JPH1068745A - Measuring device with which power loss of heating current flowing in probe heating device is small - Google Patents

Measuring device with which power loss of heating current flowing in probe heating device is small

Info

Publication number
JPH1068745A
JPH1068745A JP11477197A JP11477197A JPH1068745A JP H1068745 A JPH1068745 A JP H1068745A JP 11477197 A JP11477197 A JP 11477197A JP 11477197 A JP11477197 A JP 11477197A JP H1068745 A JPH1068745 A JP H1068745A
Authority
JP
Japan
Prior art keywords
resistance
measuring
resistor
measuring device
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11477197A
Other languages
Japanese (ja)
Inventor
Bernd Spielmann
ベルント・スピエルマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPH1068745A publication Critical patent/JPH1068745A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • G01R17/10AC or DC measuring bridges
    • G01R17/12AC or DC measuring bridges using comparison of currents, e.g. bridges with differential current output
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a measuring device with which the power loss of heating current flowing in a probe heating device is small to be manufactured easily and have substantially high measuring accuracy. SOLUTION: In a measuring device with which the power loss of heating current flowing in a probe heating device is small, a comparison between a voltage which drops at a measuring resistance 20 inserted in series into the probe heating device 10 and a reference voltage which drops at a reference resistance 30 through which a constant reference current flows and which has the same signal characteristic as the measuring resistance 20 is made by a circuit unit 50. The measuring resistance 20 includes a plurality of resistance elements 21 arranged in parallel, each of the resistance elements 21 almost matching the reference resistance 30 in size and electric characteristic.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プローブ加熱装置
に直列に挿入された測定抵抗において降下する電圧と、
一定の基準電流が流れかつ測定抵抗と同じ信号特性を有
する基準抵抗において降下する基準電圧との間の比較が
回路ユニット内で行われるように構成された、プローブ
加熱装置を流れる加熱電流の電力損失が小さい測定装置
に関するものである。
FIELD OF THE INVENTION The present invention relates to a voltage drop across a measurement resistor inserted in series with a probe heating device;
A power loss of the heating current flowing through the probe heating device, wherein a comparison between the measuring resistor and a reference voltage falling at the reference resistor having the same signal characteristics is made in the circuit unit, wherein a constant reference current flows. Is related to a small measuring device.

【0002】[0002]

【従来の技術】このような装置は、たとえば欧州特許B
1第0506668号から既知であり、この内容は本特
許出願に参照されている。
2. Description of the Related Art Such a device is described, for example, in European patent B
No. 1,506,668, the contents of which are incorporated by reference into the present patent application.

【0003】内燃機関に供給される空気/燃料混合物の
所定の空燃比を維持するために、その制御量を内燃機関
の排気系統内に設けられた酸素測定プローブから得る制
御装置が既知である。このような酸素測定プローブは所
定の運転温度以上ではじめて問題なく作動するものであ
る。
[0003] In order to maintain a predetermined air / fuel ratio of the air / fuel mixture supplied to the internal combustion engine, control devices are known whose control variable is obtained from an oximeter probe provided in the exhaust system of the internal combustion engine. Such an oximetry probe will only operate without problems above a certain operating temperature.

【0004】この理由から、とくにコールドスタートに
おいて、および内燃機関のウォームアップ過程の間に、
プローブを加熱するプローブ加熱装置が既知である。
For this reason, especially during cold start and during the warm-up process of the internal combustion engine,
Probe heating devices for heating probes are known.

【0005】プローブができるだけ迅速にその運転温度
に到達しかつそれ以後所定温度に保持可能なように、プ
ローブ加熱の機能が保証されなければならない。さら
に、最大許容電流より大きい電流がプローブ加熱装置を
流れたときには、プローブは破損することがある。
[0005] The function of the probe heating must be ensured in such a way that the probe reaches its operating temperature as quickly as possible and can thereafter be maintained at the predetermined temperature. In addition, the probe may break if a current greater than the maximum allowable current flows through the probe heating device.

