JPH1060276A - Extrusion coated insulated electric wire and its production - Google Patents

Extrusion coated insulated electric wire and its production

Info

Publication number
JPH1060276A
JPH1060276A JP8221159A JP22115996A JPH1060276A JP H1060276 A JPH1060276 A JP H1060276A JP 8221159 A JP8221159 A JP 8221159A JP 22115996 A JP22115996 A JP 22115996A JP H1060276 A JPH1060276 A JP H1060276A
Authority
JP
Japan
Prior art keywords
group
conductor
diphenyl
resin
methylphenylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8221159A
Other languages
Japanese (ja)
Inventor
Atsushi Higashiura
厚 東浦
Isamu Kobayashi
勇 小林
Naoyuki Senda
尚之 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8221159A priority Critical patent/JPH1060276A/en
Publication of JPH1060276A publication Critical patent/JPH1060276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce the subject electric wire, excellent in direct soldering characteristics when processing terminals and capable of manifesting excellent effects when used especially for miniaturized and higher-performance electric and electronic machinery and apparatus, etc., and satisfying heat resistance class B by providing a specific extrusion coated insulating layer on the outside of a conductor. SOLUTION: This extrusion coated insulated electric wire is obtained by providing an extrusion coated insulating layer comprising a resin composition consisting essentially of a resin mixture prepared by blending 100 pts.wt. polyether imide resin represented by formula I [R1 is phenylene, methylphenylene, diphenyl, dimethyldipheyl, etc.; R2 is phenylene, methylphenylene, diphenyl, diphenyl ether, etc.; (m) is a positive integer] with 10-70 pts.wt. polycarbonate resin represented by formula II [R3 is phenylene, methylphenylene, diphenyl, naphthalene, etc.; (n) is a positive integer] directly or through another layer on a conductor or on the outside of a conductor core or a multi-core stranded wire obtained by stranding plural insulated cores.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半田付け性に優れ
た押出被覆絶縁層を有する耐熱性絶縁電線に関する。更
に詳しくは、絶縁層が押出被覆法により形成され得る耐
熱性絶縁電線であって、耐熱性が高いにもかかわらず、
絶縁層が半田浴に浸漬すると短時間で除去されて、導体
に半田を付着させることができるので半田付け性にすぐ
れ、特に小型化、高性能化された電気・電子機器などに
使用すると優れた効果を発揮する押出被覆絶縁電線に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant insulated wire having an extruded insulation layer having excellent solderability. More specifically, it is a heat-resistant insulated wire in which an insulating layer can be formed by an extrusion coating method, and despite having high heat resistance,
When the insulating layer is immersed in a solder bath, it is removed in a short time and the solder can be attached to the conductor, so it has excellent solderability, and it is excellent especially when used in miniaturized and high-performance electrical and electronic equipment. The present invention relates to an extruded insulated wire that exhibits an effect.

【0002】[0002]

【従来の技術】近年、電子機器等の小型化、高性能化に
伴って、この電子機器に用いられる部品またはコイルに
おいても、その雰囲気および使用条件が益々厳しくなっ
てきている。またこれに伴って上記の部品またはコイル
に使用される絶縁電線においても高性能化および高信頼
性を付与することが極めて重要な課題となってきてい
る。
2. Description of the Related Art In recent years, with the miniaturization and high performance of electronic equipment and the like, the atmosphere and operating conditions of parts and coils used in such electronic equipment have become increasingly severe. Along with this, it has become an extremely important issue to impart high performance and high reliability to insulated wires used for the above-mentioned components or coils.

【0003】その上、このような絶縁電線を得るために
は、高性能の絶縁層を有することが必要であり、専ら高
耐熱性材料の代替による改善が図られている。
[0003] In addition, in order to obtain such an insulated wire, it is necessary to have a high-performance insulating layer, and improvements have been made exclusively by substituting a high heat-resistant material.

【0004】しかしながら高耐熱性材料による絶縁層を
設けた絶縁電線は、その絶縁層を剥離して端末接続を行
おうとするに際し、該絶縁層の剥離性を著しく困難にす
るという問題があり、これが絶縁電線の端末部における
半田付け性を低下させることとなり、絶縁電線の高信頼
性の進展に多大な阻害要因となっているものであった。
すなわち、絶縁層を薬品または機械により剥離する場
合、絶縁層の材料に高耐熱性材料を用いると、剥離条件
が厳しくなり、薬品の残留または機械剥離によるキズが
増大し、端末接続に悪影響を及ぼす。他方この問題を避
けて、端末接続の信頼性を高めようとすると、絶縁電線
としての高耐熱化の向上を大きく阻止してしまう。
However, an insulated wire provided with an insulating layer made of a high heat-resistant material has a problem that when the insulating layer is peeled off to perform terminal connection, the insulating layer becomes extremely difficult to peel off. This reduces the solderability at the end of the insulated wire, which has been a great obstacle to the development of high reliability of the insulated wire.
That is, when the insulating layer is peeled off by a chemical or a machine, if a high heat-resistant material is used as the material of the insulating layer, the peeling conditions become severe, and the residual due to the chemical or the damage due to the mechanical peeling increases, which adversely affects the terminal connection. . On the other hand, if this problem is avoided to improve the reliability of terminal connection, the improvement in heat resistance as an insulated wire is largely prevented.

【0005】更に絶縁電線の線径が細径になるに伴っ
て、絶縁層の剥離方法として従来の方法にて行うことは
その作業を益々困難にすると共に絶縁電線としての信頼
性を喪失させるものであった。
[0005] Further, as the diameter of the insulated wire becomes smaller, performing the conventional method as a method of peeling the insulating layer makes the work more and more difficult and loses the reliability as the insulated wire. Met.

