing. [First Embodiment] In this embodiment, a planarization method for forming a so-called trench element isolation region will be described with reference to FIG.

【0014】まず、図1(a)に示すように、基体とし
ての半導体基板10に例えば後に形成するシリコン窒化
膜の応力を緩和するために、従来法によるCVD法によ
りシリコン酸化膜20を例えば50nm程度堆積し、続
いて従来法によるCVDにより、第1の研磨停止層とし
てのシリコン窒化膜21を例えば100nm程度堆積す
る。この後、幅の狭い分離領域NTと幅の広い分離領域
WTを形成するようにフォトリソグラフィにより素子分
離領域のみレジストR1を開口する。次に、従来法によ
る反応性イオンエッチング等で異方性エッチングを行っ
てシリコン窒化膜21、シリコン酸化膜20、更にシリ
コン基板10をエッチングする。このときのシリコン基
板エッチング量(トレンチ深さ)H0 は、例えば500
nmである。これにより、図1(a)に示すように、幅
の狭いトレンチNTと幅の広いトレンチWTを有する基
板の凸部(基板表面)に第1の研磨停止層21が存する
構造となる。このとき、第1の研磨停止層21の上面の
高さ凸H1 は、基板凹部面11を基準とすると(基準点
は以下同様)500+50+100=650nmであ
る。
First, as shown in FIG. 1A, in order to relieve the stress of, for example, a silicon nitride film to be formed later on a semiconductor substrate 10 as a base, a silicon oxide film 20 of, eg, 50 nm is formed by a conventional CVD method. Then, a silicon nitride film 21 as a first polishing stopper layer is deposited to a thickness of, for example, about 100 nm by a conventional CVD method. Thereafter, the resist R1 is opened only in the element isolation region by photolithography so as to form the narrow isolation region NT and the wide isolation region WT. Next, the silicon nitride film 21, the silicon oxide film 20, and the silicon substrate 10 are etched by performing anisotropic etching by reactive ion etching or the like according to a conventional method. At this time, the silicon substrate etching amount (trench depth) H 0 is, for example, 500
nm. As a result, as shown in FIG. 1A, a structure in which the first polishing stopper layer 21 exists in the convex portion (substrate surface) of the substrate having the narrow trench NT and the wide trench WT. In this case, the height convex H 1 of the upper surface of the first polishing stopper layer 21, when referenced to the substrate recess surface 11 (reference point hereinafter the same) is 500 + 50 + 100 = 650nm.

【0015】基板にトレンチ用の溝NT、WTを形成し
た後、図1(b)に示すように、レジストR1を除去
し、第1の易研磨層としてのシリコン酸化膜31を減圧
CVD法や常圧CVD法等で500nm堆積する。この
シリコン酸化膜31は、トレンチ溝NT、WTを埋め込
んでトレンチ分離領域を構成する材料である。その後、
第2の研磨停止層としての例えばシリコン窒化膜22を
CVD法などで150nm堆積する。次いで、第2の易
研磨層としての例えばBPSG膜32を例えば低圧CV
D法により600nm堆積し、更に第3の研磨停止層と
しての例えばシリコン酸化膜23を100nm堆積す
る。第3の研磨停止層23として、窒化シリコンを堆積
しても良い。
After the trenches NT and WT are formed in the substrate, as shown in FIG. 1B, the resist R1 is removed, and the silicon oxide film 31 as the first easily polished layer is formed by a low pressure CVD method or the like. Deposit 500 nm by a normal pressure CVD method or the like. The silicon oxide film 31 is a material that fills the trenches NT and WT to form a trench isolation region. afterwards,
For example, a silicon nitride film 22 as a second polishing stopper layer is deposited to a thickness of 150 nm by a CVD method or the like. Next, for example, a BPSG film 32 as a second easy-to-polish layer is
A 600 nm is deposited by the method D, and a silicon oxide film 23 as a third polishing stopper layer is further deposited to a thickness of 100 nm, for example. As the third polishing stopper layer 23, silicon nitride may be deposited.

