JPH1068621A - Distance detector - Google Patents

Distance detector

Info

Publication number
JPH1068621A
JPH1068621A JP8227258A JP22725896A JPH1068621A JP H1068621 A JPH1068621 A JP H1068621A JP 8227258 A JP8227258 A JP 8227258A JP 22725896 A JP22725896 A JP 22725896A JP H1068621 A JPH1068621 A JP H1068621A
Authority
JP
Japan
Prior art keywords
distance
view
pair
field
candidates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8227258A
Other languages
Japanese (ja)
Other versions
JP3632315B2 (en
Inventor
Takehide Hirabayashi
丈英 平林
Hideo Shimizu
秀雄 清水
Taichi Tanigawa
太一 谷川
Akihiko Okabe
明彦 岡部
Akio Izumi
晶雄 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22725896A priority Critical patent/JP3632315B2/en
Publication of JPH1068621A publication Critical patent/JPH1068621A/en
Application granted granted Critical
Publication of JP3632315B2 publication Critical patent/JP3632315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the distance to an object, e.g. an automobile, accurately in order to prevent crash even under disadvantageous condition where the inner pattern of an image can not be detected because the object is shaded by bright backlight. SOLUTION: A pair of image data ID1, ID2 representative of the pattern of an image in the field of view are generated in a pair of image sensors, 21, 22 in an image sensor means 20. A plurality of fields of view are set side by side in the field of view of the image sensor by extracting a pair of window parts WD1, WD2 from the pair of image data for a field of view means 30. An apparent distance corresponding to the parallax of a pair of images in the field of view is then calculated for each field of view from the pair of window parts by a distance measuring means 40. Subsequently, a plurality of probable distance candidates are selected from the frequency distribution of apparent distance by a distance determining means 50. A range EA where an object 1 having outline substantially enveloping the distance candidates is then selected and the distance of the object 1 is determined from the enveloped distance candidates an outputted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自動車の衝突防止等
のためにイメージセンサにより検出対象の映像を捉えて
それまでの距離を検出するいわゆる受動的ないしはパッ
シブな方式の距離検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called passive or passive distance detecting apparatus for detecting an image to be detected by an image sensor and detecting a distance to the object to prevent a collision of an automobile.

【0002】[0002]

【従来の技術】上述の受動的な距離検出装置は1対のイ
メージセンサにレンズ等の光学手段を通して検出対象の
映像を互いに異なる光路を介してそれぞれ受け,光路が
異なる映像がもついわゆる視差を利用して対象までの距
離を検出するもので、超音波や赤外線を対象に当ててそ
れから反射されてくる時間から距離を検出するいわゆる
能動的な距離検出装置に比べて遠距離の検出に適し,距
離検出の指向性が非常に良好で,妨害音波や妨害光の影
響を受けにくい等の優れた特長があるため、自動焦点カ
メラに従来から広く採用されており、最近では前述の自
動車の衝突防止の用途にもその将来性が囑目されてい
る。
2. Description of the Related Art The above-mentioned passive distance detecting apparatus receives images to be detected through a pair of image sensors through optical means such as a lens through optical paths different from each other, and utilizes the so-called parallax of the images having different optical paths. It is more suitable for detecting a long distance than a so-called active distance detection device that detects the distance to the target by applying ultrasonic waves or infrared rays to the target and detecting the distance from the time reflected from it. It has been used widely in autofocus cameras because of its excellent characteristics, such as extremely good detection directivity and low susceptibility to interfering sound waves and light. The potential is also being considered for applications.

【0003】周知のように、このイメージセンサを用い
る距離検出装置は三角測量の原理を利用して距離を検出
するものであり、1対のイメージセンサが受ける検出対
象の映像がもつセンサ上の視差をσを検出すればそれに
映像を結像させる光学手段の1対のレンズ間の距離であ
る基線長をbとし,レンズの焦点距離をfとすると、対
象の距離dをd=bf/σなる簡単な式で計算できる。
なお、実際の用途では距離dの値をこの式から計算でわ
ざわざ求めることなく視差σをそのまま距離の指標とし
て用いるのが通例である。
As is well known, a distance detecting device using this image sensor detects a distance using the principle of triangulation, and a parallax on a sensor of an image to be detected received by a pair of image sensors. If σ is detected, the base length, which is the distance between a pair of lenses of the optical means for forming an image on the image, is b, and the focal length of the lens is f, the target distance d is d = bf / σ. It can be calculated with a simple formula.
In an actual application, it is customary to use the parallax σ directly as an index of the distance without having to calculate the value of the distance d from this formula.

【0004】ところが、自動焦点カメラでは検出対象を
そのファインダで捉えることにより特定できるのに対
し、自動車の衝突防止の用途では検出対象がイメージセ
ンサの正面にあるとは限らずドライバにそれを特定する
負担を掛けることもできない。もっとも、対象がイメー
ジセンサの正面から任意の角度θをなす方向に存在する
場合でも、幸いなことに視差σを検出すれば上述と同じ
式で距離dを計算できることが知られているので、イメ
ージセンサがもつ視界内に複数の視野を設定し,さらに
はイメージセンサ対を複数個設けて、それらの視野ごと
に距離を検出した上で最も確からしい距離の値を採用す
る手段がとられる。
However, in an autofocus camera, a detection target can be specified by catching it with its viewfinder, whereas in an application for preventing collision of an automobile, the detection target is not always located in front of an image sensor and is specified by a driver. You can't put a burden. However, even if the target exists in a direction forming an arbitrary angle θ from the front of the image sensor, fortunately, if the parallax σ is detected, it is known that the distance d can be calculated by the same formula as above. A method of setting a plurality of visual fields within the field of view of the sensor, providing a plurality of image sensor pairs, detecting a distance for each of the visual fields, and employing a most probable distance value is adopted.

【0005】本件出願人による特願平7-167321号にはこ
の方式の距離検出装置が提案されており、この装置では
対象を検出すべき視界ないし検出範囲内の距離検出値の
頻度分布から確からしい距離範囲を選出し、かつこの距
離範囲を含むように選定した領域を視界内で順次に移動
させながら平均値を計算した結果から最も確からしい距
離を採用するようになっている。なお、複数のイメージ
センサ対を併せた広い視界の中には距離が互いに異なる
検出対象が複数個存在することもあり、かかる場合には
確からしい距離範囲を複数個選出した上で各距離範囲に
ついての距離を求めることもできる。
Japanese Patent Application No. 7-167321 filed by the present applicant proposes a distance detecting device of this type. In this device, a distance to be detected from a visual field in which an object should be detected or a frequency distribution of detected distance values within a detection range can be obtained. The most probable distance range is selected from the result of calculating the average value while selecting a likely distance range and sequentially moving the area selected to include this distance range within the field of view. In a wide field of view including a plurality of image sensor pairs, there may be a plurality of detection targets having different distances from each other. In such a case, a plurality of likely distance ranges are selected. You can also find the distance of

【0006】[0006]

