JPH105958A - Detection coil device - Google Patents
Detection coil deviceInfo
- Publication number
- JPH105958A JPH105958A JP16707996A JP16707996A JPH105958A JP H105958 A JPH105958 A JP H105958A JP 16707996 A JP16707996 A JP 16707996A JP 16707996 A JP16707996 A JP 16707996A JP H105958 A JPH105958 A JP H105958A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- slag
- detection
- receiving coil
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Continuous Casting (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、管体内の流体の乱
れを検出するためのコイル装置に関し、特に、管内で
の、標準流体への異物の混入又は標準流体から異物への
切換わりを検出するためのコイル装置に関し、最も代表
的なものの1つは、鋳型に溶融金属を注入するノズル内
へのスラグ流入を検出するためのコイル装置である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coil device for detecting a turbulence of a fluid in a pipe, and more particularly to detecting a foreign substance mixed into a standard fluid or switching from a standard fluid to a foreign substance in a pipe. One of the most typical coil devices is a coil device for detecting slag flowing into a nozzle for injecting a molten metal into a mold.
【0002】[0002]
【従来の技術】例えば連続鋳造において、取鍋からタン
ディッシュに、注湯ノズルを通して溶鋼が供給される。
タンディッシュの溶鋼は、注湯ノズルを介して鋳型に供
給される。取鍋には、それに溶鋼を注入するときにスラ
グが混入することがあり、取鍋に入ったスラグは溶鋼の
上に浮かぶ。このスラグが、取鍋からタンディッシュへ
の注湯(溶鋼供給)の末期に、注湯ノズルに入り、そし
てタンディッシュに入る。2. Description of the Related Art In continuous casting, for example, molten steel is supplied from a ladle to a tundish through a pouring nozzle.
The molten steel of the tundish is supplied to the mold through a pouring nozzle. Slag may be mixed into the ladle when molten steel is poured into the ladle, and the slag entering the ladle floats on the molten steel. This slag enters the pouring nozzle at the end of pouring from the ladle to the tundish (feeding molten steel) and then enters the tundish.
【0003】このような、注湯ノズルを通ってのタンデ
ィッシュへのスラグの流入を防止するために、注湯ノズ
ルの上端近く、又は、タイディッシュの溶鋼出口近辺
に、溶鋼流路を周回する発信コイルおよび受信コイルを
含む検出コイル装置を装着して、流路内が溶鋼からスラ
グに変わるとき、両コイル間の相互インダクタンスが変
わるので、この変化による受信コイルの電気量(誘起電
圧,電流位相,発振周波数)の変化を検出し、そこで溶
鋼注入を終了又は停止する技術が提案されている。In order to prevent the slag from flowing into the tundish through the pouring nozzle, the molten steel flow path is circulated near the upper end of the pouring nozzle or near the molten steel outlet of the tie dish. When the detection coil device including the transmission coil and the reception coil is installed and the inside of the flow path changes from molten steel to slag, the mutual inductance between the two coils changes. Therefore, the electric quantity (induced voltage, current phase) of the reception coil due to this change , Oscillation frequency), and a technique for terminating or stopping the injection of molten steel thereat has been proposed.
【0004】例えば、特開昭62−500646号公報
には、溶融金属の冶金容器流出口、あるいは流出管の周
囲の穴あきレンガ又は内張り中に、送信コイル及び基準
コイル(1次コイル)並びに受信コイル(2次コイル)
を巻回設置し、1次コイルを交流信号で励磁して、受信
コイルに発生する電圧(及び位相)よりスラグの存在を
自動的に検出するスラグ検出装置が開示されている。流
出管の周辺に環状にコイルを配置すれば、流出管中を流
れる物質の導電率の差により受信コイルに誘起する電圧
(及び位相)に差違が生ずる。溶鋼の導電率はスラグの
導電率より著しく高いので、流出管中を流れる溶鋼にス
ラグが混在する場合には、その部分の局部的導電率が低
くなる。従って受信コイルに誘起する電圧(及び位相)
を測定することにより流出管中を流れるスラグを検出す
ることが出来る。尚、分解能を向上する為に、1次コイ
ルは、複数の周波数の信号源(3種類の信号源)を使用
して励磁している。For example, Japanese Patent Application Laid-Open No. Sho 62-500646 discloses that a transmitting coil, a reference coil (primary coil) and a receiving coil are provided in a perforated brick or lining around an outlet pipe of a molten metal or an outflow pipe. Coil (secondary coil)
A slag detecting device is disclosed in which a slag is wound, a primary coil is excited by an AC signal, and the presence of slag is automatically detected from the voltage (and phase) generated in the receiving coil. If the coils are arranged annularly around the outflow pipe, a difference occurs in the voltage (and phase) induced in the receiving coil due to the difference in the conductivity of the substance flowing in the outflow pipe. Since the conductivity of the molten steel is significantly higher than the conductivity of the slag, when the slag is mixed in the molten steel flowing in the outflow pipe, the local conductivity of that portion is low. Therefore, the voltage (and phase) induced in the receiving coil
The slag flowing in the outflow pipe can be detected by measuring. In order to improve the resolution, the primary coil is excited by using signal sources of a plurality of frequencies (three types of signal sources).