【0016】この場合、第1の易研磨層としての酸化シ
リコン31は、CMPの機械研磨性が大きい場合は窒化
シリコンより研磨速度が大きく、窒化シリコンとの関係
では易研磨層となる。しかし、CMPで化学的研磨性を
大きくして研磨する場合、例えばBPSGよりも研磨速
度は小さく、BPSGとの関係では研磨停止層となりう
る。易研磨層と研磨停止層の研磨の条件などで変化する
相対的な概念である。研磨停止層として、上記窒化シリ
コン、酸化シリコンの他、例えばアルミナ、TiO2
のセラミック、金属酸化物等を例示することができる。
また、易研磨層としては、BPSGの他、例えば多結晶
シリコン、あるいはPSG、BSG、AsSG、PbS
G、SbSG等の不純物を含有する酸化シリコンを例示
することができる。
In this case, the silicon oxide 31 as the first easily polished layer has a higher polishing rate than silicon nitride when the mechanical polishing property of CMP is high, and becomes an easily polished layer in relation to silicon nitride. However, when polishing is performed by increasing the chemical polishing property by CMP, for example, the polishing rate is lower than that of BPSG, and it may be a polishing stop layer in relation to BPSG. This is a relative concept that changes depending on the polishing conditions of the easy-polishing layer and the polishing stopper layer. Examples of the polishing stopper layer include, in addition to the above silicon nitride and silicon oxide, ceramics such as alumina and TiO 2 , metal oxides, and the like.
In addition, as the easily polished layer, besides BPSG, for example, polycrystalline silicon, PSG, BSG, AsSG, PbS
Silicon oxide containing impurities such as G and SbSG can be given as an example.

【0017】また、図1(b)に示すように、第2の研
磨停止層22の基板の凸部における上面の高さ凸H
2 は、500+150+500+150=1300n
m、第2の研磨停止層22の基板の凹部における上面の
高さ凹H2 は、500+150=650nm、第3の研
磨停止層23の基板の凹部における上面の高さ凹H
3 は、500+150+600+100=1350nm
である。つまり、基板凸部における第1の研磨停止層2
1の上面の高さ凸H1 =基板凹部における第2の研磨停
止層22の上面の高さ凹H2 =650nmであり、ほぼ
等しい高さとなっている。また、基板凸部における第2
研磨停止層22の上面の高さ凸H2 =1300nm≒基
板凹部における第3の研磨停止層23の上面の高さ凹H
3 =1350nmでほぼ等しい高さとなっている。ここ
でいうほぼ等しいとは、測定誤差、測定個所による誤差
を含んで被研磨面の厚さのばらつきがばらつきの許容範
囲にあるまでを含み比較的広い概念である。なお、基板
凹部における第3の研磨停止層23上面の高さ凹H
3 が、基板凸部における第3の研磨停止層23の高さ凸
3 よりやや高いのは、BPSG層32が研磨されてい
る間に凹部の第3の研磨停止層23が少し研磨を受ける
ため、マージンを与えるためである。
Further, as shown in FIG. 1B, the height H of the upper surface of the convex portion of the substrate of the second polishing stopper layer 22 is raised.
2 is 500 + 150 + 500 + 150 = 1300n
m, the height H 2 of the upper surface of the concave portion of the substrate of the second polishing stopper layer 22 is 500 + 150 = 650 nm, and the height H of the upper surface of the concave portion of the substrate of the third polishing stopper layer 23 is H
3 is 500 + 150 + 600 + 100 = 1350 nm
It is. That is, the first polishing stopper layer 2 in the substrate convex portion
1 of the height of the upper surface convex H 1 = the height concave H 2 = 650 nm of the upper surface of the second polishing stopper layer 22 in the substrate recess, has a substantially equal height. In addition, the second in the substrate convex portion
Height convexity H 2 of upper surface of polishing stopper layer 22 = 1300 nm ≒ Height concave height H of upper surface of third polishing stopper layer 23 in substrate concave portion
The heights are almost equal at 3 = 1350 nm. The term “substantially equal” as used herein is a relatively broad concept including a variation in the thickness of the polished surface including an error due to a measurement error and a measurement location within an allowable range of the variation. The height H of the upper surface of the third polishing stopper layer 23 in the recess of the substrate is H.
The reason why 3 is slightly higher than the height H 3 of the third polishing stopper layer 23 in the convex portion of the substrate is that the third polishing stopper layer 23 in the concave portion is slightly polished while the BPSG layer 32 is being polished. Therefore, a margin is given.

