JPH1066264A - Photovoltaic power generation system - Google Patents

Photovoltaic power generation system

Info

Publication number
JPH1066264A
JPH1066264A JP8220988A JP22098896A JPH1066264A JP H1066264 A JPH1066264 A JP H1066264A JP 8220988 A JP8220988 A JP 8220988A JP 22098896 A JP22098896 A JP 22098896A JP H1066264 A JPH1066264 A JP H1066264A
Authority
JP
Japan
Prior art keywords
solar cell
voltage
condition
power
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8220988A
Other languages
Japanese (ja)
Inventor
Katsuhiro Okuzawa
勝広 奥沢
Yasuaki Suzuki
安昭 鈴木
Masasato Mimori
匡聡 三森
Masaharu Yaginuma
正治 八木沼
Shigeki Tsuchiya
茂樹 土谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Keiyo Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP8220988A priority Critical patent/JPH1066264A/en
Publication of JPH1066264A publication Critical patent/JPH1066264A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a photovoltatic power generation system whose chattering can be reduced by a method wherein, when the power generation amount of a solar cell is small so as to agree with a stop condition after the start of the system, whether the system is to be stopped or not is judged on the basis of the inclination of the operating voltage of the solar cell and the start condition of a sole cell voltage is increased whenever the system is stopped automatically. SOLUTION: Immediately after the start of a system, the voltage of a solar cell is read out so as to find its inclination K (S 100, S 101). When the voltage does not agree with a stop condition, the read-out voltage of the solar cell is held so as to continue its operation (S 102, S 103). When the voltage agrees with the stop condition (S 104), the computed inclination K is discriminated (S 105). When the inclination is positive, it is estimated that a panel temperature is lowered, the system is stopped, and the absolute value of the inclination K is investigated before the system is stopped (S 106). When the absolute value of the inclinaiton K is within a prescribed operating-voltage range, the operation of the system is continued. When the absolute value of the inclination K is outside the range, the operation is stopped.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、インバータの出力
を商用電源と連系し、電力を商用電源より得たり、太陽
電池の発電電力を商用電源へ逆潮流する太陽光発電シス
テムで、特に、システムの連続運転に関する自動起動を
スムーズに行うための自動起動の方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generation system in which the output of an inverter is connected to a commercial power supply, power is obtained from the commercial power supply, or the power generated by a solar cell flows backward to the commercial power supply. The present invention relates to an automatic start method for smoothly performing automatic start for continuous operation of a system.

【0002】[0002]

【従来の技術】図2は、従来例を説明するための太陽光
発電システムの一例を示すものである。図2の21は太
陽電池、22はインバータ、23は絶縁トランス、24
はパルス幅変調制御〔以下PWM制御という〕や逆潮流
防止などを行うインバータ22の制御部、25は連系点
の交流電圧を監視する計測用の変圧器〔以下PTとい
う〕、26は連系点に接続された負荷装置、27は商用
電源であるところの配電系統である。系統開閉器28
は、配電系統27が停電したときに、インバータ22か
ら配電系統27に電流が流れ込まないようにするための
逆潮流防止用のスイッチである。また29は、インバー
タの出力電流検出のための計測用の変流器〔以下CTと
いう〕である。
2. Description of the Related Art FIG. 2 shows an example of a photovoltaic power generation system for explaining a conventional example. In FIG. 2, 21 is a solar cell, 22 is an inverter, 23 is an insulating transformer, 24
Is a control unit of the inverter 22 for performing pulse width modulation control (hereinafter referred to as PWM control) or reverse power flow prevention, 25 is a measuring transformer (hereinafter referred to as PT) for monitoring the AC voltage at the interconnection point, and 26 is interconnection. The load device 27 connected to the point is a power distribution system which is a commercial power supply. System switch 28
Is a switch for preventing reverse power flow for preventing a current from flowing from the inverter 22 to the power distribution system 27 when the power distribution system 27 fails. Reference numeral 29 denotes a measuring current transformer (hereinafter referred to as CT) for detecting the output current of the inverter.