【0006】したがって、上記の欧州特許B1第050
6668号からプローブ加熱装置の機能のモニタリング
方法および装置が既知であり、この方法および装置にお
いては、プローブ加熱装置に直列に配置された測定抵抗
において降下する電圧と、一定の基準電流が流れかつ測
定抵抗と同じ信号特性を有する基準抵抗において降下す
る基準電圧との間の比較により、プローブ加熱装置に流
れる電流が連続的に測定され、場合により変化されまた
は遮断される。
Accordingly, the above-mentioned European Patent No. B1 050
No. 6668 discloses a method and a device for monitoring the function of a probe heating device, in which a voltage drop at a measuring resistor arranged in series with the probe heating device, a constant reference current flows and the measurement is carried out. By means of a comparison between the resistance and a reference voltage falling at a reference resistance having the same signal characteristics, the current flowing through the probe heating device is continuously measured, possibly changed or interrupted.

【0007】ここで使用される測定抵抗は、とくにより
大きな投入電流ピークおよび持続電流を測定するため
に、その幾何学的な寸法のみならずその電気特性に関し
ても、比較的小さい一定電流が流れる基準抵抗よりも実
質的に大きく設計されなければならない。
The measuring resistor used here is a reference for a relatively small constant current, not only with regard to its geometric dimensions but also its electrical properties, in order to measure particularly large input current peaks and sustaining currents. Must be designed to be substantially larger than the resistance.

【0008】したがって、たとえば測定抵抗がしばしば
使用されるように担体上に皮膜抵抗として形成された場
合、通常ほぼ一致する長さおよび厚さを有する場合に
は、基準抵抗より実質的により大きい幅を有していなけ
ればならない。
[0008] Thus, for example, if the measured resistance is formed as a film resistance on a carrier, as often used, it will typically have a substantially larger width than the reference resistance if it has approximately the same length and thickness. Must have.

【0009】この結果、たとえば測定抵抗および基準抵
抗を同じように製作するときの製作過程により発生する
公差が、電力損失が小さい加熱電流測定に対して、きわ
めて大きな測定誤差を導くことが欠点である。その理由
は、基準抵抗および測定抵抗において絶対値として同じ
このような公差が、測定抵抗をより大きく形成すること
により、実質的に小さく形成されかつ誤差が実質的によ
り大きい影響を与える基準抵抗においてよりも、測定抵
抗に対しては比較的小さい影響を与えるにすぎないから
である。
As a result, the disadvantage is that tolerances arising, for example, during the production of the measuring resistor and the reference resistor in the same way lead to very large measuring errors for heating current measurements with small power losses. . The reason is that such tolerances, which are the same as absolute values in the reference and measured resistances, are formed substantially smaller by making the measured resistance larger, and more so in the reference resistance where the error has a substantially larger effect. This has only a relatively small effect on the measured resistance.

【0010】したがって、たとえば絶対値として長さに
変化を与えた皮膜抵抗として形成された場合に、測定抵
抗および基準抵抗においてそれぞれ製作過程に基づき同
一の誤差を与えることができる。しかしながら、基準抵
抗は測定抵抗より小さい寸法を有するので、この誤差は
測定抵抗よりも実質的にはるかに低いパーセント比率と
なる。
Therefore, for example, when the film resistance is formed as a film resistance whose length is changed as an absolute value, the same error can be given to the measured resistance and the reference resistance based on the manufacturing process. However, since the reference resistance has a smaller dimension than the measured resistance, this error will be a substantially much lower percentage ratio than the measured resistance.

【0011】[0011]

【発明が解決しようとする課題】したがって、冒頭記載
のプローブ加熱装置を流れる加熱電流の電力損失が小さ
い測定装置を、製作が簡単でありかつ実質的により高い
測定精度を可能にするように改善することが本発明の課
題である。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a measuring device in which the power loss of the heating current flowing through the probe heating device is small, so that it is simple to manufacture and allows a substantially higher measuring accuracy. This is the subject of the present invention.