【0018】図1(b)に示すような多層研磨層を成膜
した後、図1(c)に示すように、第1の研磨として、
例えば化学的機械研磨法により、第3の研磨停止層とし
てのシリコン酸化膜23及び第2の易研磨層としてのB
PSG層32を研磨し、基板の凸部の第2の研磨停止層
としての窒化シリコン膜22が露出するまで研磨する。
このとき、基板凸部の第3の研磨停止層としてのシリコ
ン酸化膜22は、凹部のシリコン酸化膜より強い研磨力
を受けるため、基板凸部のシリコン酸化膜23は消失
し、研磨速度の速いBPSGが急速に研磨されて凹部の
シリコン酸化膜23が消失しないうちに凸部のシリコン
窒化膜22が露出する。このとき、凸部のシリコン窒化
膜22と凹部のシリコン酸化膜23とは、ほぼ同じ高さ
であるため、表面は平坦になる。
After forming a multi-layer polishing layer as shown in FIG. 1B, as shown in FIG.
For example, by a chemical mechanical polishing method, a silicon oxide film 23 as a third polishing stopper layer and B as a second easily polished layer
The PSG layer 32 is polished until the silicon nitride film 22 serving as a second polishing stopper layer on the convex portion of the substrate is exposed.
At this time, since the silicon oxide film 22 as the third polishing stopper layer of the substrate convex portion receives a stronger polishing force than the silicon oxide film of the concave portion, the silicon oxide film 23 of the substrate convex portion disappears, and the polishing rate is high. Before the BPSG is rapidly polished and the silicon oxide film 23 in the concave portion does not disappear, the silicon nitride film 22 in the convex portion is exposed. At this time, since the silicon nitride film 22 in the convex portion and the silicon oxide film 23 in the concave portion are almost the same height, the surface becomes flat.

【0019】この第1の研磨としては、化学的作用が大
きなCMPを用いることが好ましい。BPSGのような
不純物を含有するガラスは、不純物と研磨液との化学反
応によって研磨が進行するので、BPSG膜とシリコン
酸化膜との研磨速度に大きな差を生じさせて、基板凹部
の酸化シリコン23を研磨させずにBPSG32だけを
研磨する工程が可能になる。
As the first polishing, it is preferable to use CMP having a large chemical action. Polishing of glass containing impurities such as BPSG progresses due to a chemical reaction between the impurities and the polishing solution, so that a large difference is generated in the polishing rate between the BPSG film and the silicon oxide film, and the silicon oxide 23 in the substrate recesses is formed. A process of polishing only the BPSG 32 without polishing the substrate.

【0020】第1の研磨で一旦平坦化を達成した後、更
に、図1(d)に示すように、第2の研磨を例えば化学
的機械研磨で行う。この研磨では、第2の研磨停止層と
してのシリコン窒化膜22、第1の易研磨層としての酸
化シリコン31、第2の易研磨層としてのBPSG層3
2を研磨し、基板凸部の第1の研磨停止層としてのシリ
コン窒化膜21及び基板凹部の第2の研磨停止層として
のシリコン窒化膜22が露出するまで研磨を行う。第2
の研磨においては、化学的機械研磨の機械的研磨性を高
めた研磨法を採用することが好ましい。これにより、第
1の易研磨層としてのシリコン酸化膜31と第2の易研
磨層としてのBPSG層32の研磨速度の差を第1の研
磨法によるものより小さくさせ、均一な研磨を行うこと
ができる。
After the planarization is once achieved by the first polishing, the second polishing is further performed by, for example, chemical mechanical polishing, as shown in FIG. In this polishing, a silicon nitride film 22 as a second polishing stopper layer, a silicon oxide 31 as a first easy-polishing layer, and a BPSG layer 3 as a second easy-polishing layer
2 is polished until the silicon nitride film 21 as a first polishing stopper layer of the substrate protrusion and the silicon nitride film 22 as the second polishing stopper layer of the substrate recess are exposed. Second
In the above polishing, it is preferable to employ a polishing method in which the mechanical polishing property of chemical mechanical polishing is enhanced. Thereby, the difference in polishing rate between the silicon oxide film 31 as the first easy-polishing layer and the BPSG layer 32 as the second easy-polishing layer is made smaller than that obtained by the first polishing method, and uniform polishing is performed. Can be.