【0003】このシステムの動作は以下の通りである。
太陽電池21で発電した直流電力は、インバータ22に
より交流電力に変換され、絶縁トランス23と系統開閉
器28を介して配電系統27に接続される〔以下連系と
いう〕。このとき、制御部24は、連系点のPT25の
検出信号によって電圧位相を検出して連系点で配電系統
27と同位相の交流電圧になるようにする。太陽電池か
ら負荷に供給する電力のうちの余剰電力は、電流を力率
1で系統側に返すようにインバータ22をPWM制御す
る。その際、太陽電池21の発電電力量は天候や気温な
どに大きく影響を受けるので、制御部24は太陽電池2
1の発電電力を常に最大に引き出すようにインバータ2
2を制御〔以下最大電力追従制御という〕する。
The operation of this system is as follows.
The DC power generated by the solar cell 21 is converted into AC power by the inverter 22 and connected to the power distribution system 27 via the insulating transformer 23 and the system switch 28 (hereinafter referred to as interconnection). At this time, the control unit 24 detects the voltage phase based on the detection signal of the PT 25 at the interconnection point, so that the AC voltage at the interconnection point has the same phase as the distribution system 27. Surplus power of the power supplied from the solar cell to the load performs PWM control on the inverter 22 so that the current is returned to the grid side at a power factor of 1. At this time, the power generation amount of the solar cell 21 is greatly affected by weather, temperature, and the like.
Inverter 2 so that the generated power of 1 is always maximized
2 (hereinafter referred to as maximum power tracking control).

【0004】たとえば、配電系統27が工事や事故など
によって停電した場合やインバータ22から過大な出力
電流が流れた場合、PT25およびCT29の検出信号
より、制御部24は系統開閉器28をオフしてインバー
タ22と配電系統27を切り離す〔以下解列という〕。
[0004] For example, when the power distribution system 27 is out of service due to construction work or accident, or when an excessive output current flows from the inverter 22, the control unit 24 turns off the system switch 28 based on the detection signals of the PT 25 and CT 29. The inverter 22 and the power distribution system 27 are disconnected (hereinafter referred to as "disconnection").

【0005】このような太陽光発電システムは無人で運
転しており、夜間は太陽電池21が発電しないので配電
系統27と解列し、早朝時に自動的に配電系統27と連
系する。
[0005] Such a photovoltaic power generation system is operated unattended, and since the solar cell 21 does not generate power at night, it is disconnected from the power distribution system 27 and automatically connected to the power distribution system 27 in the early morning.

【0006】図3〔a〕は、太陽電池の一日の開放電圧
の推移の一例を示したものである。従来、起動時は太陽
電池の電圧Eをしきいちレベルとし、電圧E以上の状態
が一定時間継続した場合〔例えば10分〕や電圧E′以
上のレベルの場合は即、起動していた。一方、停止条件
はインバータの出力電流が定格の例えば8%以下の状態
が一定時間継続した場合〔例えば20分〕には停止する
ようにしていた。この方法は、「小規模太陽電池のシス
テムの基本仕様と実用化促進に関する調査 平成4年6
月 新エネルギ財団」の資料に掲載されている。この例
で、システムを動作した結果、ある環境の下で、起動条
件と停止条件が相互に干渉して図3〔b〕に示すような
現象が起きた。太陽電池の開放電圧は、しきいちレベル
E以上の電圧が、設定したΔTの時間継続したのでa点
でシステムがオンしてPWM信号が発生する。そして、
そのときの太陽電池の発電量が小さい場合、停止条件に
合致してしまい、その状態が設定したΔT′の時間継続
したためb点でシステムがオフしてPWM信号が停止す
る。その結果、太陽電池は開放電圧となるので、しきい
ちレベルE以上の電圧が、設定したΔTの時間継続して
c点でシステムがオンする。その後、システムのオン/
オフがd点およびe点で繰返して起こる。このようなチ
ャタリング現象は、図3〔a〕のように起動時Aに限っ
たことではなく、夕刻時Bや太陽が雲にかかったCのよ
うな状況でも現われる。
FIG. 3 (a) shows an example of the transition of the open voltage per day of the solar cell. Conventionally, at the time of startup, the voltage E of the solar cell is set to a threshold level, and when the state of the voltage E or higher continues for a certain period of time (for example, 10 minutes) or when the level of the voltage is equal to or higher than the voltage E ', the system is immediately started. On the other hand, the stop condition is such that the inverter stops when the output current of the inverter is, for example, 8% or less of the rating for a predetermined time (for example, 20 minutes). This method is described in “Survey on Basic Specifications of Small-scale Solar Cell System and Promotion of Practical Use”
Moon New Energy Foundation ”. In this example, as a result of operating the system, under a certain environment, a start condition and a stop condition interfere with each other, and a phenomenon as shown in FIG. 3B occurs. As the open voltage of the solar cell, a voltage equal to or higher than the threshold E has continued for the set ΔT, the system is turned on at point a, and a PWM signal is generated. And
If the power generation amount of the solar cell at that time is small, the stop condition is met, and the state is continued for the set ΔT ', so that the system is turned off at the point b and the PWM signal stops. As a result, the solar cell becomes an open-circuit voltage, and the system is turned on at a point c at which a voltage equal to or higher than the threshold E continues for the set ΔT. After that, turn the system on /
Off occurs repeatedly at points d and e. Such a chattering phenomenon is not limited to the time A at the start-up as shown in FIG. 3A, but also appears in a situation such as the time B at the evening or the time C at which the sun hits the clouds.