【0012】[0012]

【課題を解決するための手段】本発明によれば、この課
題は、冒頭記載のプローブ加熱装置を流れる加熱電流の
電力損失が小さい測定装置において、測定抵抗が並列に
配置された複数の抵抗要素を含み、抵抗要素の各々がそ
の寸法およびその電気特性に関して基準抵抗にほぼ対応
していることにより解決される。
SUMMARY OF THE INVENTION According to the present invention, an object of the present invention is to provide a measuring device in which the heating current flowing through the probe heating device has a small power loss. And each of the resistive elements substantially corresponds to a reference resistance with respect to its dimensions and its electrical properties.

【0013】測定抵抗が並列に配置された複数の抵抗要
素として形成され、抵抗要素の各々がその寸法およびそ
の電気特性に関して基準抵抗にほぼ対応していること
は、たとえば製作に基づく誤差が各抵抗要素において発
生しかつ抵抗要素の数の関数として加算されるという大
きな利点を有している。これは確かに測定抵抗の合計誤
差を増大させるが、測定抵抗をこのように形成すること
により、測定抵抗が基準抵抗と同じパーセント誤差を有
することになる。プローブ加熱装置を流れる加熱電流の
測定のためには実質的に基準抵抗と測定抵抗との比率が
重要となるので、基準抵抗および測定抵抗が同じパーセ
ント誤差を有する場合、ほぼ相殺された抵抗相対誤差が
得られることになる。
The fact that the measuring resistance is formed as a plurality of resistance elements arranged in parallel, each of which substantially corresponds to a reference resistance with regard to its dimensions and its electrical properties, means that, for example, errors due to the manufacture are not equal to each resistance. It has the great advantage that it occurs in the elements and is added as a function of the number of resistance elements. This does increase the total error of the measured resistance, but by forming the measured resistance in this way, the measured resistance will have the same percentage error as the reference resistance. Since the ratio of the reference resistance to the measured resistance is important for the measurement of the heating current flowing through the probe heating device, if the reference resistance and the measured resistance have the same percent error, the resistance relative error almost canceled out. Is obtained.

【0014】純粋に原理的には、測定抵抗および基準抵
抗は異なるタイプで形成してもよい。とくに基準抵抗お
よび測定抵抗から同じ信号特性を得るために、またとく
に基準抵抗および測定抵抗を同じ温度に保持するため
に、またそれぞれの抵抗要素の寸法および電気特性を基
準抵抗のそれらとよい一致を得るために、基準抵抗およ
び測定抵抗の抵抗要素が共通基板上に配置された皮膜抵
抗として設計することが有利である。
[0014] Purely in principle, the measuring resistor and the reference resistor may be formed in different types. In order to obtain the same signal characteristics from the reference and measurement resistors, in particular to keep the reference and measurement resistors at the same temperature, and to make sure that the dimensions and electrical characteristics of each resistance element match those of the reference resistance. To obtain it, it is advantageous to design the resistance elements of the reference resistance and the measurement resistance as film resistors arranged on a common substrate.

【0015】これらの皮膜抵抗(薄い皮膜抵抗/厚い皮
膜抵抗)は導電材料(たとえば金属)の構造により形成
される電気抵抗である。この導電材料は、蒸着により、
スパッタリングにより、電気分解法により、またはこの
分野の専門家に既知のその他の物理的/化学的プロセス
により基板上に形成することができる。
These film resistances (thin film resistance / thick film resistance) are electric resistances formed by the structure of a conductive material (eg, metal). This conductive material, by evaporation,
It can be formed on the substrate by sputtering, by electrolysis, or by other physical / chemical processes known to those skilled in the art.

【0016】測定抵抗および基準抵抗を同じ厚さの同じ
導電材料から製作することにより、また同じ基板上にそ
れらを配置することにより、基準抵抗および測定抵抗の
すべての抵抗要素、したがって測定抵抗もまたほぼ同じ
温度に保持され、かつ同じ温度特性を有することが保証
される。
By fabricating the measured and reference resistors from the same conductive material of the same thickness and by arranging them on the same substrate, all the resistance elements of the reference and measured resistors, and thus also the measured resistance, It is ensured that they are kept at substantially the same temperature and have the same temperature characteristics.