【0021】第2の研磨が進行すると、基板凸部の第1
の研磨停止層21及び基板凹部の第2の研磨停止層22
がほぼ同時に露出するようになる。これらの研磨停止層
はほぼ同じ高さであり、かつ、シリコン窒化膜はシリコ
ン酸化膜より研磨速度が遅いため、これらのシリコン窒
化膜が消失するまでに研磨を停止すれば、図1(d)に
示すように、平坦化を達成することができる。
When the second polishing proceeds, the first protrusion of the substrate
Polishing stopper layer 21 and second polishing stopper layer 22 of substrate recess
Will be exposed almost simultaneously. Since these polishing stopper layers have almost the same height, and the polishing rate of the silicon nitride film is lower than that of the silicon oxide film, if the polishing is stopped before these silicon nitride films disappear, FIG. As shown in FIG. 5, flattening can be achieved.

【0022】平坦化した後、図1(e)に示すように、
煮沸燐酸によりシリコン窒化膜21を除去し、更に図1
(f)に示すように、希フッ酸によりシリコン酸化膜2
0をエッチングして、幅の狭いトレンチ分離領域と、幅
の広いトレンチ分離領域とを有し、これらのトレンチ素
子分離領域の厚さが均一なウエハを完成することができ
る。
After flattening, as shown in FIG.
The silicon nitride film 21 is removed by boiling phosphoric acid,
As shown in (f), the silicon oxide film 2 is formed by dilute hydrofluoric acid.
By etching 0, a wafer having a narrow trench isolation region and a wide trench isolation region and having a uniform thickness of these trench isolation regions can be completed.

【0023】そのため、本実施形態によれば、研磨を用
いたトレンチ素子分離形成において問題となっていた素
子分離膜の厚さのパターン依存性や、ウエハ面内依存性
が非常に小さい素子分離膜を形成することが可能とな
り、寄生容量の低減や信頼性の向上、歩留まり向上によ
るコストダウンなどを図ることができる。 [第2実施形態]本実施形態では、半導体基板上に形成
されたトランジスタなどの素子が基体の凸部を構成し、
基板表面が基体の凹部を構成する場合である。この場合
の素子は、例えばDRAMのスタック型のキャパシタ等
のような層間絶縁膜を平坦化する際に埋め込む必要があ
る素子を含む。
Therefore, according to the present embodiment, the pattern dependence of the thickness of the element isolation film and the dependence within the wafer plane, which are problems in the formation of the trench element isolation by polishing, are very small. Can be formed, thereby reducing the parasitic capacitance, improving the reliability, and reducing the cost by improving the yield. [Second Embodiment] In this embodiment, an element such as a transistor formed on a semiconductor substrate constitutes a convex portion of a base,
This is a case where the substrate surface forms a concave portion of the substrate. Elements in this case include elements that need to be buried when planarizing an interlayer insulating film, such as a stacked capacitor of a DRAM.

【0024】この第2実施形態は、基本的に上記第1実
施形態と同じであり、3層の研磨停止層と2層の易研磨
層とを用い、第1の研磨で一旦速い速度で平坦化を達成
した後、続いて第2の研磨で均一な研磨を行って、平坦
化を達成する。まず、図2(a)に示すように、半導体
基板面に形成したトランジスタなどの素子13、14が
形成されて凹凸がある基体の全面に第1の研磨停止層と
して、シリコン酸化膜(図示せず)を例えばCVDで5
0nm、シリコン窒化膜21をCVDで100nm程度
堆積する。このとき、素子13、14の上のシリコン窒
化膜の上面の基板面からの高さ凸H1 は、650nmで
ある。なお、第1実施形態と異なりシリコン窒化膜21
の下の応力緩和のシリコン酸化膜は必ずしも必要ではな
く、素子上の例えばオフセット酸化膜で代用可能であ
る。
The second embodiment is basically the same as the first embodiment, and uses a three-layer polishing stop layer and two easy-polishing layers, and once flattens at a high speed in the first polishing. After achieving the planarization, a uniform polishing is performed by the second polishing to achieve the planarization. First, as shown in FIG. 2A, a silicon oxide film (not shown) is formed as a first polishing stopper layer over the entire surface of a substrate having elements 13 and 14 such as transistors formed on a semiconductor substrate surface and having irregularities. ) Is, for example, 5
A silicon nitride film 21 is deposited to a thickness of about 100 nm by CVD. In this case, the height convex H 1 from the substrate surface of the upper surface of the silicon nitride film on the elements 13 and 14 is 650 nm. Note that, unlike the first embodiment, the silicon nitride film 21
The silicon oxide film for stress relaxation below the silicon oxide film is not always necessary, and for example, an offset oxide film on the element can be used.