【0005】また特開昭64−27768号公報には、
特開昭62−500646号公報のスラグ検出装置の、
検出コイルの改良が示されている。金属溶湯流出管の周
囲を環状に巻回した送信コイル,受信コイル及び基準コ
イル(測定精度上の目的で使用される)を磁性体で成る
保護外筒に収納した上で非磁性カセットに収めた検出コ
イル装置が、金属製の冶金容器底板付近に配置されてい
る。この目的は、コイル周囲の穴あきレンガ又は内張り
の交換を実施しても、コイルに対し影響が及ばない様に
するものであり、穴あきレンガ又は内張り、あるいはコ
イルカセットを各々単独で交換することが出来る。この
ため該カセットは金属製底板に接する位置に配置され
る。金属製底板付近にコイルを配置すると信号振幅の減
少及び温度ドリフトの影響が大となるので、これに対す
る配慮がなされている。この装置における各コイルの相
対的な位置は、前記特開昭62−500646号公報の
装置の場合と基本的には同様である。Japanese Patent Application Laid-Open No. 64-27768 discloses that
Japanese Patent Application Laid-Open No. Sho 62-500646 discloses a slag detection device,
An improvement in the sensing coil is shown. A transmission coil, a reception coil and a reference coil (used for the purpose of measuring accuracy) which are wound around the molten metal outflow pipe in an annular shape are housed in a protective outer cylinder made of a magnetic material, and then housed in a non-magnetic cassette. The detection coil device is arranged near the metal bottom plate of the metallurgical vessel. The purpose of this is to replace the perforated brick or lining around the coil without affecting the coil, and to replace the perforated brick or lining or the coil cassette independently. Can be done. For this reason, the cassette is arranged at a position in contact with the metal bottom plate. If the coil is arranged near the metal bottom plate, the influence of the decrease in signal amplitude and the temperature drift increases, so that consideration is given to this. The relative positions of the coils in this device are basically the same as those in the device of Japanese Patent Application Laid-Open No. 62-500646.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、特開昭
62−500646号公報の装置においては、あるいは
特開昭64−27768の装置においてもスラグ検出感
度が低いと推察される。上記の様に送信コイルの発生す
る磁束を、導電体(溶融金属)が存在するル−ト(以
下、検出ル−トと称す)を介して受信コイルで検出する
方式においては、検出ル−トの導電率変化によって生ず
る受信々号の変化分をシグナル成分(S)とし、送信コ
イルが発する磁束を、検出ル−トの外で直接受信コイル
で受信する分をノイズ成分(N)とすると、感度はS/
N比(シグナル成分レベル/ノイズ成分レベル)で表わ
される。上記の従来装置では、検出コイル装置が、送信
コイルと受信コイルが同軸で隣接する構成であるので、
送信コイルが発する励磁々束が直接受信コイルと結合
し、2次電圧を誘起させる割合が多い。すなわちノイズ
成分が多いのでS/N比が低い。However, it is presumed that the slag detection sensitivity is low in the apparatus disclosed in JP-A-62-500646 or in the apparatus disclosed in JP-A-64-27768. In the method in which the magnetic flux generated by the transmission coil is detected by the reception coil via a route (hereinafter, referred to as a detection route) in which a conductor (molten metal) exists, as described above, the detection route is used. If the change in the received signal caused by the change in the electrical conductivity is a signal component (S), and the magnetic flux generated by the transmitting coil is the noise component (N) that is directly received by the receiving coil outside the detection route, Sensitivity is S /
It is expressed by N ratio (signal component level / noise component level). In the above conventional device, the detection coil device has a configuration in which the transmission coil and the reception coil are coaxially adjacent to each other,
Excitation flux generated by the transmission coil is directly coupled to the reception coil, and a secondary voltage is often induced. That is, the S / N ratio is low because there are many noise components.