【0017】この理由から、基準抵抗および測定抵抗の
抵抗要素は基板上にとくに密に隣接して配置されてい
る。
For this reason, the resistance elements of the reference resistance and the measuring resistance are arranged particularly closely adjacent on the substrate.

【0018】有利な実施態様においては、基準抵抗が細
い導体路として形成され、その寸法は一定の電流および
モニタリングしきい値の決定から与えられる。
In a preferred embodiment, the reference resistor is formed as a thin conductor track, the dimensions of which are given by the determination of the constant current and the monitoring threshold.

【0019】測定抵抗の抵抗要素は、同様に、相互に並
列にかつ相互に密に隣接して配置された細い導体路とし
て形成されていることが好ましい。
The resistance elements of the measuring resistor are likewise preferably formed as thin conductor tracks arranged parallel to one another and closely adjacent to one another.

【0020】本発明のその他の特徴および利点が以下の
説明ならびにある実施態様の図面から明らかである。
[0020] Other features and advantages of the invention will be apparent from the following description and drawings of certain embodiments.

【0021】[0021]

【発明の実施の形態】従来技術から既知のプローブ加熱
装置を流れる加熱電流の電力損失が小さい測定装置が図
2に示されている。図2から明らかなように、この測定
装置はプローブ加熱装置10を含み、プローブ加熱装置
10を電流IHが流れる。プローブ加熱装置10と直列
に測定抵抗20が挿入され、測定抵抗20は、たとえば
基板上に配置された皮膜抵抗(薄い皮膜抵抗/厚い皮膜
抵抗)として形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows a measuring device having a small power loss of a heating current flowing through a probe heating device known from the prior art. As is clear from FIG. 2, this measuring device includes a probe heating device 10 through which a current IH flows. A measuring resistor 20 is inserted in series with the probe heating device 10, and the measuring resistor 20 is formed, for example, as a film resistor (thin film resistance / thick film resistance) disposed on a substrate.

【0022】測定抵抗20に隣接して、たとえば皮膜抵
抗として形成された基準抵抗30が配置され、基準抵抗
30内には一定の基準電流IRが流れ、この一定の基準
電流IRは基準定電流源40により発生される。基準抵
抗30を介しての降下電圧URならびに測定抵抗20を
介しての降下電圧UMが比較のために回路ユニット50
に供給され、回路ユニット50で両方の電圧UMおよび
URの差が形成されかつ評価される。この評価が欧州特
許B1第0506668号に記載され、その内容は本出
願において参照されている。
A reference resistor 30 formed, for example, as a film resistor is arranged adjacent to the measuring resistor 20, and a constant reference current IR flows through the reference resistor 30, and the constant reference current IR is a reference constant current source. Generated by. The voltage drop UR via the reference resistor 30 and the voltage drop UM via the measuring resistor 20 are used for comparison in the circuit unit 50.
And the difference between the two voltages UM and UR is formed and evaluated in the circuit unit 50. This evaluation is described in EP 1 506 668, the content of which is referenced in the present application.

【0023】基準抵抗30は通常細い導体路として形成
され、一方測定抵抗20は、より大きな投入電流ピーク
および持続電流を測定するために、図2に略図で示され
ているように、できるだけ短くかつ幅の広い導体路とし
て形成されている。
The reference resistor 30 is typically formed as a thin conductor track, while the measuring resistor 20 is as short and short as possible, as shown schematically in FIG. 2, to measure larger input and peak currents. It is formed as a wide conductor track.