【0006】一方、導体上に耐熱性樹脂の絶縁層を形成
する方法として、樹脂を有機溶剤に溶解したワニスを導
体上に塗布乾燥する方法、粉体塗装による方法、押出被
覆による方法の3種類の方法があり、上記した問題の解
決を図るためには従来いずれかの方法が適用されてき
た。しかしながらワニス塗布法は有機溶剤を使用する点
から公害処理上の問題があり、その点では後2者の方法
が好ましい方法である。特に押出被覆法では設備的に安
価であること、製造条件の安定化が容易であること、粉
体塗装に比べれば高速生産性に優れることなどから好ま
しい方法といえる。ただし、粉体塗装法、押出被覆法共
にワニス塗布法と異なって適用樹脂本来の溶融粘弾性な
どの特性に依存するところが大きいために、特に絶縁電
線のように薄肉に被覆しなければならない用途には、適
用される樹脂が限定されてくるのが一般的である。高耐
熱性樹脂を適用する場合には特にこの傾向が強いのが現
状であって、ポリエーテルエーテルケトン、ポリアリレ
ートなどの特定の樹脂を除いた高耐熱性樹脂ではワニス
塗布法による導体上被覆が試みられてきている。また粉
体塗装法では、上記に加えて、得られた絶縁電線のピン
ホール発生が避け難いために、絶縁電線の高耐熱性化を
図る製造方法としては、余り実用的な方法ではない。
On the other hand, as a method for forming an insulating layer of a heat-resistant resin on a conductor, there are three methods: a method in which a varnish in which a resin is dissolved in an organic solvent is applied and dried on the conductor, a method by powder coating, and a method by extrusion coating. In order to solve the above-mentioned problem, any of the conventional methods has been applied. However, the varnish coating method has a problem in pollution treatment because an organic solvent is used, and the latter two methods are preferred methods in that respect. In particular, the extrusion coating method is a preferable method because it is inexpensive in terms of equipment, easy to stabilize production conditions, and excellent in high-speed productivity as compared with powder coating. However, unlike the varnish coating method, the powder coating method and the extrusion coating method largely depend on the characteristics of the applied resin, such as the melt viscoelasticity, so it is particularly suitable for applications that require thin coating such as insulated wires. Is generally limited to a resin to be applied. At present, this tendency is particularly strong when high heat resistant resins are applied.For high heat resistant resins excluding specific resins such as polyetheretherketone and polyarylate, coating on the conductor by the varnish coating method is not possible. Have been tried. In addition, in addition to the above, the powder coating method is not very practical as a manufacturing method for increasing the heat resistance of the insulated wire because pinholes in the obtained insulated wire are inevitable.

【0007】因みに押出被覆が可能で、半田浴への浸漬
から直接半田付けできる特性を有する耐熱性絶縁材料と
して、ポリシクロヘキサンジメタンテレフタレート(P
CT)と耐熱性ポリアミドの組合せによるものが提案
(特開平06−223634)されているが、IEC
Publication 172の規定により評価され
る耐熱性は高々B種(130℃)であり、十分に満足さ
れる耐熱性ではなかった。
Incidentally, polycyclohexanedimethane terephthalate (P) is a heat-resistant insulating material which can be extrusion-coated and has the property of being directly solderable from immersion in a solder bath.
CT) and a combination of a heat-resistant polyamide have been proposed (JP-A-06-223634).
The heat resistance evaluated according to the regulations of Publication 172 was at most Class B (130 ° C.), which was not a satisfactory heat resistance.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上記
の問題点を解決し、絶縁層が押出被覆法で形成され、直
接半田付け性に優れて、しかも少なくとも耐熱性はIE
C規格172に規定される耐熱B種以上である押出被覆
絶縁電線を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an insulating layer formed by extrusion coating, which has excellent direct solderability and at least heat resistance of IE.
An object of the present invention is to provide an extruded insulated wire having a heat resistance class B or more specified in C standard 172.

【0009】[0009]

【課題を解決するための手段】上記した目的を達成する
ために、各種の耐熱性樹脂単独並びにそれらの混和物に
ついて鋭意検討した結果、従来押出成形が極めて困難で
あり、半田付け性が本質的に不良とされているポリエー
テルイミド樹脂をベースとして、この樹脂にポリカーボ
ネート樹脂を配合した組成物が、驚くべきことに、薄肉
押出が可能であり、しかも良好な半田付け性を示すこと
を見出し、本発明に至った。すなわち、本発明において
は、導体上に直接もしくは他の層を介して、あるいは導
体線心または絶縁線心を複数本撚り合わせた多心撚り線
の外側に、押出被覆層を設けた押出被覆絶縁電線におい
て、前記押出被覆絶縁層が、一般式(1):
Means for Solving the Problems In order to achieve the above-mentioned object, as a result of diligent studies on various heat-resistant resins alone and their mixtures, extrusion molding has been extremely difficult, and solderability is essential. Based on a polyetherimide resin which is considered to be defective, a composition obtained by blending a polycarbonate resin with this resin is surprisingly found to be capable of thin extrusion and exhibiting good solderability, The present invention has been reached. That is, in the present invention, the extrusion coating insulation layer provided with an extrusion coating layer directly or through another layer on the conductor, or on the outside of a multi-core stranded wire obtained by twisting a plurality of conductor cores or insulation cores. In the electric wire, the extrusion-coated insulating layer has a general formula (1):