【0007】本発明は上記に鑑みて成されたものであ
り、S/N比が高い検出コイル装置を提供することを目
的とする。The present invention has been made in view of the above, and has as its object to provide a detection coil device having a high S / N ratio.
【0008】[0008]
【課題を解決するための手段】本発明の第1態様は、管
体(3)を周回する発信コイル(4)および該管体(3)を周回
する受信コイル(5)を含む検出コイル装置(3〜7)におい
て、前記管体(3)の外部かつ前記発信コイル(4)と受信コ
イル(5)の間に、発信コイル(4)が発生した磁界の受信コ
イル(5)への波及を抑制する導電体(6)を介挿したことを
特徴とする。According to a first aspect of the present invention, there is provided a detecting coil device including a transmitting coil (4) surrounding a tube (3) and a receiving coil (5) surrounding the tube (3). In (3-7), the magnetic field generated by the transmitting coil (4) is transmitted to the receiving coil (5) between the transmitting coil (4) and the receiving coil (5) outside the tube (3). Characterized in that a conductor (6) for suppressing the occurrence of an electric current is interposed.
【0009】これによれば、発信コイル(4)が発生し検
出ル−トの外で受信コイル(5)に向かう交流磁束(φ2)は
導電体(6)に当る。これにより導電体(6)に交流磁束(φ
2)と直交する方向に渦電流が流れ、該渦電流により交流
磁束(φ2)の変化(交番)を妨げる方向に磁束(φ2’)が発
生する。導電体(6)は導電率の高い材料で製作してある
ので渦電流損が少なく、従って交流磁束(φ2)と、新た
に発生する交流磁束(φ2’)とはその大きさが大略同一
となる。この様に大きさ同一で、方向が逆な磁束が発生
するので両磁束は打消し合い、電磁遮蔽を形成する。According to this, the alternating magnetic flux (φ2) generated by the transmitting coil (4) and directed to the receiving coil (5) outside the detection route hits the conductor (6). As a result, an alternating magnetic flux (φ
An eddy current flows in a direction orthogonal to (2), and the eddy current generates a magnetic flux (φ2 ′) in a direction that prevents a change (alternating) of the alternating magnetic flux (φ2). Since the conductor (6) is made of a material having high conductivity, the eddy current loss is small, and therefore, the size of the AC magnetic flux (φ2) and the newly generated AC magnetic flux (φ2 ′) are substantially the same. Become. As described above, since magnetic fluxes having the same magnitude and opposite directions are generated, the two magnetic fluxes cancel each other to form an electromagnetic shield.
【0010】したがって検出ル−ト外で発信コイル(4)
が発生する交流磁束(φ2)の、受信コイル(5)への伝播は
少い。すなわち上述のノイズレベルNが低い。Therefore, outside the detection route, the transmitting coil (4)
The propagation of the alternating magnetic flux (φ2) generated in the receiving coil (5) is small. That is, the above-mentioned noise level N is low.
【0011】一方検出ル−トの交流磁束(φ1)は受信コ
イル(5)と鎖交し、これにより交流磁束(φ1)のレベルに
対応する電圧(シグナルレベルS)が受信コイル(5)に
発生する。検出ル−トの交流磁束(φ1)は導電体(6)で遮
蔽されないので、該電圧(シグナルレベルS)は従来例
と同様なレベルとなる。したがって、ノイズレベルNが
低くなった分S/N比が向上する。On the other hand, the alternating magnetic flux (φ1) of the detection route is linked with the receiving coil (5), whereby a voltage (signal level S) corresponding to the level of the alternating magnetic flux (φ1) is applied to the receiving coil (5). Occur. Since the alternating magnetic flux (φ1) of the detection route is not shielded by the conductor (6), the voltage (signal level S) becomes the same level as in the conventional example. Therefore, the S / N ratio improves as the noise level N decreases.