【発明が解決しようとする課題】ところが、イメージセ
ンサの映像検出の精度には限界があるため悪条件下では
正確に距離を検出できないことがある。検出に不利な条
件としては対象としての自動車が夕日等の明るい逆光を
受けているためその映像の内部パターンが充分な精度で
検出できない場合がある。この場合は対象の全体が逆光
の明るさに比べて非常に暗い影になってしまうので、そ
の映像がもつ内部パターンを検出するのが非常に困難で
ある。一方、映像から距離を検出する際は1対のイメー
ジセンサが受ける映像を相互にシフトさせながらそのパ
ターンが一致ないしは最高の相関を示したときのシフト
値を前述の視差σとするので、映像の内部パターンが乏
しい場合はパターンの一致や相関を検定する精度が低下
し、従って距離指標としての視差σの検出精度も落ちて
くるのである。
However, there is a limit to the accuracy of image detection by an image sensor, so that it may not be possible to accurately detect a distance under bad conditions. As a disadvantageous condition for detection, there is a case where the internal pattern of the image cannot be detected with sufficient accuracy because the target vehicle is receiving bright backlight such as sunset. In this case, since the entire object becomes a shadow that is very dark compared to the brightness of the backlight, it is very difficult to detect the internal pattern of the video. On the other hand, when detecting a distance from an image, the image received by the pair of image sensors is mutually shifted, and the shift value when the pattern matches or shows the highest correlation is the above-described parallax σ. If the internal pattern is poor, the accuracy of pattern matching and correlation test decreases, and the accuracy of detecting the parallax σ as a distance index also decreases.

【0007】もっとも、対象の映像の内部パターンが検
出できなくても対象と逆光の境目は検出できるので距離
情報が全く得られないわけではないが、実験の結果によ
れば内部パターン情報が乏しくて映像の輪郭に関する情
報だけでは距離の検出精度の低下が避けられない。内部
パターンの検出精度を向上するにはイメージセンサに映
像データが例えば8ビット以上の高精度で得られる高級
で非常に高価なものを用いる必要があるがもちろん実用
面での不利を免れない。
However, even if the internal pattern of the image of the target cannot be detected, the boundary between the target and the backlight can be detected, so that the distance information cannot be obtained at all. However, according to the results of the experiment, the internal pattern information is poor. It is inevitable that the detection accuracy of the distance is reduced only by the information on the outline of the image. In order to improve the detection accuracy of the internal pattern, it is necessary to use a high-quality and very expensive image sensor capable of obtaining video data with a high accuracy of, for example, 8 bits or more for the image sensor, but of course there is a practical disadvantage.

【0008】かかる現状に立脚して、本発明の課題は検
出対象の映像の内部パターンがごく乏しくてその輪郭の
パターンに関する情報しか得られないような不利な条件
下においても、イメージセンサにとくに高精度のものを
用いることなく対象の距離を正確に検出できる距離検出
装置を提供することにある。
[0008] Based on this situation, the object of the present invention is to provide a particularly high image sensor even under disadvantageous conditions in which the internal pattern of an image to be detected is very scarce and only information on the contour pattern can be obtained. It is an object of the present invention to provide a distance detecting device that can accurately detect a target distance without using an accurate one.

【0009】[0009]

【課題を解決するための手段】本発明の距離検出装置に
よれば、イメージセンサの対を備えるイメージセンサ手
段によりその視界内の映像のパターンを表す映像データ
の対を発生させ、視野設定手段により各イメージセンサ
の視界内に検出対象を捉えるべき視野を複数個並べて設
定し、距離計算手段により映像データの対から視野に対
応して抽出した窓部分の対から視野内の映像対がもつ視
差に相応する見掛けの距離を視野ごとに計算し、かつ距
離確定手段により複数の見掛けの距離の頻度分布から複
数の検出距離候補を選出してそれらをほぼ包み込む輪郭
をもつ対象の存在範囲を選定した上で, この存在範囲に
属する距離候補から対象の距離を確定して出力すること
によって前述の課題を解決する。
According to the distance detecting apparatus of the present invention, a pair of image data representing a pattern of an image in the field of view is generated by an image sensor having a pair of image sensors, and the field of view is set by a field of view setting means. A plurality of visual fields to be detected in the field of view of each image sensor are set side by side, and the parallax of the video pair in the visual field within the visual field from the pair of window parts extracted corresponding to the visual field from the pair of video data by the distance calculating means. A corresponding apparent distance is calculated for each visual field, and a plurality of detection distance candidates are selected from a plurality of apparent distance frequency distributions by the distance determining means, and an existence range of an object having a contour substantially enclosing them is selected. The above-mentioned problem is solved by determining and outputting the target distance from the distance candidates belonging to the existence range.

【0010】本発明は検出距離の精度ないし信頼度がか
なり低い場合であっても距離がほぼ正確に検出された視
野の分布が視界内のある範囲に集まりやすい傾向がある
点に着目したものであり、検出距離の頻度分布から見て
確からしい距離の候補を距離確定手段にまず複数個選出
させ、かつ視界内のそれらに対応する視野が集まってい
る範囲をほぼ包み込むような輪郭で対象の存在範囲を選
定して、この範囲内の距離候補から対象の距離をほぼ正
確に確定できるようにしたものである。
The present invention focuses on the fact that even when the accuracy or reliability of the detection distance is considerably low, the distribution of the visual field whose distance has been detected almost accurately tends to converge within a certain range within the field of view. Yes, the distance determination means first selects a plurality of probable distance candidates from the frequency distribution of detected distances, and the existence of an object with a contour that almost encompasses the range where the corresponding fields of view are gathered in the field of view By selecting a range, the distance of the target can be determined almost accurately from the distance candidates within this range.

【0011】なお、上記構成にいうイメージセンサ手段
にはイメージセンサおよびその関連回路を組み込んだ集
積回路装置を用いて、視界内の映像をイメージセンサの
上に結像させる光学手段とともに映像検出モジュールと
して纏めるのが便利である。視野設定手段にはイメージ
センサの視界内の映像を漏れなく捉え得るよう複数の視
野を若干とも互いに重なり合うよう設定させるのが望ま
しい。また、距離計算手段には複数の距離計算回路を組
み込んだ集積回路装置を用いて複数個の視野について距
離を同時に並行して計算させるのが、距離の計算速度を
極力高める上で有利である。この距離計算手段にはハー
ドウエアの回路が有利であるのに対し、距離確定手段は
マイクロコンピュータ等のプロセッサにそのソフトウエ
アとして望ましくは視野設定手段とともに装荷するのが
有利である。また、この距離確定手段には距離計算手段
により計算された複数個の検出距離からできるだけ有用
な情報を引き出せるようにその頻度分布から距離候補を
複数個, 例えば2〜数個の検出距離を含むように選出さ
せるのが有利である。
The image sensor means as described above uses an integrated circuit device incorporating an image sensor and its related circuits, and is used as an image detection module together with optical means for forming an image in the field of view on the image sensor. It is convenient to put together. It is desirable that the field-of-view setting means be set so that a plurality of fields of view slightly overlap each other so that images in the field of view of the image sensor can be captured without omission. Further, it is advantageous to use an integrated circuit device incorporating a plurality of distance calculation circuits as the distance calculation means to calculate the distances for a plurality of fields of view simultaneously and in parallel, in order to increase the distance calculation speed as much as possible. While a hardware circuit is advantageous for the distance calculation means, the distance determination means is advantageously loaded as software on a processor such as a microcomputer, preferably together with the view setting means. The distance determination means may include a plurality of distance candidates, for example, two to several detection distances from the frequency distribution so as to extract as useful information as possible from the plurality of detection distances calculated by the distance calculation means. Is advantageously selected.