【0024】プローブ加熱装置10を流れる加熱電流I
Hの電力損失が小さい測定を行う図示の設計はここでは
25%以下の誤差を有し、この場合、この誤差の主な部
分は皮膜抵抗を製作するときの製作公差によるものであ
る。したがって、たとえばエッチングにより導体路の形
の皮膜抵抗を製作するとき、10μmおよび−30μm
の範囲で変化する製作誤差が出る可能性がある。この場
合、誤差は基板の小さい範囲では一定であるという前提
から出発している。ここでたとえば基準抵抗が160μ
mの幅を有する導体路として形成されている場合、たと
えば−30μmの絶対誤差は18.75%のパーセント
誤差に相当する。ここでさらに、測定抵抗がたとえば基
準抵抗の19倍すなわち3、040μmに対応する導体
路の幅を有する場合、エッチングにより−30μmの誤
差があるときは0.99%のパーセント誤差となる。
Heating current I flowing through probe heating device 10
The illustrated design, which makes measurements with low power loss in H, now has an error of less than or equal to 25%, where the major part of this error is due to manufacturing tolerances when manufacturing film resistors. Thus, for example, when producing film resistors in the form of conductor tracks by etching, 10 μm and −30 μm
There is a possibility that a manufacturing error that varies in the range of? In this case, it is assumed that the error is constant over a small area of the substrate. Here, for example, the reference resistance is 160 μ
When formed as a conductor track having a width of m, an absolute error of, for example, -30 .mu.m corresponds to a percentage error of 18.75%. Here, furthermore, if the measured resistance has a conductor path width corresponding to, for example, 19 times the reference resistance, ie 3,040 μm, a -30 μm error due to etching results in a 0.99% percent error.

【0025】加熱電流を決定するために実質的に基準抵
抗30と測定抵抗20との抵抗比が評価されるので、1
7.76%の相対誤差となり、この相対誤差は実際的に
基準抵抗と測定抵抗との相対誤差のみにより得られるも
のである。
In order to determine the heating current, the resistance ratio between the reference resistance 30 and the measurement resistance 20 is substantially evaluated.
A relative error of 7.76% is obtained, and this relative error is actually obtained only by the relative error between the reference resistance and the measured resistance.

【0026】図1にプローブ加熱装置を流れる加熱電流
IHの電力損失が小さい測定装置が示され、この装置に
おいてはこの相対誤差が実際に完全に排除される。これ
は、図2に示した装置と比較して、測定抵抗20がいわ
ゆる並列に配置された複数の抵抗要素21として形成さ
れ、これらの抵抗要素21の各々はその寸法およびその
電気特性に関してほぼ基準抵抗30に対応している。こ
の抵抗要素21は、たとえば基準抵抗30と同様に、基
準抵抗30に密着して隣接配置された、相互に密着して
隣接する、図1に略図で示すような並列の細い導体路の
形の皮膜抵抗として形成されている。
FIG. 1 shows a measuring device in which the power loss of the heating current IH flowing through the probe heating device is small, in which this relative error is practically completely eliminated. This means that, compared to the device shown in FIG. 2, the measuring resistor 20 is formed as a plurality of resistance elements 21 arranged in a so-called parallel manner, each of these resistance elements 21 being substantially standard with respect to its dimensions and its electrical properties. It corresponds to the resistor 30. This resistive element 21 is, for example, in the form of a parallel thin conductor track, as shown schematically in FIG. It is formed as a film resistor.

【0027】測定抵抗20をこのように形成したとき、
たとえば製作に基づく誤差、たとえばエッチングにより
製作した場合の上記のエッチング公差は、抵抗要素21
の各々に発生する。ここで抵抗要素21の各々はその寸
法ならびに電気特性に関して実質的に基準抵抗30の導
体路に対応しているので、個々の抵抗要素21の誤差は
いわゆる加算され、したがってこのように形成した場合
の測定抵抗20のパーセント誤差は基準抵抗のパーセン
ト誤差に対応し、これにより実際に0%の相対誤差が得
られる。
When the measuring resistor 20 is formed in this way,
For example, an error due to manufacturing, for example, the above-described etching tolerance when manufactured by etching, is caused by the resistance element 21.
Occurs in each of the. Here, since each of the resistance elements 21 substantially corresponds to the conductor path of the reference resistance 30 in terms of its dimensions and electrical properties, the errors of the individual resistance elements 21 are so-called added, and thus the so formed The percent error of the measured resistor 20 corresponds to the percent error of the reference resistor, which actually results in a relative error of 0%.