【0012】しかして、従来例と同様に、検出ル−トの
導電率が変化すると、例えば溶融金属からスラグに切換
わると、溶融金属が実質上導電体であって、検出ル−ト
の交流磁束(φ1)の減衰が大きかったのに、スラグは実
質上絶縁体であって渦電流が流れにくいので交流磁束
(φ1)の減衰が小さくなり、したがって受信コイル(5)の
交流磁束(φ1)対応の誘起電圧が上昇する。また、受信
コイル(5)の電流位相が変化する。これらの変化の少く
とも一方を電気回路で監視することにより、検出コイル
部へのスラグの到来を検出しうる。上述のようにS/N
比が高いので、このスラグ到来検出精度が向上する。As in the prior art, when the conductivity of the detection route changes, for example, when the molten metal is switched to slag, the molten metal is substantially a conductor and the AC of the detection route is changed. Although the magnetic flux (φ1) was greatly attenuated, the slag was virtually an insulator and eddy currents did not easily flow.
The attenuation of (φ1) is reduced, and the induced voltage corresponding to the alternating magnetic flux (φ1) of the receiving coil (5) increases. Further, the current phase of the receiving coil (5) changes. By monitoring at least one of these changes with an electric circuit, it is possible to detect the arrival of slag to the detection coil section. S / N as described above
Since the ratio is high, the detection accuracy of the slag arrival is improved.
【0013】本発明の第2態様は、管体(3)を周回する
発信コイル(4)および該管体(3)を周回する受信コイル
(5)を含む検出コイル装置(3〜7)において、前記管体(3)
の外部かつ前記発信コイル(4)と受信コイル(5)の間に、
発信コイル(4)が発生した磁界の受信コイル(5)への波及
を抑制する強磁性体を介挿したことを特徴とする。According to a second aspect of the present invention, there is provided a transmitting coil (4) surrounding a tubular body (3) and a receiving coil surrounding a tubular body (3).
In the detection coil device (3 to 7) including (5), the tubular body (3)
Outside and between the transmitting coil (4) and the receiving coil (5),
It is characterized in that a ferromagnetic material is interposed to suppress the magnetic field generated by the transmitting coil (4) from spreading to the receiving coil (5).
【0014】この第2態様は、遮蔽用の導電体(6)の代
りに強磁性体を用いるものであり、強磁性体も発信コイ
ル(4)と受信コイル(5)との間の磁束を遮断するものであ
る。これにより、第1態様の上述の作用,効果が同様な
傾向で得られる。ただし、強磁性体は、検出ル−プの交
流磁束(φ1)を少くしたり、あるいはそれを、受信コイ
ル(5)に対してシャント(分流)させる作用もあり、その
分受信コイル(5)の感度が低下する。したがって、第1
態様の方が好ましい。In the second embodiment, a ferromagnetic material is used in place of the shielding conductor (6). The ferromagnetic material also generates a magnetic flux between the transmitting coil (4) and the receiving coil (5). It shuts off. As a result, the above-described functions and effects of the first embodiment are obtained with a similar tendency. However, the ferromagnetic material also has the effect of reducing the AC magnetic flux (φ1) of the detection loop or shunting (shunting) it to the receiving coil (5). Sensitivity is reduced. Therefore, the first
Embodiments are preferred.
【0015】本発明の第3態様は、管体(3)を周回す
る、中心半径がRの発信コイル(4)および該管体(3)を周
回する受信コイル(5)を含む検出コイル装置(3〜7)にお
いて、発信コイル(4)が発生した磁界の、管体(3)の外空
間での受信コイル(5)への波及を抑制するために、前記
発信コイル(4)の中心と受信コイル(5)の中心との距離D
を、D≧R/2としたことを特徴とする。According to a third aspect of the present invention, there is provided a detection coil device including a transmitting coil (4) having a center radius of R surrounding a tube (3) and a receiving coil (5) rotating around the tube (3). (3-7) In order to suppress the magnetic field generated by the transmitting coil (4) from spreading to the receiving coil (5) in the outer space of the tube (3), the center of the transmitting coil (4) D between the sensor and the center of the receiving coil (5)
Is set to D ≧ R / 2.