【化5】 [式中R1 はフェニレン基、メチルフェニレン基、ジフ
ェニル基、ジメチルジフェニル基、ジフェニルエーテル
基、ジフェニルメタン基、2,2−ジフェニルプロパン
基、ナフタレン基から選ばれ、R2 はフェニレン基、メ
チルフェニレン基、ジフェニル基、ジメチルジフェニル
基、ジフェニルエーテル基、ジフェニルメタン基、2,
2−ジフェニルプロパン基、ナフタレン基から選ばれ、
mは正の整数である]に示すポリエーテルイミド樹脂1
00重量部に対して一般式(2):
Embedded image [Wherein R 1 is selected from a phenylene group, a methylphenylene group, a diphenyl group, a dimethyldiphenyl group, a diphenylether group, a diphenylmethane group, a 2,2-diphenylpropane group, a naphthalene group, and R 2 is a phenylene group, a methylphenylene group, Diphenyl group, dimethyldiphenyl group, diphenyl ether group, diphenylmethane group, 2,
2-diphenylpropane group, selected from naphthalene group,
m is a positive integer]
General formula (2):

【化6】 [式中R3 はフェニレン基、メチルフェニレン基、ジフ
ェニル基、ジメチルジフェニル基、ジフェニルエーテル
基、ジフェニルメタン基、2,2−ジフェニルプロパン
基、ナフタレン基から選ばれ、nは正の整数である]に
示すポリカーボネート樹脂10 〜70重量部を配合し
た樹脂混和物を主成分とする樹脂組成物からなることを
特徴とする押出被覆絶縁電線が提供される。
Embedded image [Wherein R 3 is selected from a phenylene group, a methylphenylene group, a diphenyl group, a dimethyldiphenyl group, a diphenylether group, a diphenylmethane group, a 2,2-diphenylpropane group, and a naphthalene group, and n is a positive integer]. An extruded insulated wire characterized by comprising a resin composition containing as a main component a resin blend containing 10 to 70 parts by weight of a polycarbonate resin.

【0010】また、本発明においては、一般式(1)に
示すポリエーテルイミド樹脂100重量部に対して一般
式(2)に示すポリカーボネート樹脂10 〜70重量
部を配合した樹脂混和物を主成分とする樹脂組成物を、
導体、あるいは導体線心または絶縁線心を複数本撚り合
わせた多心撚り線を140℃以下の温度に予熱するかま
たは予熱することなく、該導体あるいは該多心撚り線の
外側に押出被覆することを特徴とする絶縁電線の製造方
法が提供される。
In the present invention, a resin admixture obtained by mixing 10 to 70 parts by weight of a polycarbonate resin represented by the general formula (2) with 100 parts by weight of the polyetherimide resin represented by the general formula (1) is used as a main component. The resin composition to be,
A conductor, or a multi-core stranded wire obtained by twisting a plurality of conductor cores or insulated cores, is preheated to a temperature of 140 ° C. or less, or is extruded on the outside of the conductor or the multi-core stranded wire without preheating. A method for manufacturing an insulated wire is provided.

【0011】[0011]

【発明の実施の形態】本発明における樹脂混和物は、後
述するポリエーテルイミド樹脂とポリカーボネート樹脂
とを必須成分とする。
BEST MODE FOR CARRYING OUT THE INVENTION The resin admixture of the present invention contains a polyetherimide resin and a polycarbonate resin described below as essential components.

【0012】このうち一般式(1)に示すポリエーテル
イミド樹脂は、芳香族ビス(エーテル酸無水物)と有機
ジアミノ化合物を原料とした公知の方法で製造されたも
のが使用できる。上記の芳香族ビス(エーテル酸無水
物)としては、1,3−ビス(2,3−ジカルボキシフ
ェノキシ)ベンゼンジ酸無水物、4,4’−ビス(3,
4−ジカルボキシフェノキシ)ジフェニルエーテルジ酸
無水物、ビス[4−(3,4−ジカルボキシフェノキ
シ)−フェニル]メタンジ酸無水物、2,2’−ビス
[4−(3,4−ジカルボキシフェノキシ)−フェニ
ル]プロパンジ酸無水物、1,5−ビス(3,4−ジカ
ルボキシフェノキシ)ナフタレンなどが挙げられる。ま
た、上記の有機ジアミノ化合物としては、m−フェニレ
ンジアミン、p−フェニレンジアミン、4,4’−ジア
ミノジフェニルエーテル、4,4’−ジアミノジフェニ
ルメタン、4,4’−ジアミノジフェニルプロパン、
1,5−ジアミノナフタレンなどが挙げられる。一例と
して2,2’−ビス[4−(3,4−ジカルボキシフェ
ノキシ)−フェニル]プロパンジ酸無水物と4,4’−
ジアミノジフェニルメタンとをオルソ−ジクロルベンゼ
ンを溶媒として溶液重縮合して合成される。市販の樹脂
としてはULTEM(日本ジーイープラスチック社商品
名)等がある。
Among them, as the polyetherimide resin represented by the general formula (1), those produced by a known method using aromatic bis (ether anhydride) and an organic diamino compound as raw materials can be used. Examples of the aromatic bis (ether acid anhydride) include 1,3-bis (2,3-dicarboxyphenoxy) benzenediacid anhydride and 4,4′-bis (3,
4-dicarboxyphenoxy) diphenyl ether dianhydride, bis [4- (3,4-dicarboxyphenoxy) -phenyl] methane dianhydride, 2,2′-bis [4- (3,4-dicarboxyphenoxy) ) -Phenyl] propanedioic anhydride, 1,5-bis (3,4-dicarboxyphenoxy) naphthalene, and the like. Examples of the organic diamino compound include m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane,
1,5-diaminonaphthalene and the like can be mentioned. As an example, 2,2'-bis [4- (3,4-dicarboxyphenoxy) -phenyl] propanedioic anhydride and 4,4'-
It is synthesized by solution polycondensation of diaminodiphenylmethane with ortho-dichlorobenzene as a solvent. Commercially available resins include ULTEM (trade name of Japan GE Plastics).