【0012】とくに自動車の衝突防止用の場合には不特
定の対象を自動的に見付ける必要があるから対象を捉え
る視界を広く設定するのが望ましく、このためにはイメ
ージセンサ手段にイメージセンサを複数対組み込み、視
野設定手段により各イメージセンサ対ごとに設定する複
数の視野と複数のイメージセンサ対とを組み合わせて視
野を二次元マトリックス状に並べてなる検出範囲の中で
映像を捉え、距離計算手段にこのマトリックスを構成す
る視野ごとに映像の見掛けの距離を計算させるのが望ま
しい。さらに、この場合には距離確定手段により選出さ
れる距離候補の検出範囲内の分布状態を示す二次元のマ
ップを作り、このマップ内で距離候補が分布するパター
ンに外接するように方形輪郭をもつ領域を対象の存在範
囲として選定するのが合理的である。
In particular, in the case of automobile collision prevention, it is necessary to automatically find an unspecified target, so that it is desirable to set a wide field of view for capturing the target. For this purpose, a plurality of image sensors are provided in the image sensor means. The image is captured within the detection range in which the fields of view are arranged in a two-dimensional matrix by combining multiple fields of view and multiple image sensor pairs set for each image sensor pair by field of view setting means, and used as distance calculation means. It is desirable to calculate the apparent distance of the image for each field of view forming the matrix. Further, in this case, a two-dimensional map showing the distribution state of the distance candidates selected by the distance determining means within the detection range is created, and a rectangular contour is formed so as to circumscribe the pattern in which the distance candidates are distributed in this map. It is reasonable to select an area as the existence range of the object.

【0013】また、存在範囲を正しく設定して対象の距
離を正確に確定するためには、距離確定手段により選出
された距離候補に相当する距離位置に対象が存在する場
合のその見掛けの大きさを表す枠を設定し、上述のよう
に選定した対象の存在範囲がこの枠にほぼ一致する大き
さであることを確かめた上で、この存在範囲に属する距
離候補から対象の距離を確定するのが望ましい。さらに
この確定距離の正確を期するためには対象の存在範囲に
属するすべての距離候補の平均値を対象の検出距離とし
て採用するのが最も合理的である。
In order to set the existence range correctly and accurately determine the distance of the object, the apparent size of the object when the object exists at a distance position corresponding to the distance candidate selected by the distance determination means. After confirming that the existence range of the object selected as described above is approximately the same size as this frame, the distance of the object is determined from the distance candidates belonging to this existence range. Is desirable. Furthermore, in order to ensure the accuracy of the determined distance, it is most reasonable to adopt the average value of all distance candidates belonging to the target existence range as the target detection distance.

【0014】しかし、検出範囲内で距離候補が離散して
分布する場合もあり、この離散度が大きいと上述のよう
に存在範囲と枠の大きさを合致させるのが困難になるの
で、各距離候補にその集合状態を加味して重みを付けた
マップを作成し、距離候補に相当する距離位置に対象が
存在する場合の見掛けの大きさを表す枠を設定して、枠
内の距離候補に付した重みの合計が最大になるようにマ
ップに枠を当て嵌めて対象の存在範囲を選定するのが有
利である。
However, distance candidates may be discretely distributed in the detection range. If the degree of discreteness is large, it becomes difficult to match the existence range and the size of the frame as described above. Create a map weighted by taking into account the aggregation state of the candidates, set a frame representing the apparent size when the target exists at the distance position corresponding to the distance candidate, and set the It is advantageous to select a target existence range by fitting a frame to the map so that the total of the weights assigned is maximized.

【0015】[0015]

【発明の実施の形態】以下、図面を参照して本発明の望
ましい実施形態を説明する。図1に本発明による距離検
出装置の構成例を距離を検出すべき対象とともに示し、
図2に本発明装置を構成する距離確定手段の動作例を示
し、図3にこの距離確定手段の異なる動作例を示す。な
お、以下に説明する実施形態では距離検出装置は自動車
の衝突防止用であるものとする。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an example of the configuration of a distance detection device according to the present invention together with a target whose distance is to be detected.
FIG. 2 shows an operation example of the distance determining means constituting the device of the present invention, and FIG. 3 shows a different operation example of the distance determining means. In the embodiment described below, it is assumed that the distance detection device is for preventing collision of an automobile.

【0016】図1の上部に示す図の例では自動車である
検出対象1は明るい夕日等の逆光を受けているためハッ
チングで示すようにその暗い影になっており、正常な状
態で認められるはずのネームプレート,バンパー,テー
ルランプ,窓等のその内部のパターンが不明瞭で、逆光
との境目の輪郭だけが際立っている状態にある。その下
側に示す光学手段10は1対のレンズ11と12によりかかる
対象1の映像を捉えてイメージセンサ手段20に対して互
いに異なる光路L1とL2を介して与えるもので、2個のレ
ンズ11と12の光軸間の距離bが三角測量の原理により対
象1の距離dを検出する上でのいわゆる基線長である。
In the example shown in the upper part of FIG. 1, the detection target 1 which is an automobile has received a backlight such as a bright sunset, and therefore has a dark shadow as shown by hatching and should be recognized in a normal state. The internal patterns of the name plate, bumper, tail lamp, window, etc. are unclear, and only the outline of the boundary with the backlight is prominent. The optical means 10 shown below captures the image of the object 1 by a pair of lenses 11 and 12 and gives the image to the image sensor means 20 through different optical paths L1 and L2. And the distance b between the optical axes of 12 and 12 is the so-called base line length for detecting the distance d of the object 1 based on the principle of triangulation.

【0017】自動車の衝突防止用では不特定な方向にあ
る対象1を広い視界で捉える必要があるのでイメージセ
ンサ手段20にはイメージセンサ21と22の対を複数個, 例
えば数〜十数対組み込むのがよい。また、この用途では
経験から上述の光学手段10のレンズ11と12およびイメー
ジセンサ21と22を垂直な方向に配列するのがよいが、図
示の都合から図1では水平方向の配列で示されている。
対象1は光学手段10の正面から角度θの方向にありその
映像がレンズ11と12の短い焦点距離fの位置にあるイメ
ージセンサ21と22の上に結像される。この映像の中心の
イメージセンサ21や22の基準位置からのずれをそれぞれ
σ1 , σ2 とし, かつσ=σ1 +σ2 とすると、対象1
の距離dは前述のように角度θと無関係にd=bf/σ
の式から計算できるが、σを距離dの指標として用いる
のが通例である。
In order to prevent the collision of a car, it is necessary to catch the object 1 in an unspecified direction with a wide field of view. Therefore, the image sensor means 20 incorporates a plurality of pairs of image sensors 21 and 22, for example, a few to a dozen pairs. Is good. In this application, it is preferable from experience that the lenses 11 and 12 of the optical means 10 and the image sensors 21 and 22 are arranged in a vertical direction, but for convenience of illustration, they are shown in a horizontal arrangement in FIG. I have.
The object 1 is in the direction of the angle θ from the front of the optical means 10 and its image is formed on the image sensors 21 and 22 located at the position of the short focal length f between the lenses 11 and 12. Each sigma 1 the deviation from the reference position of the image sensor 21 and 22 of the center of the picture, and sigma 2, and when the σ = σ 1 + σ 2, target 1
Is d = bf / σ regardless of the angle θ as described above.
Can be calculated from the following equation, but σ is usually used as an index of the distance d.