【0016】この第3態様は、遮蔽用の導電体(6)を用
いるのに代えて、発信コイル(4)と受信コイル(5)との距
離Dを大きくするものである。これにより、第1態様の
上述の作用,効果が同様な傾向で得られる。ただし、遮
蔽用の導電体(6)の厚みは比較的に小さくても遮蔽効果
が高いのに対して、空隙の場合にはそのギャップ(D)
による磁束減衰効果は低い。したがって、距離Dを、遮
蔽用の導電体(6)を用いる場合よりも大きくしなければ
ならず、D≧R/2と大きくした。In the third embodiment, the distance D between the transmitting coil (4) and the receiving coil (5) is increased instead of using the shielding conductor (6). As a result, the above-described functions and effects of the first embodiment are obtained with a similar tendency. However, even if the thickness of the shielding conductor (6) is relatively small, the shielding effect is high, whereas in the case of a void, the gap (D)
Has a low magnetic flux attenuation effect. Therefore, the distance D has to be made larger than the case where the shielding conductor (6) is used, and D is larger than R / 2.
【0017】しかし、距離Dが長くなる分、検出ル−ト
長(交流磁束φ1が通る管内距離)が長くなり、その分
検出ル−トの交流磁束(φ1)の減衰が大きくなり、信号
レベル(S)の低下をもたらす。したがって、第1態様
の方が好ましく、しかも第1態様においても、遮蔽用の
導電体(6)は、極力導電率が高いもの(例えば銅,アル
ミニュ−ム)として厚みを小さくするのが好ましい。However, as the distance D becomes longer, the detection route length (distance in the tube through which the AC magnetic flux φ1 passes) becomes longer, and the attenuation of the AC magnetic flux (φ1) of the detection route becomes larger by that amount. (S) is reduced. Therefore, the first embodiment is more preferable, and also in the first embodiment, it is preferable that the shielding conductor (6) be as thin as possible with high conductivity (eg, copper or aluminum).
【0018】また、第1態様,第2態様および第3態様
のいずれにおいても、送信コイル(4)のアンペアタ−ン
(AT)を従来よりも大きくして検出ル−トの交流磁束
(φ1)のレベルを高くし、かつ受信コイル(5)の巻数を多
くするのが好ましい。これらにより信号レベルSが上昇
し、S/N比の向上に更に貢献する。これは特に第2態
様および第3態様において好ましい。従来は送信コイル
のアンペアタ−ン数は5AT程度であり、発信コイルの
巻数n1と受信コイルの巻数n2とはn1>n2である
が、本発明の好ましい実施例では、送信コイルのアンペ
アタ−ン数n1・I1≧7AT,n1≦n2としてS/
N比を高くした。Further, in any of the first, second and third embodiments, the ampere-turn (AT) of the transmitting coil (4) is made larger than before so that the AC flux of the detection route is increased.
It is preferable to increase the level of (φ1) and increase the number of turns of the receiving coil (5). As a result, the signal level S increases, which further contributes to the improvement of the S / N ratio. This is particularly preferred in the second and third aspects. Conventionally, the number of ampere turns of the transmitting coil is about 5 AT, and the number of turns n1 of the transmitting coil and the number of turns n2 of the receiving coil are n1> n2. However, in the preferred embodiment of the present invention, the number of ampere turns of the transmitting coil is not limited. n1 / I1 ≧ 7AT, n1 ≦ n2 and S /
The N ratio was increased.
【0019】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.
【0020】[0020]
【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION
【0021】[0021]
−第1実施例− 図1に、本発明の第1実施例(上述の第1態様の一実施
例)の縦断面を示す。この図1に示す検出コイル装置
(3〜7)は、連続鋳造設備の、取鍋からタンディッシ
ュに溶融金属を供給する注湯ノズル3内へのスラグの進
入を検出する態様のものである。耐火性物質でなるノズ
ル3には、非磁性体(キュリ−点以上の温度)の溶融金
属2が流れる。ノズル3を囲むように環状で中空のケ−
シング7が配置されている。ケ−シング7は、非磁性で
導電率が比較的に低いステンレス・スチ−ル製であり、
内部空間には上部より送信コイル(励磁コイル)4,銅
製鍔状の電磁遮蔽リング6,及び受信コイル5の順で収
納されている。First Embodiment FIG. 1 shows a longitudinal section of a first embodiment of the present invention (an example of the above-described first embodiment). The detection coil devices (3 to 7) shown in FIG. 1 are of a mode of detecting slag entering into a pouring nozzle 3 for supplying molten metal from a ladle to a tundish in a continuous casting facility. A non-magnetic material (a temperature higher than the Curie point) molten metal 2 flows through a nozzle 3 made of a refractory material. An annular hollow casing surrounding the nozzle 3
Thing 7 is arranged. The casing 7 is made of stainless steel, which is non-magnetic and has relatively low conductivity.
