JPH106077A - High strength solder excellent in thermal fatigue - Google Patents

High strength solder excellent in thermal fatigue

Info

Publication number
JPH106077A
JPH106077A JP5717297A JP5717297A JPH106077A JP H106077 A JPH106077 A JP H106077A JP 5717297 A JP5717297 A JP 5717297A JP 5717297 A JP5717297 A JP 5717297A JP H106077 A JPH106077 A JP H106077A
Authority
JP
Japan
Prior art keywords
solder
weight
thermal fatigue
added
soldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5717297A
Other languages
Japanese (ja)
Inventor
Noboru Waide
和出  昇
Tatsuo Akusawa
辰雄 阿久沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP5717297A priority Critical patent/JPH106077A/en
Publication of JPH106077A publication Critical patent/JPH106077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the thermal fatigue characteristic of parts, such as electrical equipment for vehicle which is always subject to vibration and heat cycle by adding a specific metal of Sb, etc., in an Sn-Pb solder. SOLUTION: This composition is made made of Sn-Pb solder added with, by weight, 0.3 to 1.0% Sb, 0.001 to 0.1% Ga, 0.3 to 3.0% Ag and 0.1 to 0.5% Cu, and/or 0.3 to 3.0 In. Further, the Sn-Pb solder constituting its base body contains 2 to 95% Sn and the remainder is composed of Sb so as to enable soldering at a comparative low temperature. More preferably, it is of the Sn-Pb eutectic crystal solder containing 63% Sn and 37% Pb. In case of soldering by using the solder of this composition, even in a remarkable severe temperature condition of applying a repeating heat balance from minus scores degree to plus hundreds and scores degree, the excellent durability can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、耐熱疲労性に優
れた高強度はんだに係り、詳記すれば、車両用の電装品
のように絶えず振動にさらされ、熱疲労が起こり易い環
境で使用される部品のはんだ付け、特に電子部品を印刷
基板に接合する用途に適したはんだ材に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength solder having excellent thermal fatigue resistance, and more particularly, to use in an environment which is constantly exposed to vibration and is liable to undergo thermal fatigue, such as electrical components for vehicles. The present invention relates to a solder material suitable for use in soldering components to be used, particularly for joining electronic components to a printed circuit board.

【0002】[0002]

【従来の技術】一般に、はんだ材は、Sn−Pb二元素
を基本成分としており、またその性質を改善するため、
各種成分を添加することが知られている。車両用の電装
品のように、絶えず振動にさらされる環境で使用される
はんだ付けした印刷基板に於いては、はんだ内部にクラ
ックが発生して、通電不良による動作ミスを起こす等の
問題が発生している。
2. Description of the Related Art Generally, a solder material has two basic elements of Sn-Pb, and in order to improve its properties,
It is known to add various components. For soldered printed circuit boards used in environments that are constantly exposed to vibration, such as electrical components for vehicles, cracks occur inside the solder, causing problems such as operational errors due to poor current flow. doing.

【0003】この原因は、使用環境温度雰囲気の昇降な
どによる熱サイクルによって全方向から圧縮・引っ張り
・セン断・ねじれなどのストレスを受けることと、印刷
基板が振動にされることなどによる機械的影響により、
基板及び実装部品に強い応力が発生し、それを接合部材
であるはんだが受け持つことになるため、はんだは常に
強い応力がかかった状態に置かれ、そのため長期間の使
用によって疲労破壊するものと推察される。
[0003] This is caused by stresses such as compression, pulling, shearing, and twisting from all directions due to thermal cycling caused by raising and lowering the ambient temperature of the operating environment, and mechanical effects caused by vibration of the printed circuit board. By
It is presumed that strong stress is generated on the board and mounted components, and the solder, which is the joining member, takes over the stress, so that the solder is always placed in a state where strong stress is applied, and as a result, it will be broken by fatigue over a long use. Is done.

【0004】このような問題を解決するため、Sn−P
bはんだに、種々の元素を添加することが提案されてい
る。例えば、特開平3−32487号公報に於いては、
SbとInを添加することが開示され、特開平6−71
480号公報では、SbとTeを添加することが開示さ
れている。
In order to solve such a problem, Sn-P
It has been proposed to add various elements to b solder. For example, in JP-A-3-32487,
It is disclosed that Sb and In are added.
No. 480 discloses that Sb and Te are added.