【0013】本発明では、上記の芳香族ビス(エーテル
酸無水物)と有機ジアミノ化合物とのいかなる組合せで
合成されたポリエーテルイミド樹脂でも使用できるが、
特に2,2’−ビス[4−(3,4−ジカルボキシフェ
ノキシ)−フェニル]プロパンジ酸無水物と4,4’−
ジアミノジフェニルメタンとから合成される樹脂を使用
することが好ましい。
In the present invention, a polyetherimide resin synthesized by any combination of the aromatic bis (ether anhydride) and the organic diamino compound can be used.
In particular, 2,2'-bis [4- (3,4-dicarboxyphenoxy) -phenyl] propanedioic anhydride and 4,4'-
It is preferable to use a resin synthesized from diaminodiphenylmethane.

【0014】本発明における樹脂混和物の他の成分は、
一般式(2)に示すポリカーボネート樹脂であり、この
樹脂は2価フェノール類とホスゲン等を原料として公知
の方法により製造されるものが使用できる。上記の2価
フェノールとしては、1,4−ジヒドロキシベンゼン、
4,4’−ジヒドロキシジフェニルエーテル、4、4’
−ジヒドロキシジフェニルメタン、4,4’−ジヒドロ
キシジフェニルプロパン、1,5−ジヒドロキシナフタ
レンなどが挙げられる。市販の樹脂としてはレキサン
(日本ジーイープラスチック社商品名)、ユーピロン
(三菱瓦斯化学社商品名)、ノバレックス(三菱化学社
商品名)等がある。
The other components of the resin admixture of the present invention include:
It is a polycarbonate resin represented by the general formula (2), and a resin produced by a known method using dihydric phenols and phosgene as raw materials can be used. Examples of the dihydric phenol include 1,4-dihydroxybenzene,
4,4'-dihydroxydiphenyl ether, 4,4 '
-Dihydroxydiphenylmethane, 4,4'-dihydroxydiphenylpropane, 1,5-dihydroxynaphthalene and the like. Commercially available resins include Lexan (trade name of Japan GE Plastics), Iupilon (trade name of Mitsubishi Gas Chemical Company), NOVAREX (trade name of Mitsubishi Chemical Corporation), and the like.

【0015】本発明では、上記の2価フェノールのいず
れを原料としたポリカーボネート樹脂でも使用できる
が、特に、4,4’−ジヒドロキシジフェニルプロパン
とホスゲンとから合成された形のポリカーボネート樹脂
を使用することが好ましい。
In the present invention, any of the above-mentioned dihydric phenols as a raw material can be used, but in particular, a polycarbonate resin synthesized from 4,4'-dihydroxydiphenylpropane and phosgene is preferably used. Is preferred.

【0016】本発明における樹脂混和物において、前記
ポリエーテルイミド樹脂と前記ポリカーボネート樹脂と
の配合割合は前者100重量部に対して、後者10〜7
0重量部の範囲に設定される。後者の配合量が10重量
部より少ない場合は、形成される絶縁層の耐熱性は高く
なり問題はないが、絶縁電線としての直接半田付け性が
著しく低下する。特に前者のみの場合には全く半田付け
性を示さない。また、配合量が70重量部より多くなる
場合は、絶縁電線としての直接半田付け性は良好になる
が、前者の優れた耐熱性が低下してしまい、形成された
絶縁層の耐熱性に著しく問題が生じ、耐熱性と半田付け
性の両立ができなくなる。特に後者のみでは、耐熱性に
劣るばかりでなく、半田付け性も実用的レベルにはほど
遠いものとなる。また、両者の特に好ましい配合割合
は、前者100重量部に対して、後者は20〜50重量
部である。
In the resin mixture according to the present invention, the mixing ratio of the polyetherimide resin and the polycarbonate resin is 100 parts by weight of the former and 10 to 7 parts by weight of the latter.
It is set in the range of 0 parts by weight. When the amount of the latter is less than 10 parts by weight, the heat resistance of the formed insulating layer is increased and there is no problem, but the direct solderability as an insulated wire is significantly reduced. In particular, only the former shows no solderability. When the compounding amount is more than 70 parts by weight, the direct solderability as an insulated wire is good, but the former excellent heat resistance is reduced, and the heat resistance of the formed insulating layer is remarkably reduced. A problem arises and it becomes impossible to achieve both heat resistance and solderability. In particular, the latter alone not only has poor heat resistance, but also has a solderability far from a practical level. A particularly preferable mixing ratio of the two is 20 to 50 parts by weight with respect to 100 parts by weight of the former.

【0017】本発明においては、上述のようにポリエー
テルイミド樹脂とポリカーボネート樹脂の両樹脂を特定
割合で配合した樹脂混和物を必須成分とする押出被覆絶
縁層を用いることにより、特性発現のメカニズムは定か
ではないが、高耐熱性でしかも直接半田付け性に優れた
実用レベルの絶縁電線を得ることができる。
In the present invention, as described above, by using an extruded coating insulating layer containing, as an essential component, a resin admixture in which both a polyetherimide resin and a polycarbonate resin are blended in a specific ratio, the mechanism of developing characteristics is as follows. Although it is not clear, it is possible to obtain a practical level insulated wire having high heat resistance and excellent direct solderability.

【0018】前記樹脂混和物は、通常の2軸押出機、ニ
ーダー、コニーダーなどの混練り機で溶融配合すること
ができる。配合樹脂の混練り温度は直接半田付け性に影
響を与えることが判明しており、直接半田付け性は混和
時の混練り機の温度設定を高く設定した方が良い特性が
得られる。320℃以上、特に360℃以上の温度設定
が好ましい。
The resin admixture can be melt-blended using a conventional kneader such as a twin screw extruder, a kneader or a co-kneader. It has been found that the kneading temperature of the compounded resin directly affects the solderability, and that the better the direct solderability is, the higher the temperature setting of the kneader during mixing is set. A temperature setting of 320 ° C. or higher, particularly 360 ° C. or higher is preferable.