In the internal space, a transmitting coil (exciting coil), a copper flange-shaped electromagnetic shielding ring 6, and a receiving coil 5 are housed in this order from the top.
【0022】送信コイル4と受信コイル5との間の電磁
遮蔽リング6が、ノズル3の外部においてリング6を通
過するように送信コイル4から受信コイル5に向かう磁
束(φ2)を遮断する。すなわち両コイル4,5は、ケ
−シング7では疎結合の状態にある。信号発生器21
が、所定周波数の交流信号を発生し、電力増幅器が該交
流信号を増幅した形の交流電圧を送信コイル4に印加す
る。受信コイル5に誘起する電圧は受信器23で増幅さ
れる。受信器23は、増幅した信号を、信号発生器21
が発生する交流信号を移相した信号に基づいて位相検波
して、検出ル−プ(図2のφ1ル−プ)の交流磁束φ1
対応の受信信号(S)を生成し、これをスラグ流出検出
器24に与える。スラグ流出検出器24は、受信信号
(S)のレベルおよび位相を、ノズル3の形状および材
質ならびに溶融金属の鋼種および流速対応の標準値と、
オペレ−タが設定する感度調整値に従って定められた基
準値と対比して、溶融金属からスラグへの切換わりを検
出し、これを報知する。An electromagnetic shielding ring 6 between the transmission coil 4 and the reception coil 5 blocks a magnetic flux (φ2) from the transmission coil 4 toward the reception coil 5 so as to pass through the ring 6 outside the nozzle 3. That is, the two coils 4 and 5 are in a loosely coupled state in the casing 7. Signal generator 21
Generates an AC signal of a predetermined frequency, and the power amplifier applies an AC voltage obtained by amplifying the AC signal to the transmission coil 4. The voltage induced in the receiving coil 5 is amplified by the receiver 23. The receiver 23 converts the amplified signal into a signal
Phase detection is performed on the basis of the phase-shifted signal of the AC signal generated by the detection circuit, and an AC magnetic flux φ1 of a detection loop (φ1 loop in FIG. 2) is detected.
A corresponding received signal (S) is generated and given to the slag outflow detector 24. The slag outflow detector 24 compares the level and phase of the received signal (S) with a standard value corresponding to the shape and material of the nozzle 3, the type of molten metal and the flow velocity,
Switching from molten metal to slag is detected by comparing with a reference value determined according to a sensitivity adjustment value set by an operator, and this is reported.
【0023】図2に、図1に示す送信コイル4,受信コ
イル5及び電磁遮蔽リング6の電磁結合の状態を模式的
に示す。送信コイル4は、それを取巻く交流磁束φ1
(検出ル−トの磁束)およびφ2(検出ル−トを外れる
磁束)を発生する。検出ル−トを外れる磁束φ2は導電
体で成る電磁遮蔽リング6にぶつかって電磁遮蔽リング
6中に渦電流を流す。該渦電流によって発生する磁束φ
2’は、磁束φ2と大きさ大略同一、方向反対であり両
磁束は相殺されるので、磁束φ2は受信コイル4には実
質上到達しない。すなわち電磁遮蔽リング6で遮断され
る。FIG. 2 schematically shows a state of electromagnetic coupling between the transmission coil 4, the reception coil 5 and the electromagnetic shielding ring 6 shown in FIG. The transmitting coil 4 has an AC magnetic flux φ1 surrounding it.
(Magnetic flux of the detection route) and φ2 (magnetic flux deviating from the detection route). The magnetic flux .phi.2 deviating from the detection route hits the electromagnetic shielding ring 6 made of a conductive material, and an eddy current flows through the electromagnetic shielding ring 6. Magnetic flux φ generated by the eddy current
2 ′ is substantially the same size and opposite direction as the magnetic flux φ2, and the two magnetic fluxes cancel each other, so that the magnetic flux φ2 does not substantially reach the receiving coil 4. That is, it is cut off by the electromagnetic shielding ring 6.