【0007】[0007]

【発明が解決しようとする課題】太陽光発電システム
は、太陽電池の発電電力量が天候や気温などに大きく影
響を受けるので、最大電力追従制御などの制御を行って
できる限り発電効率を上げるようにしている。また、起
動や停止でも一日の発電量を多く得る必要から、太陽電
池の発電量の限界までシステムを稼働してできるだけ多
くの電力を得ることが必要である。さらに、前述したよ
うに起動や停止時にオン/オフを繰り返すことによっ
て、スイッチなどの接点の摩耗やそれによる過電流の影
響でパワー素子にストレスがかかって素子の寿命を低下
させる要因につながる。
In a photovoltaic power generation system, the amount of power generated by a solar cell is greatly affected by weather, temperature, and the like. Therefore, control such as maximum power tracking control is performed to increase the power generation efficiency as much as possible. I have to. In addition, since it is necessary to obtain a large amount of power generation per day even when the system is started or stopped, it is necessary to operate the system up to the limit of the power generation amount of the solar cell to obtain as much power as possible. Further, as described above, by repeatedly turning on and off at the time of starting and stopping, stress is applied to the power element due to abrasion of the contact of the switch and the like, and an overcurrent, thereby leading to a factor of shortening the life of the element.

【0008】本発明の目的は、起動条件と停止条件の相
互の干渉を無くしてチャタリングを低減することによ
り、システムの稼働時間を延ばし、不要なスイッチング
を無くすことにより過電流によるスイッチの接点やパワ
ー素子にかかるストレスを低減することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce chattering by eliminating mutual interference between a start condition and a stop condition, thereby extending the operation time of a system, and eliminating unnecessary switching, thereby reducing the contact and power of a switch due to overcurrent. It is to reduce the stress applied to the element.

【0009】[0009]