【0005】[0005]

【発明が解決しようとする課題】上記SbとInを添加
したはんだは、−数十℃〜+百数十℃という苛酷な熱衝
撃ストレスを繰り返し与えた場合は、はんだ接合面が剥
離する欠点があった。また、SbとTeを添加したはん
だは、上記苛酷な熱衝撃ストレスを繰り返し与えた場合
は、はんだフイレットに多くのシワが発生し、はんだ接
合面が剥離する欠点があった。
The above-mentioned solder to which Sb and In are added has a drawback that when a severe thermal shock stress of −several tens degrees C. to + one hundreds degrees C. is repeatedly applied, the solder joint surface is separated. there were. Further, the solder to which Sb and Te are added has a drawback that when the severe thermal shock stress is repeatedly applied, many wrinkles are generated in the solder fillet and the solder joint surface is peeled off.

【0006】従って、上記従来法のいずれも、苛酷な温
度条件のストレス下で、長期間クラックが発生しないは
んだ材という点では、実用上未だ充分に満足すべきもの
ではない。この発明は、クラックの発生し易い苛酷な温
度条件ストレス下でも、長期間クラックが発生しないは
んだ材を提供することを目的とする。
[0006] Therefore, none of the above-mentioned conventional methods is practically sufficiently satisfactory in terms of a solder material which does not crack for a long period of time under stress under severe temperature conditions. SUMMARY OF THE INVENTION An object of the present invention is to provide a solder material in which cracks do not occur for a long period of time even under severe temperature condition stress in which cracks easily occur.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
を解決するため、一連の基礎的研究の結果、Sn−Pb
はんだに、Sb、Ga及びAgと、CuまたはInを特
定量添加混合したはんだは、苛酷な温度条件ストレス下
でもクラックが発生しない極めて耐熱疲労性に優れた高
強度はんだとなることを見いだし、本発明に到達した。
Means for Solving the Problems The present inventors have conducted a series of basic researches to solve the above-mentioned problems, and have found that Sn-Pb
It has been found that a solder obtained by adding a specific amount of Sb, Ga and Ag, and Cu or In to the solder becomes a high-strength solder excellent in thermal fatigue resistance which does not crack even under severe temperature condition stress. The invention has been reached.

【0008】即ち、本発明は、Sn−Pbはんだに、S
b0.3〜1.0重量%、Ga0.001〜0.1重量
%及びAg0.3〜3.0重量%と、Cu0.1〜0.
5重量%及び/またはIn0.3〜2.0重量%を添加
混合したことを特徴とする。
That is, according to the present invention, Sn-Pb solder
b 0.3 to 1.0% by weight, Ga 0.001 to 0.1% by weight and Ag 0.3 to 3.0% by weight, and Cu 0.1 to 0.
5% by weight and / or 0.3 to 2.0% by weight of In are added and mixed.

【0009】[0009]

【発明の実施の形態】本発明に使用するSn−Pbはん
だは、Sn2〜95重量%で残部がPbとするのが良
い。この組成範囲に於いては、比較的低温でのはんだ付
けが可能となるからである。上記組成範囲の中で、特に
Sn63重量%、Pb37重量%のSn−Pb共晶はん
だを使用するのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The Sn-Pb solder used in the present invention is preferably Sn2 to 95% by weight, with the balance being Pb. This is because in this composition range, soldering at a relatively low temperature becomes possible. In the above composition range, it is particularly preferable to use a Sn-Pb eutectic solder of 63% by weight of Sn and 37% by weight of Pb.

【0010】本発明のSbは、固溶されている組織を微
細化させる役割をするものであり、添加量を0.3〜
1.0重量%としたのは、この上限を上回ると、Sbを
含む化合物が生成し、この下限を下回ると、その添加の
効果を発揮しないからである。Gaの添加量は0.00
1〜0.1重量%であり、この上限を上回ると、はんだ
表面に酸化物を作り、メタルとの接着が悪化するいわゆ
るドロツキが生じると共にヌレ性が悪化し、この下限を
下回ると、はんだの耐疲労性が悪化する。
[0010] The Sb of the present invention plays a role of refining the solid solution structure.
The reason for setting the content to 1.0% by weight is that if the content exceeds the upper limit, a compound containing Sb is generated, and if the content is less than the lower limit, the effect of the addition is not exhibited. The amount of Ga added is 0.00
If it exceeds this upper limit, oxides are formed on the surface of the solder, so-called dripping which deteriorates the adhesion to the metal occurs, and the wetting property deteriorates. The fatigue resistance deteriorates.

【0011】Agの添加量は0.3〜3.0重量%であ
り、この上限を上回ると、化合物が生成し、この下限を
下回ると、はんだの耐疲労性が悪化する。Cuの添加量
は0.1〜0.5重量%であり、この上限を上回ると、
ヌレ性が悪化し、この下限を下回ると、はんだの耐疲労
性が悪化する。
The amount of Ag added is 0.3 to 3.0% by weight. If the amount exceeds the upper limit, a compound is formed. If the amount is less than the lower limit, the fatigue resistance of the solder deteriorates. The addition amount of Cu is 0.1 to 0.5% by weight.
If the wettability deteriorates, and if the value falls below this lower limit, the fatigue resistance of the solder deteriorates.

【0012】Inの添加量は0.3〜2.0重量%であ
り、この上限を上回ると、ドロツキとヌレ性が悪化し、
この下限を下回ると、はんだの耐疲労性が悪化する。本
発明に於いては、CuとInとは、いずれか一方を添加
すれば良い。しかしながら、CuとInとの両方を併用
すると、耐疲労性が更に一段と向上する。
The addition amount of In is 0.3 to 2.0% by weight, and if it exceeds this upper limit, the dripping and wetting properties deteriorate,
Below the lower limit, the fatigue resistance of the solder deteriorates. In the present invention, either Cu or In may be added. However, when both Cu and In are used in combination, the fatigue resistance is further improved.

【0013】[0013]

【実施例】次に、実施例を挙げて本発明を更に説明する
が、本発明はこの実施例に限定されない。次表1に、本
発明の合金組成のはんだの実施例と、本発明に属さない
実験用はんだ及び市販のはんだを比較のために挙げ、そ
れぞれのはんだの耐熱衝撃性の試験を行った。Sn−P
b共晶合金は、マレ−Sn(純度:3N)と同和Pb
(純度:4N)とを、Sn−37Pbとなるように配合
し、これに次表1に記載の元素を、次表1に記載の量配
合した。尚、表1中、×印は配合しない元素である。
Next, the present invention will be further described with reference to examples, but the present invention is not limited to these examples. In Table 1 below, an example of a solder having an alloy composition of the present invention, an experimental solder not belonging to the present invention, and a commercially available solder are listed for comparison, and each solder was subjected to a thermal shock resistance test. Sn-P
b eutectic alloy is male-Sn (purity: 3N) and same Pb
(Purity: 4N) and Sn-37Pb, and the elements shown in the following Table 1 were added thereto in the amounts shown in the following Table 1. In Table 1, crosses indicate elements that are not blended.

【0014】[0014]

【表1】 [Table 1]

【0015】図1に示すように、上記表1に記載のはん
だを、それぞれ250℃のはんだ浴1とした。このはん
だ浴1に、紙フエノ−ル基盤2にリ−ド線4が貫通した
コンデンサ−3を浸漬して、はんだ付けした。尚、フラ
ックスは、樹脂系ポストフラックス(ソルダックスFR
−206)を使用し、IPA浸漬法(加熱なし)によっ
て洗浄した。図中5a,5bは、はんだのフイレットで
ある。コンデンサ−3として、小(A)、中(B)及び
(大)の3種類について実験を行った。
As shown in FIG. 1, each of the solders described in Table 1 above was used as a solder bath 1 at 250 ° C. The capacitor 3 having the lead wire 4 penetrated through the paper phenol substrate 2 was immersed in the solder bath 1 and soldered. The flux is a resin-based post flux (Soldax FR)
-206) and washed by an IPA immersion method (without heating). 5a and 5b are solder fillets. Experiments were conducted on three types of capacitor-3, small (A), medium (B) and (large).

【0016】熱衝撃試験は、上記はんだ付け品を、−4
0℃で30分間放置後120℃で30分間放置し、これ
を1サイクルとし、200サイクル及び500サイクル
繰り返し、フイレット5a,5bの外観をマクロ及びS
EM観察によって、表面状態及びクラック発生の有無を
判定した。200サイクルの結果を次表2に、500サ
イクルの結果を次表3に示す。
In the thermal shock test, the above soldered product was evaluated as -4
After leaving it at 0 ° C. for 30 minutes, it was left at 120 ° C. for 30 minutes, and this was taken as one cycle. The cycle was repeated 200 times and 500 times, and the appearance of the fillets 5a and 5b was changed to macro and S.
The surface condition and the presence or absence of cracks were determined by EM observation. Table 2 shows the results of 200 cycles, and Table 3 shows the results of 500 cycles.

【0017】[0017]

【表2】 [Table 2]

【0018】表2中、「評価」は、次の基準により行っ
た。 ◎:フイレット部に全く亀裂、変形のない場合 ○:一部界面変形または剥離があるが、軽度の場合 △:剥離及び界面変形が2つ以上の場合 ×:剥離及び変形多数で重度の場合
In Table 2, "Evaluation" was performed according to the following criteria. ◎: No crack or deformation in the fillet portion. :: Partial interface deformation or peeling, but slight. △: Two or more peeling and interfacial deformation. X: Heavy peeling and deformation.

【0019】[0019]

【表3】 [Table 3]

【0020】表3中、「評価」は、次の基準により行っ
た。 ◎:フイレット部に全く亀裂、変形のない場合 ○:一部界面変形がある場合 △:一部亀裂がある場合 ×:亀裂または界面変形が2つ以上ある場合 上記表2及び表3中の備考欄は、マクロ観察による評価
であり、SEM観察によるSEM像と、ミクロ組織観察
によるフイレット断面を観察した写真を、物件提出書に
添付した。
In Table 3, "Evaluation" was performed according to the following criteria. ◎: No crack or deformation at fillet part ○: Some interface deformation △: Some cracks ×: Two or more cracks or interface deformation Remarks in Tables 2 and 3 above The column is an evaluation by macro observation. A SEM image obtained by SEM observation and a photograph obtained by observing a cross section of a fillet obtained by microstructure observation are attached to the property submission form.

【0021】表2及び物件提出書に添付のSEM像から
明らかなように、200サイクル後で、市販品(Sbと
Inを添加したはんだ、SbとTeを添加したはんだ及
びその他)及び実験用はんだは、コンデンサA、B、C
のフイレット5a,5bの1カ所以上にクラックが発生
したのに対し、本発明のはんだ(本発明品1〜4)は、
全てにクラックが全く発生しなかった。
As is clear from Table 2 and the SEM image attached to the property submission, after 200 cycles, commercial products (solders with Sb and In added, solders with Sb and Te added and others) and experimental solders Are capacitors A, B, C
Cracks occurred in one or more places of the fillets 5a and 5b, whereas the solder of the present invention (products 1 to 4 of the present invention)
No cracks occurred in any of them.

【0022】表3及び物件提出書に添付のSEM像から
明らかなように、500サイクル後で、市販品及び実験
用はんだの全てに多くのクラックが発生したり、剥離し
たのに対し、本発明のはんだ(本発明品1〜4)は、コ
ンデンサ−大(C)については、全くクラックが発生し
なかった。また、Sb、Ga、Ag及びCuに、更にI
nを添加した本発明品2,3は、全てのコンデンサ−
(A)〜(C)のいずれのフイレット5a,5bにもク
ラックが全く発生しなかった。
As is apparent from Table 3 and the SEM image attached to the property submission, after 500 cycles, many cracks and peeling occurred in all of the commercial products and the experimental solders. No solders (products of the present invention 1 to 4) had no crack at all for the capacitor-large (C). In addition, Sb, Ga, Ag, and Cu have
The invention products 2 and 3 to which n is added are all capacitors.
No cracks occurred in any of the fillets 5a and 5b of (A) to (C).

【0023】添付のフイレット断面を観察した写真から
明らかなように、市販品及び実験用はんだは、リ−ド線
のミクロ組織が粗大化しているが、本発明品2,3は、
界面組織が全く粗大化していない。このことは、ミクロ
組織が粗大化することにより、クラックが発生する理論
的根拠とも一致するものである。
As can be seen from the attached photographs of the cross section of the fillet, the microstructure of the lead wire of the commercial product and the experimental solder is coarsened.
The interface structure is not coarse at all. This is also consistent with the theoretical grounds that cracks occur due to coarsening of the microstructure.