【0018】イメージセンサ21や22にはCCDを用いる
のが便利で、図示の例ではイメージセンサ手段20内にそ
れらによる検出信号を受ける切換回路23と増幅回路24と
AD変換器25が組み込まれており、イメージセンサ21や
22が受ける映像のパターンを表す例えば8ビット精度の
映像データがAD変換器25から出力される。イメージセ
ンサ手段20はこれらの関連回路を複数対のイメージセン
サ21, 22とともに作り込んだ集積回路チップであり、光
学手段10とともに小形のパッケージに収納したモジュー
ルの形に纏めて自動車に搭載するのが便利である。
It is convenient to use a CCD for the image sensors 21 and 22. In the example shown in the figure, a switching circuit 23 for receiving a detection signal from the CCD, an amplifier circuit 24, and an AD converter 25 are incorporated in the image sensor means 20. Image sensor 21
For example, the A / D converter 25 outputs 8-bit precision video data representing a video pattern received by the video converter 22. The image sensor means 20 is an integrated circuit chip in which these related circuits are built together with a plurality of pairs of image sensors 21 and 22, and is mounted together with the optical means 10 in the form of a module housed in a small package and mounted on an automobile. It is convenient.

【0019】図1の下側に示すプロセッサ70は例えばマ
イクロコンピュータであり、図示の都合からこれに視野
設定手段30と距離計算手段40と距離確定手段50を組み込
んだ形で示すが、少なくとも距離計算手段40はプロセッ
サ70と別体のハードウエアの集積回路装置として構成す
るのが望ましい。プロセッサ70の上部に示されたメモリ
71はイメージセンサ手段20の前述のAD変換器25から出
力を受けて1対の映像データID1とID2として記憶す
る。各映像データはイメージセンサ21や22のふつう数百
個の光センサがそれぞれ受ける光の強度を表すディジタ
ルなセンサデータの集合である。視野設定手段30はこれ
らの映像データID1とID2から窓部分WD1とWD2を図で
は細線で示すようにそれぞれ抽出することにより、イメ
ージセンサ21や22がもつ視界内に対象1を捉えるべき視
野を複数個, ふつうは数十個並べて設定するもので、こ
れによって設定されるイメージセンサごとの複数の視野
と複数対のイメージセンサ21と22により視野が二次元マ
トリックス状に並んだ検出範囲DAが図1では対象1と重
ねて輪郭を示すよう設定される。なお、イメージセンサ
対ごとに設定する視野は視界内の映像を漏れなく捉え得
るように相互に若干重ね合わせるのがよい。
The processor 70 shown in the lower part of FIG. 1 is, for example, a microcomputer, and is shown in a form incorporating the visual field setting means 30, the distance calculating means 40 and the distance determining means 50 for convenience of illustration. Preferably, the means 40 is configured as a hardware integrated circuit device separate from the processor 70. Memory shown at the top of processor 70
71 receives the output from the aforementioned AD converter 25 of the image sensor means 20 and stores it as a pair of video data ID1 and ID2. Each image data is a set of digital sensor data representing the intensity of light received by each of several hundred optical sensors of the image sensors 21 and 22. The field-of-view setting means 30 extracts the window portions WD1 and WD2 from these video data ID1 and ID2 as shown by thin lines in the figure, thereby providing a plurality of fields of view for capturing the object 1 within the field of view of the image sensors 21 and 22. In general, dozens are set side by side, and a plurality of fields of view set for each image sensor and a detection range DA in which the fields of view are arranged in a two-dimensional matrix by a plurality of pairs of image sensors 21 and 22 are set as shown in FIG. Is set so as to show the outline overlapping with the object 1. Note that the fields of view set for each pair of image sensors are preferably slightly overlapped with each other so that images in the field of view can be captured without omission.

【0020】距離計算手段40は前述のようにハードウエ
アの集積回路装置とするのがよく、いわゆるゲートアレ
イがこれに適する。図の例では複数個の単位計算回路41
から距離計算手段40が構成されており、各単位計算回路
41は図では細線で示すように視野設定手段30から映像デ
ータID1とID2の対から抽出した1対の窓部分WD1とWD
2を受けて、前述の検出範囲DAのマトリックスを構成す
る各視野内の映像対がもつ視差に対応する見掛けの距離
の指標σを計算する。複数の単位計算回路41にこの計算
を並行して行なわせるので短時間に計算を完了できる。
この計算結果はプロセッサ70のメモリ72に記憶させてお
くのがよい。
The distance calculating means 40 is preferably a hardware integrated circuit device as described above, and a so-called gate array is suitable for this. In the example of FIG.
From the distance calculation means 40, each unit calculation circuit
Reference numeral 41 denotes a pair of window portions WD1 and WD extracted from the pair of video data ID1 and ID2 from the visual field setting means 30, as indicated by the thin lines in the figure.
2, the index σ of the apparent distance corresponding to the parallax of the image pair in each field of view constituting the matrix of the detection range DA is calculated. Since a plurality of unit calculation circuits 41 perform this calculation in parallel, the calculation can be completed in a short time.
This calculation result is preferably stored in the memory 72 of the processor 70.

【0021】距離確定手段50は望ましくは前述の視野設
定手段30とともにプロセッサ70内にソフトウエアの形で
装荷しておくのが有利である。この距離確定手段50は上
述の距離計算手段40の計算結果である前述の検出範囲DA
内に二次元マトリックス状に並んだ視野ごとの見掛けの
距離をメモリ72から読み込み、まず距離の頻度分布を作
ってそれから最も確からしい検出距離の候補を複数個選
出し、次にこれら距離候補をほぼ包み込む輪郭をもつ対
象1の存在範囲を選定した上で、それに属する距離候補
から対象1の距離を確定して出力するものである。以
下、この距離確定手段50の動作例を図2と図3を参照し
て説明する。図2(a) は見掛け距離の頻度分布を示す線
図、図2(b) と図3(a), (b)は存在範囲の選定要領を示
す模式図、図2(c) と図3(c) は距離確定手段の動作例
を示す流れ図である。
Advantageously, the distance determining means 50 is preferably loaded in software in the processor 70 together with the field setting means 30 described above. This distance determination means 50 is the above-described detection range DA which is a calculation result of the above-described distance calculation means 40.
Within the two-dimensional matrix, the apparent distances for each field of view are read from the memory 72, a frequency distribution of distances is first created, and then a plurality of candidates for the most probable detection distances are selected. After selecting the existence range of the target 1 having the enclosing contour, the distance of the target 1 is determined and output from the distance candidates belonging thereto. Hereinafter, an operation example of the distance determining means 50 will be described with reference to FIGS. FIG. 2 (a) is a diagram showing a frequency distribution of apparent distances, FIG. 2 (b) and FIGS. 3 (a) and 3 (b) are schematic diagrams showing a procedure for selecting an existence range, and FIGS. 2 (c) and 3 (b). (c) is a flowchart showing an operation example of the distance determination means.