【0025】次に、第1の易研磨層としてのシリコン酸
化膜31を減圧CVD法や常圧CVD法等で500nm
堆積する。その後、第2の研磨停止層としての例えばシ
リコン窒化膜22をCVD法などで150nm堆積す
る。次いで、第2の易研磨層としての例えばBPSG層
32を例えば低圧CVD法により600nm堆積し、更
に第3の研磨停止層としての例えばシリコン酸化膜を1
00nm堆積する。
Next, the silicon oxide film 31 as the first easy-polishing layer is formed to a thickness of 500 nm by a low pressure CVD method, a normal pressure CVD method or the like.
accumulate. Thereafter, for example, a silicon nitride film 22 as a second polishing stopper layer is deposited to a thickness of 150 nm by a CVD method or the like. Next, for example, a BPSG layer 32 as a second easy-to-polish layer is deposited to a thickness of 600 nm by, for example, a low-pressure CVD method, and a silicon oxide film, for example, as a third polishing stopper layer is formed by one layer.
Deposit 00 nm.

【0026】この場合も、第2の研磨停止層22の基板
の凸部における上面の高さ凸H2 は、500+150+
500+150=1300nm、第2の研磨停止層の基
板の凹部における上面の高さ凹H2 は、500+150
=650nm、第3の研磨停止層の基板の凹部における
上面の高さ凹H3 は、500+150+600+100
=1350nmである。つまり、基板凸部における第1
の研磨停止層21の上面の高さ凸H1 =基板凹部におけ
る第2の研磨停止層22の上面の高さ凹H2 =650n
mであり、ほぼ等しい高さとなっている。また、基板凸
部における第2研磨停止層22の上面の高さ凸H2 =1
300nm≒基板凹部における第3の研磨停止層23の
上面の高さ凹H3 =1350nmでほぼ等しい高さとな
っている。
Also in this case, the height protrusion H 2 of the upper surface of the protrusion of the substrate of the second polishing stopper layer 22 is 500 + 150 +
500 + 150 = 1300 nm, the height H 2 of the upper surface of the concave portion of the substrate of the second polishing stopper layer is 500 + 150.
= 650 nm, the height H 3 of the upper surface of the concave portion of the substrate of the third polishing stopper layer is 500 + 150 + 600 + 100.
= 1350 nm. That is, the first in the substrate convex portion
The height protrusion H 1 of the upper surface of the polishing stopper layer 21 of the second polishing stopper = the height recess H 2 of the upper surface of the second polishing stopper layer 22 in the concave portion of the substrate = 650 n
m, which are almost the same height. Also, the height H 2 of the upper surface of the second polishing stopper layer 22 at the substrate protrusion is H 2 = 1.
The height of the upper surface of the third polishing stopper layer 23 in the concave portion of the substrate at 300 nm ≒ the concave height H 3 = 1350 nm, which is almost the same height.

【0027】そして、第1実施形態と同様に、図2
(b)に示すように、第1の研磨を、化学的作用を高め
たCMPで行い、BPSG膜32を急速に研磨し、基板
の凸部の第2の研磨停止層22と基板の凹部の第3の研
磨停止層23を研磨ストッパーとして、第1の研磨を停
止させて、一旦平坦化を達成する。
As in the first embodiment, FIG.
As shown in (b), the first polishing is performed by CMP with enhanced chemical action, the BPSG film 32 is rapidly polished, and the second polishing stop layer 22 of the convex portion of the substrate and the concave portion of the substrate are formed. The first polishing is stopped by using the third polishing stopper layer 23 as a polishing stopper to temporarily achieve the flattening.