【0028】基板上で抵抗路の形に密に隣接配置された
抵抗要素を正確に製作することにより、実際に1ないし
2%の範囲のパーセント抵抗相対誤差が得られ、したが
って、パーセント抵抗相対誤差は従来技術から既知の図
2に示す装置の場合よりもはるかに小さくなる。
By accurately fabricating the resistive elements closely adjacent to each other in the form of a resistive path on the substrate, a relative resistance error in the range of 1 to 2% is actually obtained, and therefore a relative resistance error of the percent. Is much smaller than in the device shown in FIG. 2 known from the prior art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による、プローブ加熱装置を流れる加熱
電流の電力損失が小さい測定装置の略図である。
FIG. 1 is a schematic diagram of a measuring device according to the present invention, in which a power loss of a heating current flowing through a probe heating device is small.

【図2】従来技術から既知の、プローブ加熱装置を流れ
る加熱電流の電力損失が小さい測定装置の略図である。
FIG. 2 is a schematic diagram of a measuring device known from the prior art, in which the power loss of the heating current flowing through the probe heating device is small.

【符号の説明】[Explanation of symbols]

10 プローブ加熱装置 20 測定抵抗 21 抵抗要素 30 基準抵抗 40 基準定電流源 50 回路ユニット I 電流 IH 加熱電流 IR 一定の基準電流 UM 測定抵抗において降下する電圧 UR 基準抵抗において降下する基準電圧 REFERENCE SIGNS LIST 10 probe heating device 20 measurement resistor 21 resistance element 30 reference resistor 40 reference constant current source 50 circuit unit I current IH heating current IR constant reference current UM voltage drop at measurement resistor UR reference voltage drop at reference resistor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 プローブ加熱装置(10)に直列に挿入
された測定抵抗(20)において降下する電圧(UM)
と、一定の基準電流(IR)が流れかつ測定抵抗(2
0)と同じ信号特性を有する基準抵抗(30)において
降下する基準電圧(UR)との間の比較が回路ユニット
(50)で行われる、プローブ加熱装置(10)を流れ
る加熱電流(IH)の電力損失が小さい測定装置におい
て、 測定抵抗(20)が並列に配置された複数の抵抗要素
(21)を含み、抵抗要素(21)の各々がその寸法お
よびその電気特性に関して基準抵抗(30)にほぼ対応
していることを特徴とするプローブ加熱装置を流れる加
熱電流の電力損失が小さい測定装置。
1. A voltage drop (UM) at a measuring resistor (20) inserted in series with a probe heating device (10).
And a constant reference current (IR) flows and the measured resistance (2
0) and a reference voltage (UR) falling at a reference resistor (30) having the same signal characteristics, a comparison is made in the circuit unit (50) of the heating current (IH) flowing through the probe heating device (10). In a measuring device with low power loss, the measuring resistor (20) comprises a plurality of resistive elements (21) arranged in parallel, each of the resistive elements (21) relating to its dimensions and its electrical properties to a reference resistor (30). A measuring device having a small power loss of a heating current flowing through a probe heating device, which is substantially compatible.
【請求項2】 基準抵抗(30)および測定抵抗(2
0)の抵抗要素(21)が共通基板上に配置された皮膜
抵抗であることを特徴とする請求項1の測定装置。
2. A reference resistance (30) and a measured resistance (2).
2. The measuring device according to claim 1, wherein the resistive element (0) is a film resistor disposed on a common substrate.
【請求項3】 基準抵抗(30)および抵抗要素(2
1)が基板上に密に隣接して配置されていることを特徴
とする請求項1または2の測定装置。
3. A reference resistance (30) and a resistance element (2).
3. The measuring device according to claim 1, wherein 1) is arranged closely adjacent to the substrate.
【請求項4】 基準抵抗(30)が細い導体路として形
成されていることを特徴とする請求項1ないし3のいず
れかの測定装置。
4. The measuring device according to claim 1, wherein the reference resistor is formed as a thin conductor track.
【請求項5】 抵抗要素(21)が相互に並列にかつ相
互に密に隣接して配置された細い導体路として形成され
ていることを特徴とする請求項1ないし3のいずれかの
測定装置。
5. The measuring device according to claim 1, wherein the resistance elements are formed as thin conductor tracks arranged parallel to one another and closely adjacent to one another. .
JP11477197A 1996-06-27 1997-05-02 Measuring device with which power loss of heating current flowing in probe heating device is small Pending JPH1068745A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1996125703 DE19625703A1 (en) 1996-06-27 1996-06-27 Low loss measuring system for heating current flow through probe heater unit
DE19625703.4 1996-06-27