【0022】図2(a) の頻度分布図は横軸が距離計算手
段40により計算された見掛け距離の指標σで,縦軸がそ
の発生度数nである。分布に若干の凹凸はあるが図の例
では中央部に度数nが高い範囲Aがあり、この範囲A内
のσを最も確からしい距離の候補として選出する。範囲
Aの広さは距離計算手段40により計算された複数個の距
離からできるだけ有用な情報を引き出せるようにその頻
度分布から距離候補を複数個, 例えば2〜数個の検出距
離を含むよう,あるいはそれに含まれる度数が全体度数
の数〜十数%になるように決めるのがよい。
In the frequency distribution diagram of FIG. 2A, the abscissa indicates the index σ of the apparent distance calculated by the distance calculating means 40, and the ordinate indicates the frequency of occurrence n. Although there is some unevenness in the distribution, in the example shown in the figure, there is a range A with a high frequency n at the center, and σ within this range A is selected as a most probable distance candidate. The width of the range A is determined so as to include a plurality of distance candidates, for example, two to several detection distances from the frequency distribution so as to extract as useful information as possible from the plurality of distances calculated by the distance calculation means 40, or It is preferable that the frequency included therein is determined so as to be several to several ten percent of the total frequency.

【0023】図2(b) はこのようにして選出して距離候
補が前述の検出範囲DA内に分布する様子を示すマップで
あり、簡単化のために距離候補に対応する視野に1を付
け,それ以外の視野には0を付けてある。マップ内には
対象1の存在範囲EAが細線の枠で示されており、図2の
実施態様では検出範囲DEのマップ内の距離候補である図
の1の分布パターンに外接する方形の輪郭をもつ領域を
この存在範囲EAとして選定する。しかし、検出距離の正
確性を期するためにはこの選定が適正なことを確かめて
おくのが望ましい。このため、図2の実施態様では距離
候補に相当する距離だけ離れた位置にある対象1のサイ
ズを表す枠FMを図示のように設定して、存在範囲EAの幅
と高さがそれとほぼ一致することを確かめる。存在範囲
EAをこのようにして確定した後は、それに属する距離候
補の総平均値を計算して対象1の検出距離として採用す
るのが合理的である。
FIG. 2B is a map showing how the distance candidates are selected and distributed in the detection range DA in this manner. For simplicity, 1 is added to the field of view corresponding to the distance candidates. , 0 is added to the other fields of view. In the map, the existence range EA of the target 1 is indicated by a thin-line frame. In the embodiment of FIG. 2, a rectangular outline circumscribing the distribution pattern 1 in FIG. Is selected as the existence range EA. However, in order to ensure the accuracy of the detection distance, it is desirable to confirm that this selection is appropriate. For this reason, in the embodiment of FIG. 2, a frame FM representing the size of the target 1 located at a position separated by a distance corresponding to the distance candidate is set as shown in the figure, and the width and height of the existence range EA substantially coincide with it. Make sure you do. Existence range
After the EA is determined in this way, it is reasonable to calculate the total average value of the distance candidates belonging to the EA and use it as the detection distance of the target 1.

【0024】図2(c) にソフトウエアである距離確定手
段50の以上の動作を流れ図で示す。最初のステップS51
で図2(a) のように距離の頻度分布を作り、ステップS
52で範囲A内の距離候補を選出する。ステップS53で図
2(b) の距離候補のマップに相当する0と1のマトリッ
クスを作成し、ステップS54でそれから方形の輪郭をも
つ存在範囲EAを選定し、ステップS55で距離候補に相応
する枠FMを設定する。ステップS56は存在範囲EAがこの
枠FMにほぼ同じであるか否かを判定し、然りであればこ
れで存在範囲EAが確定したのでステップS57でそれに属
する距離候補の総平均値σavを距離指標σとして計算す
るが、否の場合はステップS58で距離の指標σに距離検
出に失敗した旨を明確に示す値σf を入れる。ステップ
S59では距離指標σとして平均値σavまたは検出の失敗
を示すσf を出力し、これで距離確定手段50としての動
作を完了する。
FIG. 2C is a flowchart showing the above operation of the distance determining means 50 which is software. First step S51
Then, a frequency distribution of the distance is created as shown in FIG.
At 52, a distance candidate within the range A is selected. In step S53, a matrix of 0s and 1s corresponding to the map of the distance candidates in FIG. 2 (b) is created. In step S54, an existence range EA having a rectangular outline is selected. In step S55, a frame corresponding to the distance candidates is selected. Set FM. In step S56, it is determined whether or not the existence range EA is almost the same as the frame FM. If so, the existence range EA is determined. Therefore, in step S57, the total average value σ av of the distance candidates belonging to the existence range EA is determined. It is calculated as the distance index σ, but if not, a value σ f that clearly indicates that the distance detection has failed is inserted into the distance index σ in step S58. In step S59, the average value σ av or σ f indicating failure in detection is output as the distance index σ, and the operation as the distance determination means 50 is completed.

【0025】しかし、図2(b) のように距離候補が検出
範囲DAの中で纏まって分布するとは必ずしも限らず、か
なり離散して分布する場合もあり、分布の離散度が大き
いと存在範囲EAを枠FMと合致させて確定するのが困難に
なる。図3に示す実施態様はこのような場合, さらには
図2の態様では距離検出に失敗した場合にも適し得るも
のである。図3(a) は図2(b) に相当するマップである
が、検出範囲DAのほぼ全域に亘り1で示す距離候補が離
散分布した例を示す。この図3の実施態様ではかかる場
合でも存在範囲EAとそれ以外では距離候補に対応する視
野が繋がり合う様子に差が出てくる点を利用して、各距
離候補にその集合状態を加味した重みを付けたマップを
作り, かつ距離候補に相当する前述の枠FMを設定して,
マップに枠FMをその中の距離候補の重みの合計が最大に
なるように当て嵌めることにより存在範囲EAを選定す
る。
However, as shown in FIG. 2B, the distance candidates are not always distributed collectively in the detection range DA, but may be distributed considerably discretely. It is difficult to determine the EA by matching it with the frame FM. The embodiment shown in FIG. 3 can be suitable in such a case, and even when the distance detection fails in the embodiment of FIG. FIG. 3A is a map corresponding to FIG. 2B, and shows an example in which the distance candidates indicated by 1 are discretely distributed over almost the entire detection range DA. In the embodiment of FIG. 3, even in such a case, by using a point where a difference appears in how the visual fields corresponding to the distance candidates are present in the existence range EA and in other cases, weights are added to each distance candidate in consideration of the aggregation state. Make a map with, and set the above-mentioned frame FM corresponding to the distance candidate,
The existence range EA is selected by fitting the frame FM to the map such that the sum of the weights of the distance candidates in the frame FM is maximized.