【0024】検出ル−トのφ1は、ノズル3内の溶融金
属2を通り、そして受信コイル5,リング6および送信
コイル4の外側を通るように、受信コイル5を周回す
る。すなわち受信コイル5と結合しており、受信コイル
5に2次電圧を誘起する。ただし、溶融金属2は導電体
であるので、ノズル3内が溶融金属2で満ちているとき
には、検出ル−トのφ1は溶融金属2で大きく減衰さ
れ、したがって、受信器23が出力する受信信号(S)
のレベルは低い。該検出ル−トにスラグが進入すると、
スラグは実質上絶縁体であるのでそれによる磁束減衰が
少く、受信器23が出力する受信信号(S)のレベルが
上昇する。また受信信号(S)の位相が変化する。The detection route φ1 goes around the reception coil 5 so as to pass through the molten metal 2 in the nozzle 3 and pass outside the reception coil 5, the ring 6 and the transmission coil 4. That is, it is coupled to the receiving coil 5 and induces a secondary voltage in the receiving coil 5. However, since the molten metal 2 is a conductor, when the inside of the nozzle 3 is filled with the molten metal 2, the detection route φ1 is greatly attenuated by the molten metal 2, so that the reception signal output by the receiver 23 is output. (S)
Level is low. When slag enters the detection route,
Since the slug is substantially an insulator, there is little magnetic flux attenuation, and the level of the reception signal (S) output from the receiver 23 rises. Also, the phase of the received signal (S) changes.
【0025】ここで受信コイル5に誘起する電圧e2
は、e2∝dB/dt∝ωB であり、また B=B1+BE ・・・・・・・(1) BE=BYK+BSG・・・・・(2) である。但しBは受信コイルに結合する磁束密度.B1
は送信コイル4から直接受信コイル5に結合する磁束密
度.BEはノズルを経由して受信コイル5に結合する磁
束密度.BYKはノズル中に溶融金属のみ存在する時の
透磁率に従った磁束密度.BSGはノズル中にスラブが
存在する時の透磁率に従った磁束密度.である。Here, the voltage e2 induced in the receiving coil 5
Is e2∝dB / dt∝ωB, and B = B1 + BE (1) BE = BYK + BSG (2) Where B is the magnetic flux density coupled to the receiving coil. B1
Is the magnetic flux density directly coupled from the transmitting coil 4 to the receiving coil 5. BE is the magnetic flux density coupled to the receiving coil 5 via the nozzle. BYK is the magnetic flux density according to the magnetic permeability when only molten metal is present in the nozzle. BSG is the magnetic flux density according to the magnetic permeability when a slab exists in the nozzle. It is.
【0026】スラグ検出感度SNSは、 SNS=(BYK−BSG)/(B1+BYK)・・・・・(3) であるので、若しB1(送信コイル4から直接受信コイ
ル5に結合する磁束密度)が大であると(3)式の分母
が大となりスラグ検出感度SNSは低下し、逆にB1が
小であるとスラグ検出感度SNSは高くなる。Since the slag detection sensitivity SNS is SNS = (BYK−BSG) / (B1 + BYK) (3), if B1 (magnetic flux density directly coupled from the transmitting coil 4 to the receiving coil 5) Is large, the denominator of the equation (3) becomes large, and the slag detection sensitivity SNS decreases. Conversely, if B1 is small, the slag detection sensitivity SNS increases.
【0027】前述の様に、この第1実施例では、送信コ
イル4と受信コイル5の間に電磁遮蔽リング6を介挿し
て両者間を疎結合としてあるのでB1は小であり、スラ
グ検出感度SNSが高い。電磁遮蔽リング6は2×10
6S/m以上の導電率を持つ銅板から製作した。As described above, in the first embodiment, B1 is small because the electromagnetic shielding ring 6 is interposed between the transmission coil 4 and the reception coil 5 and the two are loosely coupled, and the slag detection sensitivity is small. SNS is high. Electromagnetic shielding ring 6 is 2 × 10
It was manufactured from a copper plate having a conductivity of 6 S / m or more.
【0028】表1に、図1に示す送信コイル4と受信コ
イル5の間の空間(電磁遮蔽リング6の専有空間部)
を、空気,ステンレス・スチ−ル(SUS)及び銅とし
た時の比較を示す。励磁信号は周波数500Hzのサイ
ン波である。Table 1 shows the space between the transmitting coil 4 and the receiving coil 5 shown in FIG. 1 (the exclusive space of the electromagnetic shielding ring 6).