【0028】続いて、図2(c)に示すように、第2の
研磨を行い、機械的研磨作用を高めたCMPで行い、主
として基板の凸部においては第1の易研磨層31、基板
の凹部においては第2の易研磨層32を研磨し、基板の
凸部における第1の研磨停止層21、基板の凹部の第2
の研磨停止層22を研磨ストッパーとして第2の研磨を
停止することができる。これにより、図2(c)に示す
ような層間絶縁膜の平坦化を達成した半導体装置を確実
に製造することができる。
Subsequently, as shown in FIG. 2C, a second polishing is performed, and a CMP is performed with an enhanced mechanical polishing action. In the concave portion, the second easy-polishing layer 32 is polished, and the first polishing stopper layer 21 in the convex portion of the substrate and the second polishing layer 32 in the concave portion of the substrate are polished.
The second polishing can be stopped by using the polishing stopper layer 22 as a polishing stopper. As a result, a semiconductor device in which the interlayer insulating film is flattened as shown in FIG. 2C can be reliably manufactured.

【0029】その後は、通常通り、コンタクト形成、コ
ンタクトの埋込、配線層の形成などの工程で半導体装置
を製造していく。この図2では、素子の直上まで研磨す
るように図示しているが、基体を素子を被覆する層間絶
縁膜とし、この凹凸を有する層間絶縁膜に本発明の平坦
化方法を適用して半導体装置の平坦化を行っても良い。
Thereafter, as usual, the semiconductor device is manufactured through processes such as contact formation, contact embedding, and formation of a wiring layer. Although FIG. 2 shows that the element is polished to a position directly above the element, the substrate is an interlayer insulating film covering the element, and the planarization method of the present invention is applied to the interlayer insulating film having the irregularities. May be flattened.

【0030】このように、第2実施形態では、層間絶縁
膜の平坦化が達成されているので、フォトリソグラフィ
の焦点深度の点で有利であり、配線の微細加工が可能と
なる。また、段差部でステップカバレッジが悪くなり、
歩留まりが低下したり、配線層の抵抗が上昇することを
防止することができる。
As described above, in the second embodiment, since the interlayer insulating film is flattened, it is advantageous in terms of the depth of focus of photolithography, and fine wiring can be processed. In addition, step coverage deteriorates at the step,
It is possible to prevent the yield from decreasing and the resistance of the wiring layer from increasing.

【0031】なお、上記例では、平坦化の対象を半導体
装置について説明しているが、本発明の平坦化方法は、
これに限定されるものではなく、その他本発明の要旨を
逸脱しない範囲で種々変更が可能である。
In the above example, the target of planarization is a semiconductor device. However, the planarization method of the present invention
The present invention is not limited to this, and various changes can be made without departing from the scope of the present invention.

【0032】[0032]

【発明の効果】本発明の平坦化方法によれば、面積の狭
い凹部と面積の広い凹部とを有する基体の平坦化を確実
に達成することができる。
According to the flattening method of the present invention, it is possible to reliably achieve flattening of a substrate having a concave portion having a small area and a concave portion having a large area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の平坦化方法を半導体装置のトレンチ素
子分離法に適用した形態を示すもので、(a)〜(f)
は、その工程を示す断面図である。
FIG. 1 shows an embodiment in which the planarization method of the present invention is applied to a trench element isolation method of a semiconductor device, and (a) to (f).
Is a cross-sectional view showing the step.

【図2】本発明の平坦化方法を半導体装置の層間絶縁膜
に適用した形態を示すもので、(a)〜(c)は、その
工程を示す断面図である。
FIGS. 2A to 2C are cross-sectional views illustrating a process in which the planarization method of the present invention is applied to an interlayer insulating film of a semiconductor device. FIGS.

【図3】従来の研磨の問題点を説明する断面図である。FIG. 3 is a cross-sectional view illustrating a problem of the conventional polishing.