【0019】前記樹脂混和物には、直接半田付け性、耐
熱性を損なわない範囲で、他の耐熱性樹脂を添加するこ
とができる。添加できる耐熱性樹脂はそれ自体が半田付
け性が良好なものが好ましく、例として、変性ポリシク
ロヘキサンジメタンテレフタレート樹脂などの熱可塑性
ポリエステル樹脂、4,6−ナイロン、6,6−ナイロ
ンなどの熱可塑性ポリアミド樹脂などが挙げられる。
Other heat resistant resins can be added to the resin mixture as long as the solderability and heat resistance are not impaired. The heat-resistant resin which can be added preferably has good solderability itself. Examples thereof include thermoplastic polyester resins such as modified polycyclohexanedimethane terephthalate resin and heat-resistant resins such as 4,6-nylon and 6,6-nylon. And a plastic polyamide resin.

【0020】前記樹脂混和物には、直接半田付け性、耐
熱性を損なわない範囲で、通常使用される添加剤、無機
充填剤、加工助剤、着色剤などを添加して押出被覆用の
樹脂組成物とすることができる。
Additives, inorganic fillers, processing aids, coloring agents, etc., which are usually used, are added to the resin admixture as long as the solderability and heat resistance are not impaired. It can be a composition.

【0021】本発明に用いられる導体としては、裸導
体、または裸導体に薄肉絶縁層を設けた絶縁導体あるい
は、導体線心を撚り合わせた多心撚り線、または薄肉絶
縁線心を撚り合わせた多心撚り線を用いることができ
る。これらの撚り線の撚り線数は、用途により随意選択
することができる。ただし、薄肉絶縁材料としてはエス
テルイミド変性ウレタン樹脂、尿素変性ポリウレタン樹
脂などのようにそれ自体で半田付け性が良好な樹脂など
である必要があり、日立化成製商品名WD−4305、
東特塗料製商品名TPU−7000などが使用できる。
As the conductor used in the present invention, a bare conductor, an insulated conductor in which a thin insulating layer is provided on a bare conductor, a multi-core stranded wire obtained by twisting conductor wires, or a thin insulated wire core is stranded. Multicore strands can be used. The number of stranded wires of these stranded wires can be arbitrarily selected depending on the application. However, the thin insulating material must be a resin having good solderability by itself such as an ester imide-modified urethane resin and a urea-modified polyurethane resin.
TPU-7000 or the like made by Toku Paint Co., Ltd. can be used.

【0022】本発明の押出被覆絶縁電線は、前記ポリエ
ーテルイミド樹脂と前記ポリカーボネート樹脂との樹脂
混和物を主成分とする樹脂組成物を、導体外側に押出被
覆して所望の厚みの絶縁層を形成することにより製造さ
れる。導体上に押出被覆絶縁層を形成する時に、通常
は、導体を誘導加熱などにより押出材料の融点もしくは
軟化点以上に予熱することが多いが、本発明の絶縁電線
の製造においては、むしろ導体の140℃を越える予熱
は行わないことにより、極めて良好な半田付け性が得ら
れる。この導体予熱温度は低く設定するほど半田付け性
は良好になる傾向があって、全く予熱を行わない場合に
最も良好な半田付け性が得られる。一般の電線では導体
の予熱を行わないと、導体と被覆樹脂との密着性が悪く
なり、且つ樹脂の残留応力が高くなるために、電線の切
断時に絶縁層が収縮して導体が露出する現象が現れる
が、本発明では、絶縁層と導体間の密着性は適度に良好
であって、絶縁電線としての使用条件下では上記の現象
は起こらないが、半田浴に浸漬して半田付けするときに
始めて絶縁層に10〜30%程度の熱収縮が起こり、半
田付け性が改善されるものである。
The extrusion-coated insulated electric wire of the present invention is formed by extrusion-coating a resin composition containing a resin mixture of the polyetherimide resin and the polycarbonate resin as a main component on the outside of the conductor to form an insulation layer having a desired thickness. It is manufactured by forming. When forming an extruded coating insulating layer on a conductor, usually, the conductor is often preheated to a temperature higher than the melting point or softening point of the extruded material by induction heating or the like. By not performing preheating exceeding 140 ° C., extremely good solderability can be obtained. As the conductor preheating temperature is set lower, the solderability tends to be better, and the best solderability is obtained when no preheating is performed. Unless the conductor is pre-heated, the adhesion between the conductor and the coating resin deteriorates, and the residual stress of the resin increases, so that the insulation layer shrinks when the wire is cut and the conductor is exposed. However, in the present invention, the adhesion between the insulating layer and the conductor is appropriately good, and the above phenomenon does not occur under the conditions of use as an insulated wire, but when immersing in a solder bath and soldering. For the first time, heat shrinkage of about 10 to 30% occurs in the insulating layer, and the solderability is improved.