【0026】図3(b) に各距離候補に重みを付けたマッ
プの図3(a) に対応する例を示す。図の例では各距離候
補自体に1の重みをまず与え, その上下左右に隣接する
距離候補がある場合はそれぞれについて2の重みを加
え、さらに斜め方向の4個所に隣接する距離候補がある
場合にもそれぞれについて1の重みを加えてある。この
マップにその下側に示す枠FMを上述の要領で当て嵌めた
結果を存在範囲EAにより示す。図の例ではこの存在範囲
EA内の距離候補の重みの合計は51であり、容易にわかる
ように検出範囲DAの中でこの存在範囲EAの位置が少しで
もずれれば重みの合計が減少するので、重み付けマップ
に枠FMを当て嵌めるべき位置をほとんどの場合について
一義的に決定できる。
FIG. 3B shows an example of a map in which each distance candidate is weighted, corresponding to FIG. 3A. In the example shown in the figure, a weight of 1 is first given to each distance candidate itself. If there are distance candidates adjacent to the upper, lower, left and right sides, a weight of 2 is added to each distance candidate, and there are four adjacent distance candidates in oblique directions. Are also weighted by 1 for each. The result of applying the frame FM shown below to this map in the manner described above is shown by the existence range EA. In the example of the figure, this existence range
The sum of the weights of the distance candidates in the EA is 51, and as can be easily understood, if the position of the existence range EA is slightly shifted in the detection range DA, the sum of the weights decreases. Can be uniquely determined in most cases.

【0027】図3(c) にこの実施態様における距離確定
手段50の動作例を示す。最初の内のステップS51とS52
の動作は図2(c) と同じであるが、次のステップS53a
では図3(a) のマップAを作り、さらにステップS53b
で重み付けされた図3(b) のマップBを作る。ステップ
S61で流れ制御用のフラグFを0にセットした上で、ス
テップS55でマップ内の距離候補に相応するよう図3
(b) の枠FMを設定する。つづくステップS62ではフラグ
Fが0か否かを調べるが、最初は然りであるから動作は
ステップS63に入ってフラグFに1を立てた上で、ステ
ップS54で枠FMをマップBに前述の要領で当て嵌めるこ
とにより図3(b) の存在範囲EAを設定し,かつ後の動作
の準備のために枠FMの大きさを記憶する。
FIG. 3C shows an operation example of the distance determining means 50 in this embodiment. Steps S51 and S52 of the first
Is the same as that of FIG. 2 (c), but the next step S53a
Then, a map A shown in FIG. 3A is created, and furthermore, a step S53b
The map B shown in FIG. In step S61, the flow control flag F is set to 0, and in step S55, the flow control flag F is set to correspond to the distance candidate in the map.
(b) Set the frame FM. In step S62, it is checked whether or not the flag F is 0. Since this is the case at first, the operation proceeds to step S63, in which the flag F is set to 1, and in step S54, the frame FM is added to the map B as described above. The existence range EA shown in FIG. 3B is set by fitting in the manner described above, and the size of the frame FM is stored in preparation for the subsequent operation.

【0028】次のステップS57では設定された存在範囲
EAに属する距離候補の平均値σavを計算した上で、流れ
をステップS55に戻して枠FMを平均値σavに相応するよ
うに設定し直す。続くステップS62ではフラグFが0か
否かを判定するが、こんどはこれに1が立っているから
判定は必ず否と出て動作はステップS64に移る。このス
テップS64ではステップS55で設定し直した新しい枠FM
が前にステップS54で記憶しておいたものと同じか否か
を判定する。この判定が否と出た場合は流れをステップ
S54に戻して存在範囲EAを設定し直された枠FMを用いて
選出し直すが、ほとんどの場合は判定結果が然りと出る
から、ステップS58で距離指標σとしてステップS57で
計算済みの平均値σavを出力し、これで図3の実施態様
における距離確定手段50の動作が完了する。
In the next step S57, the set existence range is set.
After calculating the average value σ av of the distance candidates belonging to the EA, the flow returns to step S55, and the frame FM is set again so as to correspond to the average value σ av . In the subsequent step S62, it is determined whether or not the flag F is 0. Since the flag F is set to 1 this time, the determination always comes out as no, and the operation proceeds to step S64. In this step S64, the new frame FM reset in step S55
Is the same as that stored previously in step S54. If this determination is negative, the flow returns to step S54 to re-select using the frame FM for which the existence range EA has been reset. In most cases, however, the determination result is clear. Then, the average value σ av calculated in step S57 is output as the distance index σ, and the operation of the distance determination means 50 in the embodiment of FIG. 3 is completed.

【0029】[0029]

【発明の効果】以上説明したとおり、本発明では検出対
象の映像パターンが細部構造に乏しいために検出距離の
信頼度がかなり低い場合でもイメージセンサの視界内の
距離がほぼ正確に検出された視野の分布がある範囲に集
合しやすい点に着目して、距離確定手段により検出距離
の頻度分布から見て最も確からしい距離の候補を複数個
選出し、視界内にそれらが集っている範囲をほぼ包み込
む輪郭をもつ対象の存在範囲を選定し、この存在範囲内
の距離候補から対象の距離を確定するようにしたので、
(a) 自動車等の対象が明るい逆光を受けてその暗い影に
なっているために影と逆光の境目からしかその映像を捉
え得ないような悪条件下でも対象の距離をほぼ確実にか
つ正確に検出することができ、(b) 対象の距離の検出と
同時にその存在範囲が判明するので対象を捉えるべき視
界や視野を存在範囲に適した方向や広さに設定すること
により対象の検出に失敗するおそれを減らすとともに距
離の検出精度を高めることができる。かかる特長をもつ
本発明による距離検出装置はとくに自動車の衝突防止用
に適するものである。
As described above, in the present invention, the visual field in which the distance in the field of view of the image sensor is almost accurately detected even when the reliability of the detection distance is considerably low because the image pattern to be detected has a poor detail structure. Focusing on the point that the distribution is likely to be gathered in a certain range, the distance determination means selects the most probable distance candidates from the frequency distribution of the detected distance, and determines the range where they are gathered in the field of view Since the existence range of the object with the outline that almost wraps around was selected, and the distance of the object was determined from the distance candidates within this existence range,
(a) The distance of the object is almost certainly and accurately even under bad conditions where the object such as a car receives a bright backlight and becomes a dark shadow, so that the image can only be captured from the boundary between the shadow and the backlight. (B) Since the existence range is determined at the same time as the detection of the distance of the object, the field of view and the visual field to capture the object are set to the direction and width suitable for the existence range, so that the detection of the object can be performed. The possibility of failure can be reduced and the distance detection accuracy can be increased. The distance detecting device according to the present invention having such features is particularly suitable for preventing automobile collision.