【符号の説明】[Explanation of symbols]

10…基板(基体)、21…第1の研磨停止層、22…
第2の研磨停止層、23…第3の研磨停止層、31…第
1の易研磨層、32…第2の易研磨層
10: substrate (substrate), 21: first polishing stop layer, 22:
Second polishing stop layer, 23: third polishing stop layer, 31: first easy polishing layer, 32: second easy polishing layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】凹部と凸部を有する基体の少なくとも凸部
に第1の研磨停止層を形成し、 該第1の研磨停止層よりも研磨速度が大きい第1の易研
磨層で該第1の研磨停止層を含む基体の凹凸部を被覆
し、 該第1の易研磨層の上に第1の易研磨層より研磨速度が
小さい第2の研磨停止層を形成し、 該第2の研磨停止層の上に該第2の研磨停止層より研磨
速度が大きい第2の易研磨層を形成し、 該第2の易研磨層の上に第2の易研磨層より研磨速度が
小さい第3の研磨停止層を形成し、 上記基体の凹部に存する第3の研磨停止層と基体の凸部
に存する第2の研磨停止層とに達するまで上記第3の研
磨停止層と第2の易研磨層とを研磨する第1の研磨工程
と、 該第1の研磨工程後、上記基体の凹部に存する第2の研
磨停止層と基体の凸部に存する第1の研磨停止層とに達
するまで上記第3の研磨停止層と第2の易研磨層と第2
の研磨停止層とを研磨する第2の研磨工程とを有するこ
とを特徴とする平坦化方法。
A first polishing stopper layer formed on at least a convex portion of a substrate having a concave portion and a convex portion; and a first easy-polishing layer having a higher polishing rate than the first polishing stopper layer. Forming a second polishing stop layer having a lower polishing rate than the first easy-polishing layer on the first easy-polishing layer; and forming the second polishing stop layer on the first easy-polishing layer. Forming a second easy-polishing layer having a higher polishing rate than the second polishing stop layer on the stop layer; and forming a third polishing rate lower than the second easy-polishing layer on the second easy-polishing layer. A third polishing stopper layer existing in the concave portion of the substrate and a second polishing stopper layer existing in the convex portion of the substrate. A first polishing step of polishing the layer, and after the first polishing step, a second polishing stop layer present in the concave portion of the substrate and a convex portion of the substrate. 1 above until reaching a polishing stop layer of the third polishing stop layer and the second free-abrasive layer second
And a second polishing step of polishing the polishing stop layer.
【請求項2】基体の凸部における第1の研磨停止層の上
面の基体凹部からの高さと基体の凹部における第2の研
磨停止層の上面の基体凹部からの高さとがほぼ等しく、
かつ、基体凸部における第2の研磨停止層の上面の基体
凹部からの高さと基体凹部における第3の研磨停止層の
上面の基体凹部からの高さとがほぼ等しい請求項1記載
の平坦化方法。
2. The height of the projection of the substrate from the concave portion of the substrate on the upper surface of the first polishing stopper layer is substantially equal to the height of the upper surface of the second polishing stopper layer from the concave portion of the substrate in the concave portion of the substrate.
2. The planarizing method according to claim 1, wherein the height of the upper surface of the second polishing stopper layer at the convex portion of the substrate from the concave portion of the substrate is substantially equal to the height of the upper surface of the third polishing stopper layer at the concave portion of the substrate. .
【請求項3】上記基体の凹部が半導体基板の素子分離領
域を構成し、基体の凸部が半導体基板の表面であり、上
記第1の易研磨層が該凹部を埋める絶縁層である請求項
1記載の平坦化方法。
3. The semiconductor device according to claim 1, wherein the concave portion of the base forms an element isolation region of the semiconductor substrate, the convex portion of the base is a surface of the semiconductor substrate, and the first polishing layer is an insulating layer filling the concave portion. 2. The flattening method according to 1.
【請求項4】上記基体の凸部が半導体装置を構成する素
子であり、基体の凹部が半導体基板の表面である請求項
1記載の平坦化方法。
4. The flattening method according to claim 1, wherein the convex portion of the base is an element constituting a semiconductor device, and the concave portion of the base is a surface of the semiconductor substrate.
【請求項5】第1の易研磨層が化学的研磨性が低く、第
2の易研磨層が化学的研磨性が高く、かつ、第1の研磨
工程が化学的研磨性が高く、第2の研磨工程が化学的研
磨性が低い請求項1記載の平坦化方法。
5. The first polished layer has a low chemical polishing property, the second polished layer has a high chemical polishing property, and the first polishing step has a high chemical polishing property. 2. The method according to claim 1, wherein the polishing step has low chemical polishing properties.
JP22699296A 1996-08-28 1996-08-28 Planarization method Pending JPH1070098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22699296A JPH1070098A (en) 1996-08-28 1996-08-28 Planarization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22699296A JPH1070098A (en) 1996-08-28 1996-08-28 Planarization method