Publications (1)

Publication Number Publication Date
JPH1068745A true JPH1068745A (en) 1998-03-10

Family

ID=7798147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11477197A Pending JPH1068745A (en) 1996-06-27 1997-05-02 Measuring device with which power loss of heating current flowing in probe heating device is small

Country Status (4)

Country Link
JP (1) JPH1068745A (en)
KR (1) KR980003595A (en)
DE (1) DE19625703A1 (en)
FR (1) FR2750506B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825802B1 (en) 2001-06-12 2004-01-23 St Microelectronics Sa DEVICE FOR COMPARING TWO RESISTORS AND COMPENSATION SYSTEM FOR INTEGRATED RESISTORS INCORPORATING THE SAME
KR101220390B1 (en) * 2011-08-30 2013-01-09 현대자동차주식회사 Device for judging unbalance current of dc-dc converter and method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3654580A (en) * 1969-03-14 1972-04-04 Sanders Associates Inc Resistor structure
DE3941995A1 (en) * 1989-12-20 1991-06-27 Bosch Gmbh Robert METHOD AND DEVICE FOR MONITORING THE OPERATIONAL OPERATION OF A PROBE HEATING DEVICE
FR2679662B1 (en) * 1991-07-26 1994-08-05 Schlumberger Services Petrol ELECTRICAL CIRCUIT SUCH AS A WHEATSTONE BRIDGE PROVIDED WITH A RESISTANCE ADJUSTMENT PART.

Also Published As

Publication number Publication date
FR2750506A1 (en) 1998-01-02
FR2750506B1 (en) 1999-09-10
DE19625703A1 (en) 1998-01-02
KR980003595A (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US4320655A (en) Quantity of flow meter
DE19619910C2 (en) Measuring element for a mass air flow sensor and mass air flow sensor using the measuring element
JP5689421B2 (en) 4-terminal resistor with adjustable temperature coefficient of resistance with 4 resistors
US6805003B2 (en) Mass flow sensor and mass flowmeter comprising the same
JPS62211513A (en) Measuring sonde for measuring mass medium flow
JPH07306098A (en) Temperature measuring instrument by oxygen probe
US6981411B2 (en) Measuring element for a flow rate sensor, in particular an air-mass flowsensor for internal combustion engines
JPH09129825A (en) Method of forming thick film resistance
KR101628414B1 (en) Sensor device and method for menufacture
JPH1068745A (en) Measuring device with which power loss of heating current flowing in probe heating device is small
JPH09101209A (en) Temperature measuring device
JP3083622B2 (en) Gas sensor
JPH0212002B2 (en)
JP2987302B2 (en) Current sensing resistor and adjustment method thereof
CN111352036A (en) Battery sensor and method for operating a battery sensor
DE102018119212A1 (en) Sensor device and electronic arrangement
JPH07191063A (en) Electric circuit for wheatstone bridge and so on having resistance-value adjusting part
US4891978A (en) Apparatus for measuring the mass of a flowing medium and method for producing an apparatus for measuring the mass of a flowing medium
US9995639B2 (en) Sensor element, thermometer as well as method for determining a temperature
US4775435A (en) Method of manufacturing a liquid level probe
JP3267326B2 (en) Sensor adjustment device
CN109891211B (en) Sensor element for sensing particles of a measurement gas in a measurement gas chamber
DE102020134064A1 (en) gas sensor
JP3771078B2 (en) Flow measuring device
JPH06289075A (en) Resistance value measuring method for chip type electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040422

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080404