【0030】距離計算手段に集積回路装置を用いてそれ
に複数個の単位計算回路を組み込む実施態様は、視界内
の複数個の視野について距離計算を同時並行して進めて
距離検出時間を短縮できる効果があり、距離確定手段や
視野設定手段をプロセッサにソフトウエアの形で装荷す
る実施態様は、それらの動作細部を装置の使用状況に適
合するように簡単にかつ随時変更できる効果がある。
The embodiment in which a plurality of unit calculation circuits are incorporated in the distance calculation means by using an integrated circuit device in the distance calculation means has the effect of shortening the distance detection time by simultaneously proceeding distance calculation for a plurality of visual fields within the field of view. The embodiment in which the distance determining means and the visual field setting means are loaded into the processor in the form of software has the effect that their operation details can be easily and at any time changed to suit the usage of the apparatus.

【0031】イメージセンサ手段に複数対のイメージセ
ンサを組み込み,これらのイメージセンサ対と視野設定
手段によりイメージセンサ対ごとに設定される複数の視
野を組み合わせた二次元マトリックス状の検出範囲内の
各視野ごとに距離計算手段に距離を計算させる実施態様
は、とくに自動車の衝突防止用の場合に広い視界内の映
像を捉えることにより不特定な方向に存在する対象をド
ライバに負担を掛けることなく洩れなく自動的に発見で
きる効果がある。
A plurality of pairs of image sensors are incorporated in the image sensor means, and each field of view within a two-dimensional matrix detection range is obtained by combining these image sensor pairs and a plurality of fields of view set for each image sensor pair by the field of view setting means. The embodiment in which the distance calculation means calculates the distance for each case, particularly in the case of car collision prevention, captures an image in a wide field of view, so that objects existing in unspecified directions can be leaked without burdening the driver. There is an effect that can be found automatically.

【0032】距離確定手段により複数個の距離候補を検
出距離の頻度分布から選出する実施態様は、距離計算手
段に計算させた複数個の見掛けの距離から極力有用な情
報を引き出し得る点で有利である。距離確定手段により
距離候補の検出範囲内の分布状態を示す二次元のマップ
を作って分布パターンに外接する方形の輪郭をもつ存在
範囲を選定する実施態様は対象の存在範囲を簡単にかつ
合理的に選定できる効果があり、さらに対象が距離候補
に相当する位置にある場合の見掛けの大きさを表す枠を
設定して存在範囲がそれとほぼ一致することを確認する
実施態様は存在範囲を正しく選定して距離を正確に検出
できる効果がある。
The embodiment in which a plurality of distance candidates are selected from the frequency distribution of detected distances by the distance determination means is advantageous in that useful information can be extracted as much as possible from the plurality of apparent distances calculated by the distance calculation means. is there. The embodiment in which the two-dimensional map showing the distribution state within the detection range of the distance candidate is created by the distance determination means and the existence area having a rectangular outline circumscribing the distribution pattern is selected, the object existence area can be easily and reasonably determined. In the embodiment in which a frame indicating the apparent size when the target is located at a position corresponding to the distance candidate is set and the existence range substantially matches with the embodiment, the existence range is correctly selected. The distance can be accurately detected.

【0033】さらに、距離確定手段により各距離候補に
対しその集合状態を加味して重みを付けたマップを作
り,かつ対象が距離候補に相応する位置にある場合の見
掛けの大きさを表す枠を設定して,この枠をマップに各
距離候補に付けた重みの合計が枠内で最大になるよう当
て嵌めて対象の存在範囲を選定する実施態様は、対象の
映像パターンの細部が不明瞭なために検出範囲のほぼ全
体に亘り距離候補が広く離散して分布するような不利な
条件下でも対象の存在範囲を確実にかつ合理的に選定し
て距離を正確に確定できる効果がある。
Further, the distance determining means creates a weighted map for each distance candidate in consideration of the aggregation state thereof, and a frame representing the apparent size when the object is located at a position corresponding to the distance candidate. In this embodiment, the range of the target is selected by setting the frame so that the sum of the weights assigned to the distance candidates on the map is maximized in the frame. For this reason, even under disadvantageous conditions in which the distance candidates are widely and discretely distributed over almost the entire detection range, there is an effect that the target existence range can be reliably and rationally selected and the distance can be accurately determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の距離検出装置の構成例と検出対象を示
す構成回路図である。
FIG. 1 is a configuration circuit diagram showing a configuration example of a distance detection device of the present invention and a detection target.

【図2】本発明で用いる距離確定手段の動作例を示し、
同図(a) は見掛けの距離の頻度分布を示す線図、同図
(b) は存在範囲を設定する要領を示す模式図、同図(c)
は距離確定手段の動作例を示す流れ図である。
FIG. 2 shows an operation example of a distance determination means used in the present invention,
Figure (a) is a diagram showing the frequency distribution of apparent distances.
(b) is a schematic diagram showing how to set the existence range, and FIG.
6 is a flowchart illustrating an operation example of a distance determination unit.

【図3】本発明で用いる距離確定手段の異なる動作例を
示し、同図(a) は検出範囲内の距離候補の分布例を示す
模式図、同図(b) は重み付けされた距離候補の分布例と
存在範囲を選定する要領を示す模式図、同図(c) は距離
確定手段の動作例を示す流れ図である。
FIGS. 3A and 3B show different operation examples of the distance determination means used in the present invention. FIG. 3A is a schematic diagram showing an example of distribution of distance candidates within a detection range, and FIG. 3B is a diagram showing weighted distance candidates. FIG. 3C is a schematic diagram showing a distribution example and a procedure for selecting an existence range, and FIG. 4C is a flowchart showing an operation example of the distance determination means.

【符号の説明】[Explanation of symbols]

1 検出対象 10 イメージセンサに映像を結像させる光学手段 11, 12 光学手段の1対のレンズ 20 イメージセンサ手段 21, 22 イメージセンサの対 30 視野設定手段 40 距離計算手段 41 距離計算手段を構成する単位計算回路 50 距離確定手段 70 プロセッサないしはマイクロコンピュータ A 距離候補の選出範囲 b 距離検出上の基線長 d 検出すべき対象の距離 DA 検出範囲 FM 存在範囲に対応する枠 f レンズの焦点距離 EA 存在範囲 ID1, ID2 1対の映像データ n 距離候補の頻度分布中の発生度数 WD1, WD2 映像データ中の窓部分 σ 距離の指標 θ 対象が存在する方向の角度 DESCRIPTION OF SYMBOLS 1 Detection object 10 Optical means for forming an image on an image sensor 11, 12 A pair of lenses of optical means 20 Image sensor means 21, 22 Image sensor pair 30 Field of view setting means 40 Distance calculating means 41 Constructing distance calculating means Unit calculation circuit 50 Distance determination means 70 Processor or microcomputer A Selection range of distance candidate b Base line length in distance detection d Distance to be detected DA Detection range FM Frame corresponding to the existence range f Lens focal length EA Existence range ID1, ID2 A pair of video data n Occurrence frequency in the frequency distribution of distance candidates WD1, WD2 Window portion in video data σ Distance index θ Angle in the direction in which the target exists