Publications (1)

Publication Number Publication Date
JPH1070098A true JPH1070098A (en) 1998-03-10

Family

ID=16853821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22699296A Pending JPH1070098A (en) 1996-08-28 1996-08-28 Planarization method

Country Status (1)

Country Link
JP (1) JPH1070098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241705A1 (en) * 2001-03-14 2002-09-18 Sharp Kabushiki Kaisha Process of manufacturing electron microscopic sample for analysing a semiconductor device
JP2003158264A (en) * 2001-09-24 2003-05-30 Sharp Corp Metal gate cmos and its manufacturing method
EP1688989A1 (en) * 2005-02-02 2006-08-09 ATMEL Germany GmbH Method of manufacturing integrated circuits comprising at least one silicon germanium heterobipolar transistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241705A1 (en) * 2001-03-14 2002-09-18 Sharp Kabushiki Kaisha Process of manufacturing electron microscopic sample for analysing a semiconductor device
US6593231B2 (en) 2001-03-14 2003-07-15 Fujio Masuoka Process of manufacturing electron microscopic sample and process of analyzing semiconductor device
KR100451604B1 (en) * 2001-03-14 2004-10-08 샤프 가부시키가이샤 Process of manufacturing scanning electron microscopic sample and process of analyzing semiconductor device
JP2003158264A (en) * 2001-09-24 2003-05-30 Sharp Corp Metal gate cmos and its manufacturing method
JP4480323B2 (en) * 2001-09-24 2010-06-16 シャープ株式会社 Manufacturing method of semiconductor device
EP1688989A1 (en) * 2005-02-02 2006-08-09 ATMEL Germany GmbH Method of manufacturing integrated circuits comprising at least one silicon germanium heterobipolar transistor

Similar Documents

Publication Publication Date Title
US5492858A (en) Shallow trench isolation process for high aspect ratio trenches
US6200897B1 (en) Method for manufacturing even dielectric layer
JP4090007B2 (en) Method for forming conductive contact
US6191050B1 (en) Interlayer dielectric with a composite dielectric stack
US6194283B1 (en) High density trench fill due to new spacer fill method including isotropically etching silicon nitride spacers
US20030030121A1 (en) Structure of trench isolation and a method of forming the same
US20050042880A1 (en) Multilayered CMP stop for flat planarization
US5262346A (en) Nitride polish stop for forming SOI wafers
US6897143B2 (en) Method of manufacturing semiconductor device including two-step polishing operation for cap metal
JPH07245306A (en) Method for flattening film of semiconductor device
JPH0661342A (en) Manufacture of trench element isolation film
US5540811A (en) Method of manufacturing semiconductor device
JP2001358214A (en) Semiconductor device and its manufacturing method
US6893937B1 (en) Method for preventing borderless contact to well leakage
KR19980018004A (en) Semiconductor device and manufacturing method thereof
US6682986B2 (en) Method of forming shallow trench isolation and method of manufacturing a semiconductor device using the same
US6723655B2 (en) Methods for fabricating a semiconductor device
JP4076131B2 (en) Manufacturing method of semiconductor device
US5854133A (en) Method for manufacturing a semiconductor device
JPH1070098A (en) Planarization method
US6774008B1 (en) Method for fabricating shallow trench isolation between deep trench capacitors
JP2006202968A (en) Manufacturing method of semiconductor device
JP3311486B2 (en) Integrated circuit planarization method
US20040137680A1 (en) Manufacturing method of semiconductor device
US6613648B1 (en) Shallow trench isolation using TEOS cap and polysilicon pullback