【課題を解決するための手段】上記目的は、システムを
起動した直後の太陽電池の最大電力を発生するときの電
圧〔以下動作電圧という〕の傾きを監視することにより
達成される。図4は、太陽電池の動作電圧と日射強度お
よび温度との関係を示すデータである。太陽電池の動作
電圧は、ある幅を持ってはいるものの温度が高くなると
低下する特性を示す。しかし、日射強度が低くなると太
陽電池の動作電圧は、この特性直線上から外れて次第に
低くなる特性を示す。図5は、最大電力追従制御を一日
行った場合の動作電圧と日射強度との関係を示した一例
である。早朝や夕刻時は、パネル温度が低いので動作電
圧は高く日中はパネル温度が高いので動作電圧は低くな
る傾向になる。また、夕刻時は日射強度が次第に落ちて
くるので、動作電圧も低下してくる。このようなことに
着目して、システム起動直後の動作電圧をサンプリング
し、傾きを調べる。これ以降、傾きが右下がりの特性で
あればマイナスに、傾きが右上がりの特性であればプラ
スとして説明する。システム起動直後の動作電圧をサン
プリングした結果マイナスであれば、パネル温度が上昇
していると推察されるので、停止条件に合致しても停止
をかけないようにする。また、システム起動直後の動作
電圧をサンプリングした結果プラスであれば、パネル温
度が減少していると推察されるので、停止条件に合致す
れば停止をかけるようにする。さらに、太陽光発電シス
テムで太陽電池の運転電圧範囲eは決まっているのでそ
の範囲外の電圧になった場合は、システムを停止するよ
うにする。
The above object is achieved by monitoring the slope of a voltage (hereinafter referred to as an operating voltage) when the maximum power of the solar cell is generated immediately after the system is started. FIG. 4 is data showing the relationship between the operating voltage of the solar cell, the solar radiation intensity, and the temperature. The operating voltage of a solar cell has a characteristic that it has a certain width, but decreases as the temperature increases. However, when the solar radiation intensity decreases, the operating voltage of the solar cell deviates from the characteristic straight line and gradually decreases. FIG. 5 is an example showing the relationship between the operating voltage and the solar radiation intensity when the maximum power tracking control is performed for one day. In the early morning or evening, the operating voltage tends to be low because the panel temperature is low and the operating voltage is high during the daytime because the panel temperature is high. Further, in the evening, the solar radiation intensity gradually decreases, so that the operating voltage also decreases. Focusing on this, the operating voltage immediately after the system is started is sampled, and the slope is examined. Hereinafter, the description will be made as negative if the inclination is a right-down characteristic, and as plus if the inclination is a right-up characteristic. If the result of sampling the operating voltage immediately after the start of the system is negative, it is presumed that the panel temperature has risen, so that the stop is not performed even if the stop condition is met. In addition, if the result of sampling the operating voltage immediately after the start of the system is positive, it is presumed that the panel temperature has decreased. Therefore, if the stop condition is met, the stop is performed. Furthermore, since the operating voltage range e of the solar cell in the photovoltaic power generation system is determined, if the voltage becomes outside the range, the system is stopped.

【0010】もう一つの方法は、起動条件を可変にする
ことにより達成される。図5で太陽電池電圧Eが起動電
圧であるとすると、システムは基準電圧点Eでオンする
が、太陽電池の発電量が小さいと動作電圧が急激に減少
して直ちにシステムをオフにしてしまう。太陽電池の電
圧は、開放電圧になるので起動条件に合致してしまう
が、ここで起動条件をある値ΔEだけ上げてE+ΔEと
する。再び、E+ΔEの起動条件が成立してシステムが
起動しても、太陽電池の発電量が小さく直ちにシステム
がオフしてしまった場合は、さらにΔEだけ上げて起動
条件をE+2・ΔEとして起動条件を上げるようにす
る。こうすることによって、システム起動時のオン/オ
フの繰返し頻度を減少させることができる。
Another method is achieved by making the starting conditions variable. Assuming that the solar cell voltage E is the starting voltage in FIG. 5, the system is turned on at the reference voltage point E. However, if the amount of power generated by the solar cell is small, the operating voltage sharply decreases and the system is immediately turned off. Since the voltage of the solar cell becomes an open-circuit voltage and thus meets the start condition, the start condition is increased by a certain value ΔE to E + ΔE. Again, even when the start condition of E + ΔE is satisfied and the system is started, if the power generation amount of the solar cell is small and the system is immediately turned off, the start condition is further increased by ΔE and the start condition is set to E + 2 · ΔE. To raise it. By doing so, it is possible to reduce the frequency of on / off repetition at system startup.

【0011】[0011]

【発明の実施の形態】図1に本発明の一実施例を示す。
まず、システム起動直後に太陽電池の電圧を読み込む
〔100〕。太陽電池の電圧取り込みは、一定周期のサ
ンプリングタイムで行い、その都度傾きKを求める〔1
01〕。もし、停止条件に合致しなければ読み込んだ太
陽電池の電圧を保持して〔102〕運転を継続〔10
3〕するが、停止条件に合致すれば次の処理を行う〔1
04〕。〔101〕で算出したKの傾きを判別〔10
5〕して、プラスであれば前述したようにパネルの温度
は下降すると推察されるのでシステムを停止する必要が
あるが、停止の前に傾きKの絶対値を調べる〔10
6〕。傾きKの絶対値があらかじめ設定しておいた一定
の動作電圧範囲内であれば運転を継続するが、傾きKの
絶対値が範囲外であれば運転を停止する。これは、太陽
が雲にかかった場合などに太陽電池の電圧が急変するこ
とによって、システムを停止させないようにするためで
ある。つまり、太陽電池のわずかな電圧変動によって、
システムが停止すればチャタリング現象が激しくなり、
オン/オフによる過電流が増してその分、スイッチやパ
ワー素子にストレスがより多くかかることになり、寿命
が低下する要因になる。また、サンプリングタイムを長
くすることによってもチャタリング現象を低減すること
ができる。また、Kの傾きがマイナスであれば、パネル
の温度が上昇していると推察されるが、日射強度が落ち
てきた可能性も考えられるので、〔107〕で太陽電池
の電圧が動作範囲内であるのかどうかも調べる。もし、
太陽電池の電圧が動作範囲外であれば、システムを停止
する。
FIG. 1 shows an embodiment of the present invention.
First, the voltage of the solar cell is read immediately after the system is started [100]. The voltage of the solar cell is taken in at a fixed sampling time, and the slope K is obtained every time [1
01]. If the stop condition is not met, the read voltage of the solar cell is maintained [102] and the operation is continued [10]
3], but if the stop condition is met, the following processing is performed [1].
04]. The slope of K calculated in [101] is determined [10
5] If it is positive, it is presumed that the temperature of the panel will drop as described above, so it is necessary to stop the system. Before stopping, the absolute value of the slope K is checked [10].
6]. If the absolute value of the slope K is within a predetermined operating voltage range, the operation is continued, but if the absolute value of the slope K is out of the range, the operation is stopped. This is to prevent the system from stopping due to a sudden change in the voltage of the solar cell when the sun hits a cloud. In other words, the slight voltage fluctuation of the solar cell
If the system stops, the chattering phenomenon becomes severe,
The overcurrent due to ON / OFF increases, so that more stress is applied to the switch and the power element, and the life is shortened. Also, the chattering phenomenon can be reduced by increasing the sampling time. If the slope of K is minus, it is presumed that the temperature of the panel has risen. However, it is possible that the solar radiation intensity has fallen. Also check if it is. if,
If the voltage of the solar cell is out of the operating range, the system is stopped.

【0012】図6は、本発明のもう一つの実施例であ
る。起動条件は太陽電池の電圧Eとし、条件が成立し次
第、システムを起動〔オン〕する。太陽電池の電圧は、
システムの起動によりΔVdc1だけ降下する。このと
き、太陽電池の発電量が小さい場合、停止条件がΔTの
間継続したことによってシステムは停止〔オフ〕し、そ
れによって太陽電池の電圧は開放電圧となる。そして、
次の起動条件は初期の電圧Eではなく、それにΔVdc
1を加えた電圧E+ΔVdc1とする。E+ΔVdc1
の起動条件でシステムが起動し、それによりΔVdc2
の電圧降下があったと仮定する。この時点でも、太陽電
池の発電量が小さくΔT時間後にシステムが停止したと
する。さらに次の起動条件はE+ΔVdc1+ΔVdc
2としてシステムを起動する。以後、システムのチャタ
リング現象が停止するまで起動条件はE+ΣΔVdcn
で順次上昇していく。このように、起動条件を順次上げ
ていくことによって、起動時のチャタリング現象を低減
することができる。この時、上げ幅は起動時の太陽電池
の動作電圧と初期の起動条件の電圧Eの差であったが、
上げ幅を定数としても実現は可能である。
FIG. 6 shows another embodiment of the present invention. The starting condition is the voltage E of the solar cell, and the system is started (turned on) as soon as the condition is satisfied. The voltage of the solar cell is
It drops by ΔVdc1 when the system is started. At this time, when the amount of power generated by the solar cell is small, the system is stopped (turned off) because the stop condition is continued for ΔT, whereby the voltage of the solar cell becomes an open circuit voltage. And
The next starting condition is not the initial voltage E, but ΔVdc
The voltage is obtained by adding 1 to the voltage E + ΔVdc1. E + ΔVdc1
Is activated under the activation condition of ΔVdc2
Assume that there was a voltage drop of Even at this point, it is assumed that the power generation amount of the solar cell is small and the system stops after ΔT time. The next starting condition is E + ΔVdc1 + ΔVdc
Start the system as 2. Thereafter, the starting condition is E + の ΔVdcn until the chattering phenomenon of the system stops.
It rises sequentially. As described above, the chattering phenomenon at the time of starting can be reduced by sequentially increasing the starting conditions. At this time, the increase width was a difference between the operating voltage of the solar cell at the time of startup and the voltage E of the initial startup condition,
Realization is possible even if the increment is a constant.

【0013】[0013]

【発明の効果】本発明によれば、システムを起動した後
に太陽電池の発電量が小さく停止条件に合致した場合、
太陽電池の動作電圧の傾きによって、システムを停止す
るかどうかを判断する方法やシステムが自動停止する度
に太陽電池電圧の起動条件を上げることによって、起動
条件と停止条件が互いに干渉してシステムのオン/オフ
を繰り返すチャタリング現象を低減することができる。
そのため、チャタリングによる無用な過電流によるスイ
ッチの接点の摩耗やパワー素子などの電気素子にかかる
ストレスが軽減されるので、素子の寿命劣化を防ぐこと
ができる。また、起動と停止を繰り返すチャタリング現
象が低減される結果、1日のシステムの稼働時間を長く
することができるため、システムの効率的な自動運転が
実現される。
According to the present invention, when the power generation amount of the solar cell is small after starting the system and the stop condition is met,
The method of determining whether to stop the system based on the slope of the operating voltage of the solar cell or raising the start condition of the solar cell voltage each time the system automatically stops, the start condition and the stop condition interfere with each other, and the system It is possible to reduce a chattering phenomenon that repeats on / off.
Therefore, abrasion of the contact of the switch due to unnecessary overcurrent due to chattering and stress applied to an electric element such as a power element are reduced, so that deterioration of the life of the element can be prevented. In addition, as a result of reducing the chattering phenomenon in which start and stop are repeated, the operation time of the system per day can be lengthened, so that efficient automatic operation of the system can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のフローチャート。FIG. 1 is a flowchart of an embodiment of the present invention.

【図2】太陽光発電システムブロック図。FIG. 2 is a block diagram of a solar power generation system.

【図3】自動起動時のチャタリング現象の説明図。FIG. 3 is an explanatory diagram of a chattering phenomenon at the time of automatic startup.

【図4】太陽電池電圧と日射強度および温度の関係の特
性図。
FIG. 4 is a characteristic diagram showing a relationship between a solar cell voltage, solar radiation intensity, and temperature.

【図5】1日の太陽光発電システム動作時の太陽電池電
圧推移の例の説明図。
FIG. 5 is an explanatory diagram of an example of a solar cell voltage transition during one day of operation of the solar power generation system.

【図6】本発明の自動起動シーケンスの例の説明図。FIG. 6 is an explanatory diagram of an example of an automatic startup sequence according to the present invention.

【符号の説明】[Explanation of symbols]

21…太陽電池、22…インバータ、23…絶縁トラン
ス、24…制御部、25…計測用変圧器、26…負荷装
置、27…配電系統〔商用電源〕、28…系統開閉器、
29…計測用変流器。
DESCRIPTION OF SYMBOLS 21 ... Solar cell, 22 ... Inverter, 23 ... Insulation transformer, 24 ... Control part, 25 ... Measurement transformer, 26 ... Load device, 27 ... Distribution system [commercial power supply], 28 ... System switch,
29… Current transformer for measurement.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02M 7/48 H02N 6/00 H02N 6/00 H01L 31/04 K (72)発明者 三森 匡聡 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 八木沼 正治 千葉県習志野市東習志野七丁目1番1号 日立京葉エンジニアリング株式会社内 (72)発明者 土谷 茂樹 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H02M 7/48 H02N 6/00 H02N 6/00 H01L 31/04 K (72) Inventor Masatoshi Mimori Ibaraki 7-1-1, Omika-cho, Hitachi City, Japan Inside Hitachi Research Laboratory, Hitachi, Ltd. 4-6-6 Kanda Surugadai, Chiyoda-ku, Tokyo Inside Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】太陽電池と上記太陽電池で発電した直流電
力を所定の交流電力に変換する電力変換装置を持ち、上
記電力変換装置を商用電源に連系して電力の授受を行う
太陽光発電システムにおいて、起動条件を上記太陽電池
のある電圧点に設定し、その条件によりシステムを起動
し、その起動直後に上記太陽電池の発電量が小さく、停
止条件に入ってしまった場合、上記太陽電池の動作電圧
を一定の周期でサンプリングし、サンプリングした動作
電圧値と前回にサンプリングした動作電圧値の差をと
り、その差がプラスであった場合はシステムを停止する
ことを特徴とする太陽光発電システム。
1. A photovoltaic power generator having a solar cell and a power converter for converting DC power generated by the solar cell into predetermined AC power, and interconnecting the power converter with a commercial power supply to transfer power. In the system, the start condition is set to a certain voltage point of the solar cell, the system is started under the condition, and the power generation amount of the solar cell is small immediately after the start, and the solar cell The solar power generation system is characterized in that the operating voltage is sampled at regular intervals, the difference between the sampled operating voltage value and the previously sampled operating voltage value is taken, and if the difference is positive, the system is stopped. system.
【請求項2】請求項1において、上記太陽電池の動作電
圧を一定の周期でサンプリングしてサンプリングした動
作電圧値と前回にサンプリングした動作電圧値の差をと
り、その差がマイナスであった場合は太陽電池の動作電
圧を読み込み、その動作電圧値が運転範囲内かあるいは
範囲外かを確認し、もし運転範囲外の電圧値であればシ
ステムを停止する太陽光発電システム。
2. The method according to claim 1, wherein the difference between the operating voltage value sampled by sampling the operating voltage of the solar cell at a fixed cycle and the operating voltage value sampled last time is negative. Is a photovoltaic power generation system that reads the operating voltage of the solar cell, checks whether the operating voltage is within or outside the operating range, and shuts down the system if the voltage is outside the operating range.
【請求項3】太陽電池と上記太陽電池で発電した直流電
力を所定の交流電力に変換する電力変換装置を持ち、上
記電力変換装置を商用電源に連系して電力の授受を行う
太陽光発電システムにおいて、起動条件を上記太陽電池
のある電圧値例えばE[v]に設定し、その条件により
システムを起動し、それにより開放電圧からΔE
1[v]の太陽電池の電圧降下分が発生した場合、次の
起動条件はE+ΔE1[v]として起動し、その起動によ
り開放電圧からΔE2[v] の上記太陽電池の電圧降下
分が発生した場合、その次の起動条件はE+ΔE1+Δ
2[v]として起動し、その後順次起動条件を開放電
圧から動作電圧の差を加算した値E+ΣΔEnすること
を特徴とする太陽光発電システム。
3. A photovoltaic power generator having a solar cell and a power converter for converting DC power generated by the solar cell into predetermined AC power, and interconnecting the power converter with a commercial power supply to transfer power. In the system, the starting condition is set to a certain voltage value of the solar cell, for example, E [v], and the system is started according to the condition.
When the voltage drop of the solar cell of 1 [v] occurs, the next starting condition is to start as E + ΔE 1 [v], and by the start, the voltage drop of the solar cell of ΔE 2 [v] is reduced from the open circuit voltage. If it occurs, the next start condition is E + ΔE 1 + Δ
A photovoltaic power generation system, wherein the photovoltaic power generation system is started up as E 2 [v], and then sequentially sets the startup condition to a value E + ΣΔEn obtained by adding the difference between the open voltage and the operating voltage.
【請求項4】請求項3において、起動条件を上記太陽電
池のある電圧値例えばE[v]に設定し、その条件によ
りシステムを起動した場合、次の起動条件はある一定の
定数αを加えた値E+α[v]として起動し、その次の
起動条件はE+2・α[v]とし、その後起動条件を順
次E+n・αする太陽光発電システム。
4. The method according to claim 3, wherein the starting condition is set to a certain voltage value of the solar cell, for example, E [v], and when the system is started under the condition, the next starting condition is to add a certain constant α. The photovoltaic power generation system starts with the value E + α [v], the next start condition is E + 2 · α [v], and the start conditions are sequentially E + n · α.
JP8220988A 1996-08-22 1996-08-22 Photovoltaic power generation system Pending JPH1066264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8220988A JPH1066264A (en) 1996-08-22 1996-08-22 Photovoltaic power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8220988A JPH1066264A (en) 1996-08-22 1996-08-22 Photovoltaic power generation system

Publications (1)

Publication Number Publication Date
JPH1066264A true JPH1066264A (en) 1998-03-06

Family

ID=16759717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8220988A Pending JPH1066264A (en) 1996-08-22 1996-08-22 Photovoltaic power generation system

Country Status (1)

Country Link
JP (1) JPH1066264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072045A (en) * 2007-09-18 2009-04-02 Daihen Corp Inverter starter to start photovoltaic power generation system inverter, inverter starting method, program to implement inverter starter, and recording medium to record program
JP2014023317A (en) * 2012-07-19 2014-02-03 Joshin Denki Co Ltd Photovoltaic power generation system
CN104079009A (en) * 2014-07-14 2014-10-01 华北电力大学(保定) Grid connection photovoltaic power direct current electric energy transmission control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072045A (en) * 2007-09-18 2009-04-02 Daihen Corp Inverter starter to start photovoltaic power generation system inverter, inverter starting method, program to implement inverter starter, and recording medium to record program
JP2014023317A (en) * 2012-07-19 2014-02-03 Joshin Denki Co Ltd Photovoltaic power generation system
CN104079009A (en) * 2014-07-14 2014-10-01 华北电力大学(保定) Grid connection photovoltaic power direct current electric energy transmission control method

Similar Documents

Publication Publication Date Title
US6252785B1 (en) Device for operating inverter and power system
JP5175451B2 (en) Power supply system
US5986354A (en) DC source system with solar cell, and its operation method
JPH1146457A (en) Charging device utilizing solar cell
US10734913B2 (en) Method and apparatus for bidirectional power production in a power module
KR101510986B1 (en) Photovoltaic Power With Start Controller by Sub-system
JP2014135073A (en) Control and state monitoring method for optical power generation system, optical power generation system, and control and state monitoring system for optical power generation system
US10476274B2 (en) Solar power generation system
EP3823152A1 (en) Power conversion system, conversion circuit control method and program
JP2015142460A (en) Power control device, power control system, and power control method
US11329488B2 (en) Power conversion system, method for controlling converter circuit, and program
EP3376628A1 (en) Solar power generation system, dc/dc converter and power conditioner
JPH1066264A (en) Photovoltaic power generation system
JPH0876865A (en) Maximum power point following device
JPH09135575A (en) Starting method of power converter for photovoltaic power generation
JPH05219663A (en) Solar light power generating system
JP2000023373A (en) Solar light generation inverter device
JP5288157B2 (en) Photovoltaic power generation device using dye-sensitized solar cell
JP2009169800A (en) Control device of photovoltaic power system
JP2019161846A (en) Conversion device and hybrid power supply system
JPH08126208A (en) Starting method for photovoltaic power generating system
KR100917307B1 (en) Stand-alone power supply system for water pump motor using solar cells
KR100962338B1 (en) Power value control module and solar-board apparatus and power value control method of solar-board
JPH104631A (en) Photovoltaic power generation system
WO2023243072A1 (en) Dc power distribution system