【0024】[0024]

【発明の効果】本発明によれば、マイナス数十度からプ
ラス百数十度の繰り返し熱衝撃という極めて苛酷な温度
条件下でもクラックが発生しないので、車両用の電装品
のように、絶えず振動にさらされる熱サイクルストレス
のかかる部品に使用した場合に、疲労破壊寿命を著しく
向上させることができ、はんだ付けを行った機器の信頼
性を向上させることができる。
According to the present invention, cracks do not occur even under extremely severe temperature conditions of repeated thermal shock of minus several tens degrees to plus one hundred and several tens degrees, so that vibrations can be continuously generated like electric components for vehicles. When used for components subjected to thermal cycling stresses, the fatigue fracture life can be significantly improved, and the reliability of soldered equipment can be improved.

【0025】[0025]

【図面の簡単な説明】[Brief description of the drawings]

【図1】耐疲労性の試験に供した試験片の断面図であ
る。
FIG. 1 is a sectional view of a test piece subjected to a fatigue resistance test.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Sn−Pbはんだに、Sb0.3〜1.0
重量%、Ga0.001〜0.1重量%及びAg0.3
〜3.0重量%と、Cu0.1〜0.5重量%及び/ま
たはIn0.3〜2.0重量%を添加混合したことを特
徴とする耐熱疲労性に優れた高強度はんだ。
1. The method according to claim 1, wherein the Sn-Pb solder contains Sb 0.3 to 1.0.
Wt%, Ga 0.001-0.1 wt% and Ag0.3
A high-strength solder excellent in heat fatigue resistance, characterized by adding and mixing 0.1 to 0.5% by weight of Cu and / or 0.3 to 2.0% by weight of In.
【請求項2】前記Sn−Pbはんだは、Sn2〜95重
量%で残部がPbである請求項1に記載のはんだ。
2. The solder according to claim 1, wherein the Sn-Pb solder is Sn2 to 95% by weight and the balance is Pb.
【請求項3】耐熱疲労特性の要求される部品のはんだ付
けに使用する請求項1または2に記載のはんだ。
3. The solder according to claim 1, wherein the solder is used for soldering a component requiring heat-resistant fatigue characteristics.
JP5717297A 1996-04-26 1997-02-26 High strength solder excellent in thermal fatigue Pending JPH106077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5717297A JPH106077A (en) 1996-04-26 1997-02-26 High strength solder excellent in thermal fatigue

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12929196 1996-04-26
JP8-129291 1996-04-26
JP5717297A JPH106077A (en) 1996-04-26 1997-02-26 High strength solder excellent in thermal fatigue

Publications (1)

Publication Number Publication Date
JPH106077A true JPH106077A (en) 1998-01-13

Family

ID=26398197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5717297A Pending JPH106077A (en) 1996-04-26 1997-02-26 High strength solder excellent in thermal fatigue

Country Status (1)

Country Link
JP (1) JPH106077A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu

Similar Documents

Publication Publication Date Title
US6077477A (en) Solder alloy of electrode for joining electronic parts and soldering method
JP3220635B2 (en) Solder alloy and cream solder
JP3199674B2 (en) Solder alloy
GB2421030A (en) Solder alloy
WO1997012719A1 (en) Lead-free solder
EP1106301A1 (en) Lead-free solder
JP2004298931A (en) High-temperature lead-free solder alloy and electronic part
JP3643008B2 (en) Soldering method
JP2000141079A (en) Leadless solder alloy
JP4337326B2 (en) Lead-free solder and soldered articles
JP4612661B2 (en) Electronic component soldering method
KR100678803B1 (en) Pb-FREE SOLDER ALLOY, AND SOLDER MATERIAL AND SOLDER JOINT USING SAME
JPH0649238B2 (en) Solder for joining Cu-based materials and soldering method
JPH01237095A (en) Soldering flux
JPH106077A (en) High strength solder excellent in thermal fatigue
JP2000173253A (en) Portable mini disk player
JP4359983B2 (en) Electronic component mounting structure and manufacturing method thereof
JP3597607B2 (en) Solder alloy and paste solder
JP3254901B2 (en) Solder alloy
JPH11226776A (en) Lead free solder excellent in oxidation resistance
JP2783981B2 (en) Solder alloy
JPH11226777A (en) Lead free solder of high strength and low melting point
JPH1076389A (en) Solder with both thermal impact resistance and oxidation resistance
JP4673860B2 (en) Pb / Sb-free solder alloys, printed wiring boards, and electronic equipment products
JPH1058184A (en) Solder, connecting method for electronic part using the solder and electronic circuit device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050224