JPH1062112A - Magnetic-type sensor for angle of rotation - Google Patents
Magnetic-type sensor for angle of rotationInfo
- Publication number
- JPH1062112A JPH1062112A JP23131096A JP23131096A JPH1062112A JP H1062112 A JPH1062112 A JP H1062112A JP 23131096 A JP23131096 A JP 23131096A JP 23131096 A JP23131096 A JP 23131096A JP H1062112 A JPH1062112 A JP H1062112A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- rotation
- rotation angle
- magnet
- flux density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、磁気検出素子を
用いた磁気式回転角度センサに関する。The present invention relates to a magnetic rotation angle sensor using a magnetic detection element.
【0002】[0002]
【従来の技術】従来の磁気式回転角度センサとしては、
例えば特開昭62−168004号公報に開示されてい
るものがある。図4はこの従来の磁気式回転角度センサ
の説明図である。回転軸11には半径方向に伸びたアー
ム12が取り付けられ、アーム12の先端には磁気検出
素子13が固定されている。磁気検出素子13は、半径
方向の磁束密度を検出する。強磁性体で作られた円環形
状のリング14が、回転軸11と同心円上に配置されて
いる。リング14は規定位置に固定され、楔形状の磁石
15が組み込まれている。これらリング14と磁石15
により磁気回路16が構成されている。2. Description of the Related Art Conventional magnetic rotation angle sensors include:
For example, there is one disclosed in JP-A-62-168004. FIG. 4 is an explanatory view of this conventional magnetic rotation angle sensor. An arm 12 extending in a radial direction is attached to the rotating shaft 11, and a magnetic detection element 13 is fixed to a tip of the arm 12. The magnetic detecting element 13 detects a magnetic flux density in a radial direction. An annular ring 14 made of a ferromagnetic material is arranged concentrically with the rotating shaft 11. The ring 14 is fixed at a predetermined position, and incorporates a wedge-shaped magnet 15. These rings 14 and magnets 15
Constitute the magnetic circuit 16.
【0003】磁石15により作り出された磁束はリング
14内の閉ループを通るが、磁気回路16から若干の磁
束の漏洩がある。磁気回路16から半径方向に漏れる磁
束密度は、磁石15近辺がもっとも大きく、磁石15か
ら離れるにしたがって小さくなり、磁石15の反対側で
ある0度の位置ではほぼ零になる。回転軸11が回転す
ると、磁気検出素子13の位置が変化し、その出力も変
化する。回転軸の回転角度θ’と、磁気検出素子により
検出した磁束密度B’の関係を図5に示す。磁石と反対
側の位置に磁気検出素子が配置される角度をθ’=0°
としている。この図をもとに、磁気検出素子により測定
した磁束密度B’から回転軸と磁気回路の相対的な回転
角度θ’を求めることができる。[0003] The magnetic flux created by the magnet 15 passes through a closed loop in the ring 14, but there is some leakage of the magnetic flux from the magnetic circuit 16. The magnetic flux density leaking from the magnetic circuit 16 in the radial direction is the largest near the magnet 15, decreases as the distance from the magnet 15 decreases, and becomes almost zero at the 0 ° position opposite to the magnet 15. When the rotation shaft 11 rotates, the position of the magnetic detection element 13 changes, and the output also changes. FIG. 5 shows the relationship between the rotation angle θ ′ of the rotating shaft and the magnetic flux density B ′ detected by the magnetic detection element. The angle at which the magnetic detection element is arranged at a position opposite to the magnet is θ ′ = 0 °
And Based on this figure, the relative rotation angle θ ′ between the rotation axis and the magnetic circuit can be obtained from the magnetic flux density B ′ measured by the magnetic detection element.
【0004】[0004]
【発明が解決しようとする課題】しかしながらこのよう
な従来の磁気式回転角度センサでは、径方向の磁束密度
が磁石から離れると急激に減少するため、回転角度と磁
束密度の測定値との直線性が悪く、回転角度の計測精度
が低下するという問題があった。また、直線性が保たれ
ている範囲、すなわち図5の0度近辺で使用する場合に
は、感度が非常に低いうえに、回転角度検出範囲が狭く
なるという問題があった。したがって本発明は、上記従
来の問題点に鑑み、広い回転角度範囲において、回転角
度と磁束密度の測定値との直線性が良好に保たれ、計測
精度が向上した磁気式回転角度センサを提供することを
目的とする。However, in such a conventional magnetic rotation angle sensor, since the magnetic flux density in the radial direction decreases sharply as it moves away from the magnet, the linearity of the measured value of the rotation angle and the magnetic flux density is reduced. However, there is a problem that the measurement accuracy of the rotation angle is reduced. Further, when used in a range where linearity is maintained, that is, in the vicinity of 0 degrees in FIG. 5, there is a problem that the sensitivity is extremely low and the rotation angle detection range is narrow. Accordingly, the present invention has been made in view of the above-described conventional problems, and provides a magnetic rotation angle sensor in which the linearity between the rotation angle and the measured value of the magnetic flux density is kept good in a wide rotation angle range and the measurement accuracy is improved. The purpose is to:
【0005】[0005]
【課題を解決するための手段】このため、本発明は、回
転軸の周囲に磁気検出素子と磁気回路を配置し、磁気検
出素子により検出される磁束密度の変化から磁気検出素
子と磁気回路の相対的な回転角度を非接触で計測する磁
気式回転角度センサにおいて、磁気回路は、回転軸に対
する垂直平面において、柱形状で長手方向に磁極を有し
長手方向の中点が回転軸の回転中心から最短距離となる
ようその回転中心から所定距離にオフセットさせた磁石
と、この磁石の両端から延び、回転軸を挟んで対向する
強磁性体のヨークとから形成され、磁気検出素子が、磁
気回路で囲まれた空間内に配置されているものとした。SUMMARY OF THE INVENTION Therefore, according to the present invention, a magnetic detecting element and a magnetic circuit are arranged around a rotation axis, and the magnetic detecting element and the magnetic circuit are arranged based on a change in magnetic flux density detected by the magnetic detecting element. In a magnetic rotation angle sensor that measures a relative rotation angle in a non-contact manner, a magnetic circuit has a columnar shape and a magnetic pole in a longitudinal direction on a plane perpendicular to the rotation axis, and a middle point in the longitudinal direction is a rotation center of the rotation axis. The magnet is formed from a magnet offset from the center of rotation by a predetermined distance so as to be the shortest distance from the magnet, and a ferromagnetic yoke extending from both ends of the magnet and facing each other with the rotation axis interposed therebetween. It is assumed that it is arranged in the space surrounded by.
【0006】上記磁石を角柱形状となし、ヨークは板状
で磁石の各端面に接続され磁石の長手方向に対してそれ
ぞれ垂直に延ばすことができる。また、磁気回路は回転
軸に固定されて一体に回転し、磁気検出素子は磁気回路
内の定位置に固定されるのが好ましい。さらに、磁気回
路で囲まれた空間内に回転軸と同心の円筒形状のスリー
ブを配置し、スリーブの外周に磁気検出素子を固定する
ことができる。The magnet has a prismatic shape, and the yoke is plate-shaped and connected to each end face of the magnet, and can be extended perpendicularly to the longitudinal direction of the magnet. Further, it is preferable that the magnetic circuit is fixed to the rotating shaft and rotates integrally, and the magnetic detecting element is fixed to a fixed position in the magnetic circuit. Furthermore, a cylindrical sleeve concentric with the rotation axis is arranged in a space surrounded by the magnetic circuit, and the magnetic detection element can be fixed to the outer periphery of the sleeve.
【0007】[0007]
【作用】磁気回路を構成する強磁性体のヨークの端部が
開放されているため、この磁気回路は閉ループを形成せ
ず、磁束はヨークの中に閉じこめられることがない。強
磁性体ヨークは周囲の磁束密度を増大させ、磁石および
ヨークで囲まれた空間内では磁束密度が高いレベルを維
持する。磁気回路と磁気検出素子が相対的に回転すると
き、磁束密度の測定値が最も大きくなるのは、磁気検出
素子が磁石の端部に最も近い位置にあるときである。磁
石と磁気検出素子が離れる方向に回転すると、磁束密度
の測定値は減少していくが、強磁性体のヨークと磁気検
出素子との距離が小さくなってくるため、磁束密度は急
激に減少せずに、徐々に低下する。またさらに回転する
と、ヨークと磁気検出素子との距離は今度は大きくなる
が、強磁性体のヨークの開放された端部近辺においても
磁束密度は極端に減少することがないため、測定可能な
感度が保たれる。Since the end of the ferromagnetic yoke constituting the magnetic circuit is open, this magnetic circuit does not form a closed loop, and no magnetic flux is trapped in the yoke. The ferromagnetic yoke increases the surrounding magnetic flux density and maintains a high level of magnetic flux density in the space surrounded by the magnet and the yoke. When the magnetic circuit and the magnetic sensing element rotate relative to each other, the measured value of the magnetic flux density becomes largest when the magnetic sensing element is located closest to the end of the magnet. When the magnet and the magnetic sensing element rotate away from each other, the measured value of the magnetic flux density decreases, but the magnetic flux density decreases sharply because the distance between the ferromagnetic yoke and the magnetic sensing element decreases. Without, it gradually decreases. Further rotation further increases the distance between the yoke and the magnetic sensing element, but the magnetic flux density does not decrease extremely near the open end of the ferromagnetic yoke, so that the measurable sensitivity is obtained. Is kept.
【0008】上記の磁石を角柱形状とし、板状ヨークを
磁石の各端面から垂直に延ばすことにより、組み立て、
作成が容易である。また、磁気回路を回転軸に固定して
一体に回転するものとし、磁気検出素子を磁気回路内の
定位置に固定することにより、磁気検出素子との配線が
簡単なものとなる。さらに、磁気検出素子は回転軸と同
心の円筒形状のスリーブ外周に固定することにより、全
体構成も簡単となる。The above magnet is formed into a prismatic shape, and a plate-like yoke is vertically extended from each end face of the magnet to assemble the magnet.
Easy to create. In addition, the magnetic circuit is fixed to the rotating shaft and rotates integrally. By fixing the magnetic detection element at a fixed position in the magnetic circuit, wiring with the magnetic detection element is simplified. Further, by fixing the magnetic detecting element to the outer periphery of a cylindrical sleeve concentric with the rotation axis, the overall configuration is simplified.
【0009】[0009]
【発明の実施の形態】本発明の実施の形態を実施例によ
り説明する。図1および図2は本発明の実施例の構成を
示し、図1は正面図、図2は図1におけるA方向から見
た側面図である。回転軸1と同心に、外径12mm、内
径10.4mmの円筒形状のスリーブ2が配置されてい
る。スリーブ2は高透磁率を有する磁性ステンレスから
作られ、固定側規定位置に固定されている。回転軸1は
スリーブ2内を貫通している。スリーブ2の外周の一部
には平坦部が形成され、そこに磁気検出素子としてのホ
ール素子3が取り付けられている。ホール素子3はGa
As半導体から作られ、ホール素子を通る磁束密度に比
例したホール電圧を発生する。ホール素子3は半径方向
の磁束密度を検出するように配置されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to examples. 1 and 2 show the configuration of an embodiment of the present invention. FIG. 1 is a front view, and FIG. 2 is a side view as viewed from a direction A in FIG. A cylindrical sleeve 2 having an outer diameter of 12 mm and an inner diameter of 10.4 mm is arranged concentrically with the rotating shaft 1. The sleeve 2 is made of magnetic stainless steel having high magnetic permeability, and is fixed at a fixed position on the fixed side. The rotation shaft 1 passes through the inside of the sleeve 2. A flat part is formed on a part of the outer periphery of the sleeve 2, and a Hall element 3 as a magnetic detecting element is attached thereto. Hall element 3 is Ga
It is made of an As semiconductor and generates a Hall voltage proportional to the magnetic flux density passing through the Hall element. The Hall element 3 is arranged to detect the magnetic flux density in the radial direction.
【0010】スリーブ2の周囲には、磁石4およびヨー
ク5および6から構成される磁気回路7が設けられてい
る。磁石4は、温度特性に優れ、かつ高性能なサマリウ
ム・コバルトから作られ、厚さ3mm幅5mm長さ17
mmの角柱形状で、長手方向に磁極を有する。磁石4の
長手方向の中点Mが回転軸1の回転中心Oから8.5m
mのところに位置し、磁石4は回転軸1に対する垂直平
面内で、回転軸1の径方向に対して垂直な方向に長手方
向が向き、磁石上では上記中点mMが回転中心Oから最
短距離となっている。[0010] Around the sleeve 2 is provided a magnetic circuit 7 comprising a magnet 4 and yokes 5 and 6. The magnet 4 is made of high-performance samarium-cobalt having excellent temperature characteristics and a thickness of 3 mm, a width of 5 mm, and a length of 17 mm.
mm prismatic shape and has a magnetic pole in the longitudinal direction. The midpoint M in the longitudinal direction of the magnet 4 is 8.5 m from the rotation center O of the rotation shaft 1.
m, the longitudinal direction of the magnet 4 is perpendicular to the radial direction of the rotating shaft 1 in a plane perpendicular to the rotating shaft 1. Distance.
【0011】2本のヨーク5および6は磁性ステンレス
から作られ、厚さ0.5mm、幅5mm、長さ23mm
の板状で、それぞれの長手方向の端部が磁石4の長手方
向の端部端面に固定されている。ヨーク5および6は、
回転軸に対する垂直平面内で、磁石の長手方向に対して
垂直な方向に延びている。したがって、ヨーク5および
6と回転中心Oとの最短距離は、磁石の中点Mと回転中
心Oとの距離と同じく8.5mmになり、磁石4の一端
と回転中心Oと磁石4の多端が作る角度は略90度にな
る。磁気回路7は回転軸1に固定され、回転軸1が回転
すると同時に回転軸1に対する垂直平面内を回転する。
ホール素子3はこのときの磁束密度の変化を測定し、出
力する。The two yokes 5 and 6 are made of magnetic stainless steel and have a thickness of 0.5 mm, a width of 5 mm, and a length of 23 mm.
, And each longitudinal end is fixed to the longitudinal end face of the magnet 4. The yokes 5 and 6
It extends in a plane perpendicular to the axis of rotation in a direction perpendicular to the longitudinal direction of the magnet. Therefore, the shortest distance between the yokes 5 and 6 and the rotation center O is 8.5 mm, which is the same as the distance between the center point M of the magnet and the rotation center O. The angle to make is about 90 degrees. The magnetic circuit 7 is fixed to the rotating shaft 1 and rotates in a plane perpendicular to the rotating shaft 1 at the same time as the rotating shaft 1 rotates.
The Hall element 3 measures and outputs the change in the magnetic flux density at this time.
【0012】図3に、回転軸1の回転角度θと、ホール
素子3により検出した磁束密度Bの関係を示す。磁石4
と反対側の位置にホール素子3が配置される角度をθ=
0°とする。磁気回路7が回転するとき磁束密度Bの測
定値がもっとも大きくなるのは、ホール素子3が磁石4
の端部と最も近い位置にあるときであり、たとえば、図
1において、θ=+135°の位置にホール素子がある
ような位置関係のときである。磁石4とホール素子3が
離れる方向に磁気回路7が回転すると、磁束密度Bの測
定値は減少していくが、θ=+135°からθ=+90
°の間では、ヨーク部6とホール素子3との距離が小さ
くなってくるため、磁束密度Bは急激に減少せずに、徐
々に低下する。FIG. 3 shows the relationship between the rotation angle θ of the rotating shaft 1 and the magnetic flux density B detected by the Hall element 3. Magnet 4
The angle at which the Hall element 3 is arranged at a position opposite to
0 °. The largest measured value of the magnetic flux density B when the magnetic circuit 7 rotates is that the Hall element 3
This is, for example, a position where the Hall element is located at a position of θ = + 135 ° in FIG. When the magnetic circuit 7 rotates in a direction in which the magnet 4 and the Hall element 3 move away from each other, the measured value of the magnetic flux density B decreases, but from θ = + 135 ° to θ = + 90 °.
Since the distance between the yoke portion 6 and the Hall element 3 becomes smaller between 0 ° and 0 °, the magnetic flux density B does not suddenly decrease but gradually decreases.
【0013】また、さらに回転し、θ=+90°からθ
=0°の間では、ヨーク部6とホール素子3との距離は
今度は大きくなるが、ヨーク部6の開放された端部近辺
においても磁束密度は極端に減少することはなく、測定
可能な感度は保たれる。さらに回転すると、ホール電圧
の起電力の方向は逆向きになるが、θ=−135°まで
同様な測定値が得られる。したがって、磁束密度Bと、
回転軸1と磁気回路7の相対的な回転角度θとは、θの
範囲が−135°から+135°の間で、ほぼ直線性が
保たれている。この図3をもとに、ホール素子3により
測定した磁束密度Bから回転軸と磁気回路の相対的な回
転角度θを求めることができる。Further, the rotation is further performed, and θ = + 90 ° to θ
In the range of = 0 °, the distance between the yoke portion 6 and the Hall element 3 is increased this time, but the magnetic flux density does not extremely decrease near the open end of the yoke portion 6 and can be measured. Sensitivity is maintained. With further rotation, the direction of the electromotive force of the Hall voltage is reversed, but similar measurement values are obtained up to θ = −135 °. Therefore, the magnetic flux density B,
The relative rotation angle θ between the rotating shaft 1 and the magnetic circuit 7 is substantially linear when the range of θ is between −135 ° and + 135 °. 3, the relative rotation angle θ between the rotation axis and the magnetic circuit can be obtained from the magnetic flux density B measured by the Hall element 3.
【0014】本実施例は以上のように構成され、広い回
転角度範囲において、回転角度θと磁束密度Bの測定値
との直線性が良好に保たれ、回転角度の高い計測精度が
得られる。なお、ホール素子と磁気回路との相対回転の
ためには、磁気回路を固定しホール素子を回転させても
よく、これにより同様に高精度の計測が可能である。し
かし、本実施例のように、ホール素子を固定するほうが
ホール素子との電気的配線を複雑にすることがない点で
好ましい。The present embodiment is configured as described above. In a wide rotation angle range, the linearity between the rotation angle θ and the measured value of the magnetic flux density B is kept good, and high measurement accuracy of the rotation angle can be obtained. Note that, for relative rotation between the Hall element and the magnetic circuit, the magnetic circuit may be fixed and the Hall element may be rotated, thereby also enabling highly accurate measurement. However, it is preferable to fix the Hall element as in the present embodiment, since the electric wiring with the Hall element does not become complicated.
【0015】[0015]
【発明の効果】以上のとおり、本発明は、磁気検出素子
により検出される磁束密度の変化から磁気検出素子と磁
気回路の相対的な回転角度を計測する磁気式回転角度セ
ンサにおいて、磁気回路を、回転軸に対する垂直平面に
おいて、柱形状で長手方向に磁極を有し長手方向の中点
が回転軸の回転中心から最短距離となるよう該回転中心
から所定距離にオフセットさせた磁石と、この磁石の両
端から延び、回転軸を挟んで対向する強磁性体のヨーク
とから形成し、磁気検出素子がこの磁気回路で囲まれた
空間内に配置されているものとしたので、磁気検出素子
により測定される磁束密度が急激に減少することがな
く、これにより、広い回転角度範囲において、回転角度
と磁束密度の測定値との直線性が良好に保たれ、回転角
度の高い計測精度が得られるという効果を有する。As described above, the present invention relates to a magnetic rotation angle sensor for measuring a relative rotation angle between a magnetic detection element and a magnetic circuit from a change in magnetic flux density detected by the magnetic detection element. A magnet having a columnar shape and having a magnetic pole in the longitudinal direction in a vertical plane with respect to the rotation axis, the magnet being offset by a predetermined distance from the rotation center of the rotation axis such that the midpoint in the longitudinal direction is the shortest distance from the rotation center of the rotation axis; Formed from a ferromagnetic yoke which extends from both ends of the rotating shaft and faces each other with the rotation axis interposed therebetween, and the magnetic detecting element is arranged in a space surrounded by the magnetic circuit. The magnetic flux density does not suddenly decrease, and thus, the linearity between the rotation angle and the measured value of the magnetic flux density is kept good over a wide rotation angle range, and the measurement accuracy of the rotation angle is high. An effect that is.
【図1】本発明の実施例を示す正面図である。FIG. 1 is a front view showing an embodiment of the present invention.
【図2】実施例の側面図である。FIG. 2 is a side view of the embodiment.
【図3】実施例における回転角度と磁束密度の関係を示
す図である。FIG. 3 is a diagram illustrating a relationship between a rotation angle and a magnetic flux density in the example.
【図4】従来例を示す図である。FIG. 4 is a diagram showing a conventional example.
【図5】従来例の回転角度と磁束密度の関係を示す図で
ある。FIG. 5 is a diagram showing a relationship between a rotation angle and a magnetic flux density in a conventional example.
1 回転軸 2 スリーブ 3 ホール素子(磁気検出素子) 4 磁石 5、6 ヨーク 7 磁気回路 O 回転中心 M 中点 DESCRIPTION OF SYMBOLS 1 Rotation axis 2 Sleeve 3 Hall element (magnetic detection element) 4 Magnet 5, 6 Yoke 7 Magnetic circuit O Rotation center M Middle point
Claims (5)
を配置し、磁気検出素子により検出される磁束密度の変
化から磁気検出素子と磁気回路の相対的な回転角度を非
接触で計測する磁気式回転角度センサにおいて、前記磁
気回路は、前記回転軸に対する垂直平面において、柱形
状で長手方向に磁極を有し長手方向の中点が前記回転軸
の回転中心から最短距離となるよう該回転中心から所定
距離にオフセットさせた磁石と、該磁石の両端から延
び、前記回転軸を挟んで対向する強磁性体のヨークとか
ら形成され、前記磁気検出素子が、前記磁気回路で囲ま
れた空間内に配置されていることを特徴とする磁気式回
転角度センサ。1. A magnetic detection element and a magnetic circuit are arranged around a rotation axis, and a relative rotation angle between the magnetic detection element and the magnetic circuit is measured in a non-contact manner from a change in magnetic flux density detected by the magnetic detection element. In the magnetic rotation angle sensor, the magnetic circuit has a columnar shape and has magnetic poles in a longitudinal direction on a plane perpendicular to the rotation axis, and the rotation is such that a middle point in the longitudinal direction is a shortest distance from a rotation center of the rotation axis. A space formed by a magnet offset from a center by a predetermined distance, and a ferromagnetic yoke extending from both ends of the magnet and facing each other with the rotation axis interposed therebetween, wherein the magnetic detection element is surrounded by the magnetic circuit. A magnetic rotation angle sensor, wherein the rotation angle sensor is disposed inside the magnetic rotation angle sensor.
は板状で前記磁石の各端面に接続され磁石の長手方向に
対してそれぞれ垂直に延びていることを特徴とする請求
項1記載の磁気式回転角度センサ。2. The magnet according to claim 1, wherein the magnet has a prismatic shape, and the yoke is plate-shaped and connected to each end face of the magnet and extends perpendicularly to the longitudinal direction of the magnet. Magnetic rotation angle sensor.
該回転軸と一体に回転し、前記磁気検出素子は前記磁気
回路内の定位置に固定されていることを特徴とする請求
項1または2記載の磁気式回転角度センサ。3. The magnetic circuit according to claim 1, wherein the magnetic circuit is fixed to the rotating shaft and rotates integrally with the rotating shaft, and the magnetic detecting element is fixed at a fixed position in the magnetic circuit. Or a magnetic rotation angle sensor according to 2.
転軸と同心の円筒形状のスリーブが配置され、該スリー
ブの外周に前記磁気検出素子が固定されていることを特
徴とする請求項1、2または3記載の磁気式回転角度セ
ンサ。4. A method according to claim 1, wherein a cylindrical sleeve concentric with said rotating shaft is disposed in a space surrounded by said magnetic circuit, and said magnetic detecting element is fixed to an outer periphery of said sleeve. 4. The magnetic rotation angle sensor according to 1, 2, or 3.
方向の磁束密度を検出するように設置されていることを
特徴とする請求項1、2、3または4記載の磁気式回転
角度センサ。5. The magnetic rotation angle sensor according to claim 1, wherein the magnetic detection element is installed to detect a magnetic flux density in a radial direction of the rotation shaft. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23131096A JP3422184B2 (en) | 1996-08-13 | 1996-08-13 | Magnetic rotation angle sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23131096A JP3422184B2 (en) | 1996-08-13 | 1996-08-13 | Magnetic rotation angle sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1062112A true JPH1062112A (en) | 1998-03-06 |
JP3422184B2 JP3422184B2 (en) | 2003-06-30 |
Family
ID=16921630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23131096A Expired - Fee Related JP3422184B2 (en) | 1996-08-13 | 1996-08-13 | Magnetic rotation angle sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3422184B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7414397B2 (en) | 2005-05-16 | 2008-08-19 | Tdk Corporation | Angle switch device with magnetoresistive effect element |
JP2013250073A (en) * | 2012-05-30 | 2013-12-12 | Denso Corp | Rotational angle detection device |
-
1996
- 1996-08-13 JP JP23131096A patent/JP3422184B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7414397B2 (en) | 2005-05-16 | 2008-08-19 | Tdk Corporation | Angle switch device with magnetoresistive effect element |
JP2013250073A (en) * | 2012-05-30 | 2013-12-12 | Denso Corp | Rotational angle detection device |
Also Published As
Publication number | Publication date |
---|---|
JP3422184B2 (en) | 2003-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6576890B2 (en) | Linear output non-contacting angular position sensor | |
US9207100B2 (en) | Magnetic position sensor with field direction measurement and flux collector | |
US6476600B2 (en) | Angular position measuring device | |
US5528139A (en) | Magnetic position and speed sensor with hall probe in an air gap | |
CN110114637B (en) | Sensor device | |
JP2536566Y2 (en) | Rotation sensor | |
KR101331182B1 (en) | Magnetic Angular Position Sensor for a Course up to 360° | |
US6288533B1 (en) | Method and apparatus for detecting rotor position by use of magnetic field sensor pairs | |
KR101626001B1 (en) | Angular or linear magnetic position sensor not sensitive to external fields | |
US8373410B2 (en) | Rotary or linear position sensor having a variable magnet profile | |
JP4169536B2 (en) | Actuator | |
JP4204294B2 (en) | Rotation angle detector | |
WO2008075620A1 (en) | Rotation angle detection device | |
US6639398B2 (en) | Magnetic sensor that concentrates magnetic flux in an air gap | |
JP5151958B2 (en) | POSITION DETECTION DEVICE AND ROTARY LINEAR MOTOR HAVING THE SAME | |
JP3422184B2 (en) | Magnetic rotation angle sensor | |
JPH09236644A (en) | Magnetic potentiometer | |
JPH10122810A (en) | Magnetic turning angle sensor | |
JP3438460B2 (en) | Magnetic rotation angle sensor | |
US8963541B2 (en) | Position sensor using a moveable ferromagnetic element | |
KR100733162B1 (en) | Instrument for measuring eddy currents | |
JP4233920B2 (en) | Rotation angle detector | |
JPH0529242B2 (en) | ||
KR20000070595A (en) | Metering device for contactless determination of a rotation | |
JP2006527844A (en) | Magnetic sensor for determining the position of a controlled magnetic leak |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030325 |
|
LAPS | Cancellation because of no payment of annual fees |