【0023】[0023]

【実施例】【Example】

実施例1〜9、比較例1〜3 表1に示した各成分を表示の割合(重量部)で混練し
て、各押出被覆層用の樹脂組成物を調製した。導体とし
て線径0.4mmの軟銅線および線径0.15mmの軟
銅線に日立化成社製絶縁ワニスWD−4305を被覆し
た絶縁線心7本を撚り合わせた撚り線を用意し、その外
周に、上記樹脂組成物を、被覆厚が表1に表示の厚みと
なるように、また導体の予熱温度200℃、140℃ま
たは予熱なしの条件で、押出被覆して絶縁電線を製造し
た。なお、上記の押出被覆用の樹脂組成物の配合に当た
って、混練温度は320℃と360℃の2点とした。
Examples 1 to 9 and Comparative Examples 1 to 3 Each component shown in Table 1 was kneaded at the indicated ratio (parts by weight) to prepare a resin composition for each extrusion coating layer. A stranded wire is prepared by twisting seven insulated cores obtained by coating an insulated varnish made by Hitachi Chemical Co., Ltd. on a soft copper wire having a wire diameter of 0.4 mm and a soft copper wire having a wire diameter of 0.15 mm and coated with an insulating varnish WD-4305 manufactured by Hitachi Chemical Co., Ltd. The resin composition was extrusion-coated so that the coating thickness became the thickness shown in Table 1 and at a preheating temperature of 200 ° C., 140 ° C. or no preheating of the conductor, thereby producing an insulated wire. In addition, at the time of compounding the resin composition for extrusion coating, the kneading temperature was set to two points of 320 ° C. and 360 ° C.

【0024】以上の12種類の押出被覆絶縁電線につ
き、下記の仕様で各種の特性を評価した。
With respect to the above 12 kinds of extruded insulated wires, various characteristics were evaluated according to the following specifications.

【0025】半田付け性:押出被覆絶縁電線の末端約4
0mmの部分を温度450℃の溶融半田に浸漬し、浸漬
した30mmの部分に半田が付着するまでの時間(秒)
を測定した。この時間が短いほど半田付け性に優れてい
ることを表す。表示した値は3個の測定値の平均値であ
る。
Solderability: about 4 ends of extruded insulated wire
Time (sec) until the 0 mm part is immersed in molten solder at a temperature of 450 ° C. and the solder adheres to the immersed 30 mm part
Was measured. The shorter this time, the better the solderability. The value shown is the average of three measurements.

【0026】耐熱性:押出被覆絶縁電線と裸銅線をJI
SC3003に準拠して2個撚りし、その状態で、温度
220℃で7日間の加熱処理を施したのち絶縁破壊電圧
を測定した。この値が大きいほど耐熱性に優れているこ
とを示し、また、劣化前の常態での絶縁破壊電圧に対す
る上記劣化後の絶縁破壊電圧の比すなわち絶縁破壊電圧
の劣化後残率(%)が30%以上であれば、IEC規格
耐熱性B種を満足する判定となる。
Heat resistance: Extruded insulated wire and bare copper wire
Two pieces were twisted in accordance with SC3003, and in that state, a heat treatment was performed at a temperature of 220 ° C. for 7 days, and then the dielectric breakdown voltage was measured. The larger the value is, the more excellent the heat resistance is, and the ratio of the dielectric breakdown voltage after the deterioration to the dielectric breakdown voltage in the normal state before the deterioration, that is, the residual ratio (%) of the dielectric breakdown voltage after deterioration is 30. % Or more, it is determined that the heat resistance class B of the IEC standard is satisfied.

【0027】以上の結果を一括して表1に示した。Table 1 summarizes the above results.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例1は、導体上の絶縁層にポリエーテ
ルイミド樹脂100重量部に対してポリカーボネート樹
脂20重量部を配合した樹脂組成物を使用した例であ
り、いずれの特性も優れていることがわかる。実施例2
は、絶縁層にポリエーテルイミド樹脂100重量部に対
してポリカーボネート樹脂65重量部を配合した樹脂組
成物を使用した例であり、いずれの特性も優れているこ
とがわかる。なお、上記実施例では、それぞれの樹脂組
成物の押出被覆に際して、導体の予熱を200℃で行っ
た例である。
Example 1 is an example in which a resin composition in which 20 parts by weight of a polycarbonate resin is blended with respect to 100 parts by weight of a polyetherimide resin in an insulating layer on a conductor is used. I understand. Example 2
Is an example in which a resin composition in which 65 parts by weight of a polycarbonate resin is blended with respect to 100 parts by weight of a polyetherimide resin in an insulating layer is used, and it can be seen that both properties are excellent. In addition, in the said Example, at the time of extrusion coating of each resin composition, the preheating of the conductor was performed at 200 degreeC.

【0030】実施例3、実施例4と実施例5は、導体上
の絶縁層にポリエーテルイミド樹脂100重量部に対し
てポリカーボネート樹脂40重量部を配合した樹脂組成
物を使用した例であり、いずれの特性も優れていること
がわかる。実施例3と実施例4は上記樹脂組成物の押出
被覆時に導体の予熱をそれぞれ200℃、140℃で行
った例であり、実施例5は予熱を行わなかった例であ
る。上記の3実施例を比較すれば、導体の予熱を行わな
い場合を含め予熱温度を140℃以下とする場合には、
半田付け性がかなり向上していることがわかる。
Examples 3, 4 and 5 are examples in which a resin composition in which 40 parts by weight of a polycarbonate resin is blended with respect to 100 parts by weight of a polyetherimide resin in an insulating layer on a conductor is used. It can be seen that all the characteristics are excellent. Example 3 and Example 4 are examples in which the conductor was preheated at 200 ° C. and 140 ° C., respectively, during extrusion coating of the resin composition, and Example 5 was an example in which preheating was not performed. Comparing the above three examples, when the preheating temperature is set to 140 ° C. or less including the case where the conductor is not preheated,
It can be seen that the solderability is considerably improved.

【0031】実施例6は、導体を撚り線に代え、押出被
覆絶縁層の厚みを100μmから50μmに代えた以外
は実施例5と同じにした例であり、いずれの特性にも優
れていることがわかる。
Example 6 is the same as Example 5 except that the conductor was replaced with a stranded wire and the thickness of the extruded insulation layer was changed from 100 μm to 50 μm. I understand.