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡部 明彦 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 泉 晶雄 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akihiko Okabe 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. No. 1 Fuji Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】イメージセンサの対を備えその視界内の映
像のパターンを表す映像データの対を発するイメージセ
ンサ手段と、イメージセンサの視界内に検出対象を捉え
るべき視野を複数個並べて設定する視野設定手段と、映
像データから視野に対応して抽出した窓部分の対から視
野内の映像の対がもつ視差に相応する見掛けの距離を各
視野ごとに計算する距離計算手段と、複数個の見掛けの
距離の頻度分布から検出距離の候補を複数個選出してそ
れらをほぼ包み込む輪郭をもつ対象の存在範囲を選定し
た上でそれに属する距離候補から対象の距離を確定して
出力する距離確定手段とを備えることを特徴とする距離
検出装置。
1. An image sensor means comprising a pair of image sensors and emitting a pair of image data representing a pattern of an image in the field of view, and a field of view in which a plurality of fields of view to be detected are set in the field of view of the image sensor. Setting means; distance calculating means for calculating, for each visual field, an apparent distance corresponding to the parallax of the pair of images in the visual field from a pair of window portions extracted corresponding to the visual field from the video data; A distance determining means for selecting a plurality of detection distance candidates from the frequency distribution of the distance, selecting an existence range of an object having a contour substantially enclosing them, and determining and outputting the distance of the object from the distance candidates belonging thereto; and A distance detection device comprising:
【請求項2】請求項1に記載の装置において、イメージ
センサ手段に複数のイメージセンサの対を組み込み、視
野設定手段により各イメージセンサ対ごとに設定する複
数の視野と複数のイメージセンサ対とを組み合わせてな
る二次元マトリックス状の検出範囲の中で映像を捉え、
距離計算手段によりこの検出範囲内のマトリックスを構
成する各視野ごとに見掛けの距離を計算するようにした
ことを特徴とする距離検出装置。
2. The apparatus according to claim 1, wherein a plurality of image sensor pairs are incorporated in the image sensor means, and a plurality of visual fields and a plurality of image sensor pairs set for each image sensor pair by the visual field setting means are provided. Capture images in the two-dimensional matrix-like detection range that is combined,
A distance detecting device, wherein an apparent distance is calculated for each field of view constituting a matrix within the detection range by distance calculating means.
【請求項3】請求項2に記載の装置において、距離確定
手段により選出した距離候補の検出範囲内の分布状態を
示す二次元のマップを作り、このマップ内の距離候補の
分布パターンに外接する方形の領域を対象の存在範囲と
して選定するようにしたことを特徴とする距離検出装
置。
3. The apparatus according to claim 2, wherein a two-dimensional map showing a distribution state of the distance candidates selected by the distance determination means within a detection range is created, and the distribution pattern of the distance candidates in the map is circumscribed. A distance detecting device, wherein a rectangular area is selected as a target existence range.
【請求項4】請求項1に記載の装置において、距離確定
手段により選出した距離候補に相当する距離位置に対象
が存在する場合のその見掛けの大きさを表す枠を設定
し、かつ選定した対象の存在範囲がこの枠にほぼ一致す
る大きさであることを確かめた上で存在範囲内の距離候
補から対象の距離を確定するようにしたことを特徴とす
る距離検出装置。
4. The apparatus according to claim 1, wherein when an object is present at a distance position corresponding to the distance candidate selected by the distance determination means, a frame representing the apparent size of the object is set, and the selected object is set. A distance detection device for determining the target distance from distance candidates within the existence range after confirming that the existence range is substantially the same size as the frame.
【請求項5】請求項1に記載の装置において、距離確定
手段により選定した対象の存在範囲内の距離候補の総平
均値を対象の検出距離として確定するようにしたことを
特徴とする距離検出装置。
5. An apparatus according to claim 1, wherein a total average value of distance candidates within the range of the target selected by the distance determining means is determined as the detection distance of the target. apparatus.
JP22725896A 1996-08-29 1996-08-29 Distance detector Expired - Fee Related JP3632315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22725896A JP3632315B2 (en) 1996-08-29 1996-08-29 Distance detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22725896A JP3632315B2 (en) 1996-08-29 1996-08-29 Distance detector

Publications (2)

Publication Number Publication Date
JPH1068621A true JPH1068621A (en) 1998-03-10
JP3632315B2 JP3632315B2 (en) 2005-03-23

Family

ID=16858010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22725896A Expired - Fee Related JP3632315B2 (en) 1996-08-29 1996-08-29 Distance detector

Country Status (1)

Country Link
JP (1) JP3632315B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351862A (en) * 1998-06-09 1999-12-24 Yazaki Corp Foregoing vehicle detecting method and equipment
JP2010133751A (en) * 2008-12-02 2010-06-17 Topcon Corp Shape measuring device and program
JP2013116736A (en) * 2004-07-26 2013-06-13 Automotive Systems Lab Inc Vulnerable road user protection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351862A (en) * 1998-06-09 1999-12-24 Yazaki Corp Foregoing vehicle detecting method and equipment
JP2013116736A (en) * 2004-07-26 2013-06-13 Automotive Systems Lab Inc Vulnerable road user protection system
JP2010133751A (en) * 2008-12-02 2010-06-17 Topcon Corp Shape measuring device and program

Also Published As

Publication number Publication date
JP3632315B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
US10158796B2 (en) Adaptive autofocusing system
US9307140B2 (en) Distance detection apparatus, image sensing apparatus, program, recording medium, and distance detection method
US10755381B2 (en) Method and device for image stitching
JP2020505863A (en) Image sensor, imaging method, and electronic device
JP3216792B2 (en) Distance detection method using video
US20130222624A1 (en) Range measurement using multiple coded apertures
US20110267508A1 (en) Digital camera with coded aperture rangefinder
US8260074B2 (en) Apparatus and method for measuring depth and method for computing image defocus and blur status
CN103837959B (en) Focus detection, focus detecting method and picture pick-up device
JP2015164284A (en) Solid-state image sensor, movement information acquisition apparatus and imaging apparatus
US9759549B2 (en) Distance detecting device
US11373322B2 (en) Depth sensing with a ranging sensor and an image sensor
US10904512B2 (en) Combined stereoscopic and phase detection depth mapping in a dual aperture camera
JP2006322795A (en) Image processing device, image processing method and image processing program
CN111105465B (en) Camera device calibration method, device, system electronic equipment and storage medium
EP3116216A1 (en) Image pickup apparatus
US20060078164A1 (en) Measurement method using blurred images
JPH1068621A (en) Distance detector
CN109741384B (en) Multi-distance detection device and method for depth camera
CN116679267A (en) Combined calibration method, device, equipment and storage medium based on radar and image
TW201939064A (en) Optical distance measuring sensor
CN116258687A (en) Data labeling method, system, device, electronic equipment and storage medium
US20140071440A1 (en) Apparatus and method for determining optical center in camera module
JP2011080843A (en) Three-dimensional shape measuring system and three-dimensional shape measuring method
US6219492B1 (en) Camera

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees