JPH1061406A - Cooling structure for gas turbine blade - Google Patents

Cooling structure for gas turbine blade

Info

Publication number
JPH1061406A
JPH1061406A JP22478596A JP22478596A JPH1061406A JP H1061406 A JPH1061406 A JP H1061406A JP 22478596 A JP22478596 A JP 22478596A JP 22478596 A JP22478596 A JP 22478596A JP H1061406 A JPH1061406 A JP H1061406A
Authority
JP
Japan
Prior art keywords
blade
slit
gas turbine
rib
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22478596A
Other languages
Japanese (ja)
Inventor
Hiroharu Tada
弘治 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22478596A priority Critical patent/JPH1061406A/en
Publication of JPH1061406A publication Critical patent/JPH1061406A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To hardly generate the cracking of a blade wall, enhance the soundness of a blade, and extent the life of the blade, by arranging in a gas turbine blade wall, a slit which is communicated with a cavity inside the blade, formed slantingly against a blade surface, and extended in the height direction of the blade. SOLUTION: A gas turbine stator blade comprises a blade part 1 and a shroud 2. A slit 3 is arranged over the whole height of the blade in the blade part 1. The wake side of the stator blade is cooled by flowing cooling air and so on through the slit 3. A cavity for flowing the cooling air and so on is arranged inside the blade, and this cavity is partitioned by a rib 4. The rib 4 is arranged in the vicinity of the slit 3, so that blade walls in front and rear of the slit 3 may not be deformed. As to a blade wall part 8 on a rear edge side further from the slit 3, a rib 4' is arranged just behind the slit 3, and the length of the blade wall part 8 is shortened. Hereby, a deformational problem can be solved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,ガスタービン翼の
冷却技術の分野に属する。
The present invention belongs to the field of gas turbine blade cooling technology.

【0002】[0002]

【従来の技術】従来から,ガスタービンの高効率運転を
実現するため,タービン入口温度の高温化の要求が強
く,近年,発電設備用のガスタービンにおいてはタービ
ン入口部の温度が千数百℃に達するものも開発されてい
る。タービン入口温度の高温化に伴って,タービン翼を
冷却する様々な方法や構造が考え出されている。
2. Description of the Related Art Conventionally, there has been a strong demand for a high turbine inlet temperature in order to realize a highly efficient operation of a gas turbine. Those that reach are also being developed. As the turbine inlet temperature increases, various methods and structures for cooling turbine blades have been devised.

【0003】図2は,従来のガスタービン静翼の構造を
示している。同図(a)において,静翼は翼部01とシ
ュラウド02によって構成されている。図2(b)は,
翼部01を翼の高さ方向に対して垂直に切断したときの
斜視図を示している。翼部01の内部には,空気等を流
して翼を内側から冷却するための空洞が設けられてお
り,また,該空洞を仕切るためのリブ04が設けられて
いる。
FIG. 2 shows the structure of a conventional gas turbine stationary blade. In FIG. 1A, the stationary blade includes a wing portion 01 and a shroud 02. FIG. 2 (b)
The perspective view when the wing part 01 is cut | disconnected perpendicularly to the height direction of the wing is shown. Inside the wing portion 01, a cavity for flowing air or the like to cool the wing from the inside is provided, and a rib 04 for partitioning the cavity is provided.

【0004】翼部01の下流側には,リブ04にて仕切
られた下流側の空洞05と連通した複数の冷却孔06が
翼下流側へ傾斜して設けられている。そして,空洞05
から冷却孔06を通って翼外部へ流出する冷却空気は,
冷却孔06の傾斜により翼表面を沿うように流れ,翼後
縁付近の冷却不足を補っている。
[0004] Downstream of the wing portion 01, a plurality of cooling holes 06 communicating with a downstream cavity 05 partitioned by a rib 04 are provided to be inclined toward the downstream side of the wing. And cavity 05
The cooling air flowing out of the wing through the cooling holes 06 from
The cooling hole 06 flows along the blade surface due to the inclination thereof, thereby compensating for insufficient cooling near the blade trailing edge.

【0005】[0005]

【発明が解決しようとする課題】従来の翼の冷却構造で
は,冷却孔06が翼下流側へある傾斜角をもって設けら
れているため,図2(c)に示すように冷却孔06と翼
表面とによって鋭角のエッジ部分07が形成され,同部
分に翼母材内部に比べて著しい応力が集中する。ちなみ
に,冷却孔06が翼面に対して垂直に開口しているとき
のエッジ部分と,冷却孔06と翼面のなす角が30度で
あるときのエッジ部分の応力集中の度合いは,冷却孔を
設けない場合と比べて前者が3倍,後者が6.85倍高
くなる。
In the conventional blade cooling structure, since the cooling holes 06 are provided at a certain inclination angle toward the downstream side of the blades, as shown in FIG. As a result, an edge portion 07 having an acute angle is formed, and a remarkable stress is concentrated on the edge portion 07 as compared with the inside of the blade base material. Incidentally, the degree of stress concentration in the edge portion when the cooling hole 06 is perpendicular to the blade surface and in the edge portion when the angle between the cooling hole 06 and the blade surface is 30 degrees are as follows. The former is three times higher and the latter is 6.85 times higher than the case where no is provided.

【0006】鋭角のエッジ部分07への高い応力集中
は,該エッジ部分07に局所的な亀裂を誘因することと
なり,一度亀裂が発生すると他の冷却孔06へも亀裂が
波及し易くなるため,ガスタービン翼の寿命低下の原因
となる。
The high stress concentration on the sharp edge portion 07 causes local cracks in the edge portion 07, and once a crack occurs, the crack easily spreads to other cooling holes 06. This may cause a reduction in the life of the gas turbine blade.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め,本発明は,翼内部空洞と連通し,翼面に対して傾斜
して形成され,かつ,翼の高さ方向に延在するスリット
をガスタービン翼壁に設けたことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention communicates with a wing internal cavity, is formed to be inclined with respect to the wing surface, and extends in the height direction of the wing. The slit is provided on the gas turbine blade wall.

【0008】また,翼内部のリブをスリット直前または
直後に設けたことを特徴とする。
[0008] A rib inside the blade is provided immediately before or immediately after the slit.

【0009】上記のように,スリットを翼の全高に渡っ
て施したことにより,翼面は構造の不連続部を有さない
自由境界面となるので,応力流れの乱れがなくなる。従
って,翼面のスリット端部分における主流ガス流れ方向
の応力は0となり,同部分の翼高方向の応力は1となる
ので,応力の集中は生じないこととなる。
As described above, since the slit is formed over the entire height of the wing, the wing surface becomes a free boundary surface having no structural discontinuity, so that the disturbance of the stress flow is eliminated. Therefore, the stress in the mainstream gas flow direction at the slit end portion of the blade surface is 0, and the stress in the blade height direction at the same portion is 1, so that no concentration of stress occurs.

【0010】[0010]

【発明の実施の形態】図1は本発明にかかる翼の冷却構
造の一実施形態を示している。同図(a)において,ガ
スタービン静翼は翼部1とシュラウド2によって構成さ
れている。そして,翼部1には翼の全高に渡ってスリッ
ト3が設けられている。スリット3は,従来の静翼にお
いて複数の冷却孔6が開けられていた部分に沿って設け
られ,従来の冷却孔6と同様の角度で翼壁に対して傾斜
している。そして,このスリット3を通して冷却用の空
気等を流し,静翼の後流側を冷却する。
FIG. 1 shows an embodiment of a blade cooling structure according to the present invention. In FIG. 1A, the gas turbine stationary blade is constituted by a blade portion 1 and a shroud 2. The wing 1 is provided with a slit 3 over the entire height of the wing. The slit 3 is provided along a portion where the plurality of cooling holes 6 are formed in the conventional stationary blade, and is inclined at an angle similar to that of the conventional cooling hole 6 with respect to the blade wall. Then, cooling air or the like flows through the slit 3 to cool the downstream side of the stationary blade.

【0011】図1(b)は翼部1をガス流れ方向に切断
したときの斜視図を示している。従来の翼と同様に,翼
内部には冷却用の空気等を流すための空洞があり,該空
洞はリブ4によって仕切られている。リブ4はスリット
3の前後の翼壁が変形しないようにするためスリット3
の近傍に設けられる。スリット3よりも後縁側の翼壁部
分8についても,スリット3の直後にリブ4’を設置し
たり,長さを短くすることで前記の変形の問題を解消す
ることができる。
FIG. 1B is a perspective view when the wing 1 is cut in the gas flow direction. As in the case of the conventional blade, there is a cavity for flowing cooling air and the like inside the blade, and the cavity is partitioned by a rib 4. The ribs 4 are used to prevent the wing walls before and after the slit 3 from being deformed.
Is provided in the vicinity of. With respect to the wing wall portion 8 on the trailing edge side of the slit 3, the above-mentioned deformation problem can be solved by installing the rib 4 'immediately after the slit 3 or reducing the length.

【0012】なお,基本的に翼壁はガス圧に十分耐え得
る翼厚及び構造を有しているので,スリット3を翼の全
高に渡って施しても強度上の問題はない。
Basically, since the blade wall has a blade thickness and structure capable of sufficiently withstanding gas pressure, there is no problem in strength even if the slit 3 is provided over the entire height of the blade.

【0013】[0013]

【発明の効果】本発明を採用することにより,開口部に
おける鋭角のエッジ部分への応力集中の度合いが低くな
り,翼壁の亀裂も生じにくくなる。従って,翼の健全性
が高くなり,翼寿命の延長化も図れるようになる。
According to the present invention, the degree of stress concentration on the sharp edge portion in the opening is reduced, and the blade wall is less likely to crack. Therefore, the soundness of the blade is improved, and the life of the blade can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態にかかるガスタービン静翼
の冷却構造図。
FIG. 1 is a diagram showing a cooling structure of a gas turbine stationary blade according to an embodiment of the present invention.

【図2】従来のガスタービン静翼の冷却構造図。FIG. 2 is a cooling structure diagram of a conventional gas turbine stationary blade.

【符号の説明】[Explanation of symbols]

01,1 翼部 02,2 シュラウド 3 スリット 04,4,4’ リブ 05,5 空洞 06 冷却孔 07,7 鋭角のエッジ部分 8 後縁側の翼壁部分 01,1 wing part 02,2 shroud 3 slit 04,4,4 'rib 05,5 cavity 06 cooling hole 07,7 sharp edge part 8 trailing edge wing wall part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 翼内部空洞と連通し,翼面に対して傾斜
して形成され,かつ,翼の高さ方向に延在するスリット
をガスタービン翼壁に設けたことを特徴とするガスター
ビン翼の冷却構造。
1. A gas turbine, wherein a slit is formed in a gas turbine blade wall, the slit being formed in communication with a blade internal cavity, inclined with respect to the blade surface, and extending in the height direction of the blade. Wing cooling structure.
【請求項2】 翼内部のリブをスリット直前または直後
に設けたことを特徴とする請求項1に記載のガスタービ
ン翼の冷却構造。
2. The gas turbine blade cooling structure according to claim 1, wherein a rib inside the blade is provided immediately before or immediately after the slit.
JP22478596A 1996-08-27 1996-08-27 Cooling structure for gas turbine blade Withdrawn JPH1061406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22478596A JPH1061406A (en) 1996-08-27 1996-08-27 Cooling structure for gas turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22478596A JPH1061406A (en) 1996-08-27 1996-08-27 Cooling structure for gas turbine blade

Publications (1)

Publication Number Publication Date
JPH1061406A true JPH1061406A (en) 1998-03-03

Family

ID=16819173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22478596A Withdrawn JPH1061406A (en) 1996-08-27 1996-08-27 Cooling structure for gas turbine blade

Country Status (1)

Country Link
JP (1) JPH1061406A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1508399A1 (en) * 2003-08-22 2005-02-23 Siemens Aktiengesellschaft Blade for a turbine engine and method to prevent the crack propagation in a blade for a turbine engine
EP1525942A1 (en) * 2003-10-23 2005-04-27 Siemens Aktiengesellschaft Gas turbine engine and moving blade for a turbomachine
EP1757773A1 (en) * 2005-08-26 2007-02-28 Siemens Aktiengesellschaft Hollow turbine airfoil
CN102094705A (en) * 2011-02-22 2011-06-15 孙敏超 Turbine nozzle ring with adjustable and variable outlet flowing angle
EP3473431A1 (en) * 2017-10-23 2019-04-24 MTU Aero Engines GmbH Turbomachine and blade and rotor for a turbomachine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1508399A1 (en) * 2003-08-22 2005-02-23 Siemens Aktiengesellschaft Blade for a turbine engine and method to prevent the crack propagation in a blade for a turbine engine
EP1525942A1 (en) * 2003-10-23 2005-04-27 Siemens Aktiengesellschaft Gas turbine engine and moving blade for a turbomachine
WO2005046927A1 (en) * 2003-10-23 2005-05-26 Siemens Aktiengesellschaft Gas turbine and rotating blade for a turbomachine
US7416394B2 (en) 2003-10-23 2008-08-26 Siemens Aktiengesellschaft Gas turbine and rotor blade for a turbomachine
EP1757773A1 (en) * 2005-08-26 2007-02-28 Siemens Aktiengesellschaft Hollow turbine airfoil
JP2007064219A (en) * 2005-08-26 2007-03-15 Siemens Ag Hollow turbine blade
US7845905B2 (en) 2005-08-26 2010-12-07 Siemens Aktiengesellschaft Hollow turbine blade
JP4689558B2 (en) * 2005-08-26 2011-05-25 シーメンス アクチエンゲゼルシヤフト Hollow turbine blade
CN102094705A (en) * 2011-02-22 2011-06-15 孙敏超 Turbine nozzle ring with adjustable and variable outlet flowing angle
EP3473431A1 (en) * 2017-10-23 2019-04-24 MTU Aero Engines GmbH Turbomachine and blade and rotor for a turbomachine
US10844726B2 (en) 2017-10-23 2020-11-24 MTU Aero Engines AG Blade and rotor for a turbomachine and turbomachine

Similar Documents

Publication Publication Date Title
US7351035B2 (en) Hollow rotor blade for the turbine of a gas turbine engine, the blade being fitted with a “bathtub”
JP4108427B2 (en) Blade with inclined tip shelf
US7059834B2 (en) Turbine blade
JP4184323B2 (en) Hollow rotor blades for gas turbine engine turbines
EP1647672B1 (en) Airfoil with impingement cooling of a large fillet
US7055304B2 (en) De-icing device for turbojet inlet guide wheel vane, vane provided with such a de-icing device, and aircraft engine equipped with such vanes
KR100486055B1 (en) Cooling duct turn geometry for bowed airfoil
US20020187043A1 (en) Airfoil trailing edge cooling construction
US6328531B1 (en) Cooled turbine blade
US20140023497A1 (en) Cooled turbine blade tip shroud with film/purge holes
JP2000356104A (en) Gas turbine stationary blade
US20090252615A1 (en) Cooled Turbine Rotor Blade
JPH05133245A (en) Collision baffle plate for turbine moving blade
WO2010052784A1 (en) Turbine blade
JPS6022002A (en) Blade structure of turbomachine
WO1994012390B1 (en) Coolable rotor blade structure
JP5022097B2 (en) Turbine blade
JPH08135402A (en) Gas turbine stationary blade structure
JPH1061406A (en) Cooling structure for gas turbine blade
JPH09151703A (en) Air-cooled blade for gas turbine
JP2001140602A (en) Gas turbine stationary blade
JPH0742842B2 (en) Gas turbine blades
JPS6148606B2 (en)
JP3615907B2 (en) Gas turbine cooling blade
JP3233752B2 (en) Air-cooled blade of gas turbine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104