【0032】実施例7は、押出被覆用樹脂組成物の混練
温度を360℃から320℃に代えた以外は実施例3と
同一にした例であり、いずれの特性値も優れているが、
半田付け性は、混練温度が高い実施例3の方が優れた値
であることがわかる。
Example 7 is the same as Example 3 except that the kneading temperature of the resin composition for extrusion coating was changed from 360 ° C. to 320 ° C., and all the characteristic values were excellent.
It can be seen that the solderability is higher in Example 3 where the kneading temperature is higher.

【0033】実施例8と実施例9は、押出被覆用樹脂組
成物の成分として変性ポリシクロヘキサンジメタンテレ
フタレート樹脂(PCT樹脂)、4,6−ナイロン樹脂
をそれぞれ添加した以外は実施例3と同一とした例であ
り、いずれの特性も優れていることがわかる。
Examples 8 and 9 are the same as Example 3 except that modified polycyclohexanedimethane terephthalate resin (PCT resin) and 4,6-nylon resin were added as components of the resin composition for extrusion coating. It can be seen that all the characteristics are excellent.

【0034】比較例1は、導体上の絶縁層にポリエーテ
ルイミド樹脂を単独で使用した例であり、耐熱性は高い
が、半田付け性を全く示さないことがわかる。
Comparative Example 1 is an example in which a polyetherimide resin was used alone for the insulating layer on the conductor, and shows that although it has high heat resistance, it does not show any solderability.

【0035】比較例2は、導体上の絶縁層にポリエーテ
ルイミド樹脂100重量部に対してポリカーボネート樹
脂100重量部を配合した樹脂組成物を使用した例であ
り、半田付け性は満足する値であるが、耐熱性ではIE
C規格に規定される耐熱性B種に合格しないことがわか
る。ポリカーボネート樹脂の配合量が過大であるため
に、耐熱性が低下した例である。
Comparative Example 2 is an example in which a resin composition in which 100 parts by weight of a polyetherimide resin was blended with 100 parts by weight of a polyetherimide resin in an insulating layer on a conductor was used. There is, but heat resistance IE
It turns out that it does not pass the heat-resistant class B prescribed | regulated to C standard. This is an example in which the heat resistance is reduced due to an excessive amount of the polycarbonate resin.

【0036】比較例3は、導体上の絶縁層に従来絶縁材
料として多く使用されているポリエチレンを使用した例
であり、いずれの特性も著しく劣ることがわかる。
Comparative Example 3 is an example in which polyethylene, which has been widely used as an insulating material, is used for the insulating layer on the conductor.

【0037】[0037]

【発明の効果】以上の説明で明らかなように、本発明の
押出被覆絶縁電線は、端末加工時の直接半田付け特性に
優れ、しかもIEC規格172に規定される耐熱性B種
を満足させる特性を併せ持つものである。更に、本発明
の押出被覆絶縁電線は、その絶縁層の形成が押出被覆に
よってなされるために、製造時の生産性は非常に高くな
る。
As is apparent from the above description, the extruded insulated wire according to the present invention has excellent direct soldering characteristics at the time of terminal processing, and also has characteristics satisfying the heat resistance class B specified in IEC standard 172. It also has. Furthermore, the extrusion-coated insulated wire of the present invention has a very high productivity at the time of manufacture because the insulating layer is formed by extrusion coating.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 69:00) Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C08L 69:00)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導体上に直接もしくは他の層を介して、
あるいは導体線心または絶縁線心を複数本撚り合わせた
多心撚り線の外側に、押出被覆絶縁層を設けた押出被覆
絶縁電線において、前記押出被覆絶縁層が、一般式
(1): 【化1】 [式中R1 はフェニレン基、メチルフェニレン基、ジフ
ェニル基、ジメチルジフェニル基、ジフェニルエーテル
基、ジフェニルメタン基、2,2−ジフェニルプロパン
基、ナフタレン基から選ばれ、R2 はフェニレン基、メ
チルフェニレン基、ジフェニル基、ジメチルジフェニル
基、ジフェニルエーテル基、ジフェニルメタン基、2,
2−ジフェニルプロパン基、ナフタレン基から選ばれ、
mは正の整数である]に示すポリエーテルイミド樹脂1
00重量部に対して一般式(2): 【化2】 [式中R3 はフェニレン基、メチルフェニレン基、ジフ
ェニル基、ジメチルジフェニル基、ジフェニルエーテル
基、ジフェニルメタン基、2,2−ジフェニルプロパン
基、ナフタレン基から選ばれ、nは正の整数である]に
示すポリカーボネート樹脂10 〜70重量部を配合し
た樹脂混和物を主成分とする樹脂組成物からなることを
特徴とする押出被覆絶縁電線。
1. Directly or via another layer on a conductor,
Alternatively, in an extruded coated insulated wire having an extruded coated insulating layer provided on the outside of a multi-core stranded wire in which a plurality of conductor cores or insulated cores are stranded, the extruded coated insulating layer has a general formula (1): 1) [Wherein R 1 is selected from a phenylene group, a methylphenylene group, a diphenyl group, a dimethyldiphenyl group, a diphenylether group, a diphenylmethane group, a 2,2-diphenylpropane group, a naphthalene group, and R 2 is a phenylene group, a methylphenylene group, Diphenyl group, dimethyldiphenyl group, diphenyl ether group, diphenylmethane group, 2,
2-diphenylpropane group, selected from naphthalene group,
m is a positive integer]
The formula (2) is based on 00 parts by weight: [Wherein R 3 is selected from a phenylene group, a methylphenylene group, a diphenyl group, a dimethyldiphenyl group, a diphenylether group, a diphenylmethane group, a 2,2-diphenylpropane group, and a naphthalene group, and n is a positive integer]. An extruded insulated wire comprising a resin composition containing a resin mixture containing 10 to 70 parts by weight of a polycarbonate resin as a main component.
【請求項2】 一般式(1): 【化3】 [式中R1 はフェニレン基、メチルフェニレン基、ジフ
ェニル基、ジメチルジフェニル基、ジフェニルエーテル
基、ジフェニルメタン基、2,2−ジフェニルプロパン
基、ナフタレン基から選ばれ、R2 はフェニレン基、メ
チルフェニレン基、ジフェニル基、ジメチルジフェニル
基、ジフェニルエーテル基、ジフェニルメタン基、2,
2−ジフェニルプロパン基、ナフタレン基から選ばれ、
mは正の整数である]に示すポリエーテルイミド樹脂1
00重量部に対して一般式(2): 【化4】 [式中R3 はフェニレン基、メチルフェニレン基、ジフ
ェニル基、ジメチルジフェニル基、ジフェニルエーテル
基、ジフェニルメタン基、2,2−ジフェニルプロパン
基、ナフタレン基から選ばれ、nは正の整数である]に
示すポリカーボネート樹脂10 〜70重量部を配合し
た樹脂混和物を主成分とする樹脂組成物を、導体、ある
いは導体線心または絶縁線心を複数本撚り合わせた多心
撚り線を140℃以下の温度に予熱するかまたは予熱す
ることなく、該導体あるいは該多心撚り線の外側に押出
被覆することを特徴とする押出被覆絶縁電線の製造方
法。
2. General formula (1): [Wherein R 1 is selected from a phenylene group, a methylphenylene group, a diphenyl group, a dimethyldiphenyl group, a diphenylether group, a diphenylmethane group, a 2,2-diphenylpropane group, a naphthalene group, and R 2 is a phenylene group, a methylphenylene group, Diphenyl group, dimethyldiphenyl group, diphenyl ether group, diphenylmethane group, 2,
2-diphenylpropane group, selected from naphthalene group,
m is a positive integer]
The formula (2) is based on 00 parts by weight: [Wherein R 3 is selected from a phenylene group, a methylphenylene group, a diphenyl group, a dimethyldiphenyl group, a diphenylether group, a diphenylmethane group, a 2,2-diphenylpropane group, and a naphthalene group, and n is a positive integer]. A resin composition containing as a main component a resin admixture containing 10 to 70 parts by weight of a polycarbonate resin, a conductor, or a multi-core stranded wire obtained by twisting a plurality of conductor cores or insulated cores to a temperature of 140 ° C. or less. A method for manufacturing an extruded insulated wire, comprising preheating or extruding the conductor or the multi-strand wire outside without preheating.
JP8221159A 1996-08-22 1996-08-22 Extrusion coated insulated electric wire and its production Pending JPH1060276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8221159A JPH1060276A (en) 1996-08-22 1996-08-22 Extrusion coated insulated electric wire and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8221159A JPH1060276A (en) 1996-08-22 1996-08-22 Extrusion coated insulated electric wire and its production

Publications (1)

Publication Number Publication Date
JPH1060276A true JPH1060276A (en) 1998-03-03

Family

ID=16762406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8221159A Pending JPH1060276A (en) 1996-08-22 1996-08-22 Extrusion coated insulated electric wire and its production

Country Status (1)

Country Link
JP (1) JPH1060276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019885A1 (en) * 1997-10-14 1999-04-22 The Furukawa Electric Co., Ltd. Multilayer insulated wire and transformers made by using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019885A1 (en) * 1997-10-14 1999-04-22 The Furukawa Electric Co., Ltd. Multilayer insulated wire and transformers made by using the same
US6329055B1 (en) 1997-10-14 2001-12-11 The Furukawa Electric Co., Ltd. Multilayer insulated wire and transformers made by using the same
CN1310256C (en) * 1997-10-14 2007-04-11 古河电气工业株式会社 Multi-layer insulated wire and transformer made by using same
JP4776047B2 (en) * 1997-10-14 2011-09-21 古河電気工業株式会社 Multi-layer insulated wire and transformer using the same

Similar Documents

Publication Publication Date Title
JP4776047B2 (en) Multi-layer insulated wire and transformer using the same
EP1742230B1 (en) Multilayer insulated wire and transformer using the same
KR100598992B1 (en) Multilayer insulated wire and transformer using the same
EP2937870B1 (en) Insulated wire
JP3992082B2 (en) Multilayer insulated wire and transformer using the same
EP0898286B1 (en) Insulated wire
EP3089168A1 (en) Insulated wire, coil, electrical/electronic apparatus, and method for manufacturing insulated wire in which coating film separation is prevented
CN106489183A (en) Insulated electric conductor and its manufacture method
JP4776048B2 (en) Multilayer insulated wire and transformer using the same
EP3089170A1 (en) Multilayer insulated wire, coil and electrical/electronic device
JP2010123389A (en) Insulated wire
US6296935B1 (en) Multilayer insulated wire and transformer using the same
JP4158867B2 (en) Insulated wire
CN1763133A (en) Poly(butylene terephthalate) resin composite and multilayered insulating wire containing the same
JPH1060276A (en) Extrusion coated insulated electric wire and its production
JP4028034B2 (en) Multilayer insulated wire and transformer using the same
KR100839509B1 (en) Fine electrical wire and the insulation
KR100314306B1 (en) Insulated wire
KR100368571B1 (en) Modified polyester resin for insulated wire and multilayered insulated wire prepared by using them
JP2017068971A (en) Insulation wire
WO2022180791A1 (en) Resin varnish for insulating layer formation
JP2012051966A (en) Epoxy-modified polyphenylene ether, insulated wire using the same, electric machine coil and motor
JPH07153320A (en) Multilayer insulated electric cable and transformer using it
JPH07141933A (en) Manufacture of rectangular insulating electric wire
JPH093367A (en) Composition for electrical insulation and insulated wire