Is a comparison when air, stainless steel (SUS) and copper are used. The excitation signal is a sine wave having a frequency of 500 Hz.
【0029】[0029]
【表1】 [Table 1]
【0030】表1に於いて、波高値(=最大値/実効
値)の変化分Δkは、 Δk=[(ノズル内がスラグの時の2次電圧の波高値) −(ノズル内が溶融金属の時の2次電圧の波高値)] ÷(ノズル内が空気の時の2次電圧の波高値) ・・・(4) であり、また位相差Δpは、 Δp=(ノズル内がスラグの時の2次電圧の位相) −(ノズル内が溶融金属の時の2次電圧の位相) ・・・(5) である。In Table 1, the change Δk in the peak value (= maximum value / effective value) is Δk = [(peak value of the secondary voltage when the inside of the nozzle is slag) − (molten metal in the nozzle (Peak value of the secondary voltage when the nozzle is air)] ÷ (peak value of the secondary voltage when the inside of the nozzle is air) (4), and the phase difference Δp is: Phase of secondary voltage at the time)-(phase of secondary voltage at the time of molten metal inside the nozzle) (5).
【0031】表1に示すように、送信コイル4と受信コ
イル5との間の空間(電磁遮蔽リング6)に何れの材質
を使用しても、ノズル内を流れる物質(溶融金属、ある
いはスラグ)の差に従った受信コイル側での波高値の変
化分Δk、あるいは位相差Δpを検知することが出来る
が、該材質にステンレス・スチ−ル(SUS)あるいは
銅を使用した場合の方が波高値の変化分Δk、また位相
差Δpは大となる。該結果より、本実施例における電磁
遮蔽リング6には、2×106S/m以上の導電率を持
つ銅板を使用した。しかし、該材料にステンレス・スチ
−ル(SUS),あるいは銅を使用した場合は受信コイ
ルに誘起する2次電圧が非常に小さな値になる。これは
送信コイル4と受信コイル5を疎結合としたことに加
え、送信コイル4と受信コイル5の間に電磁遮蔽リング
6を設けたことにより、上記(2)式のBE(BE=B
YK+BSG)が小さくなるためである。As shown in Table 1, no matter which material is used for the space between the transmitting coil 4 and the receiving coil 5 (electromagnetic shielding ring 6), the substance (molten metal or slag) flowing in the nozzle. Of the peak value on the receiving coil side or the phase difference Δp on the receiving coil side according to the difference between the two can be detected. However, when stainless steel (SUS) or copper is used as the material, The change Δk of the high value and the phase difference Δp are large. From the results, a copper plate having a conductivity of 2 × 10 6 S / m or more was used for the electromagnetic shielding ring 6 in this example. However, when stainless steel (SUS) or copper is used as the material, the secondary voltage induced in the receiving coil becomes a very small value. This is because the transmission coil 4 and the reception coil 5 are loosely coupled, and the electromagnetic shielding ring 6 is provided between the transmission coil 4 and the reception coil 5, so that BE (BE = B
This is because (YK + BSG) becomes smaller.
【0032】そこで送信コイル4と受信コイル5のアン
ペア・タ−ン(AT)を大きくして磁束密度を高くして
レベル低下に対処している。すなわち送信コイル4の巻
数n1,電流I1,及び受信コイル5の巻数n2とした
場合に、アンペア・タ−ン(AT)をn1×I1≧7A
T,n1≦n2として、スラグ検出感度を高くした。Therefore, the ampere turn (AT) of the transmitting coil 4 and the receiving coil 5 is increased to increase the magnetic flux density to cope with the level decrease. That is, when the number of turns n1 of the transmission coil 4 is 1, the current I1, and the number of turns n2 of the reception coil 5, the ampere turn (AT) is n1 × I1 ≧ 7A.
T, n1 ≦ n2, the slag detection sensitivity was increased.
【0033】アンペア・タ−ン(AT)を大とすると当
然B1も増加するがB1の増化分よりも信号成分である
BYK,及びBSGの増加分の方が大きいので結果的に
はスラグ検出感度を高くすることが出来る。When the ampere turn (AT) is increased, B1 naturally increases. However, since the increase of BYK and BSG, which are signal components, is larger than the increase of B1, slag is detected as a result. Sensitivity can be increased.
【0034】スラグ流出検知器24に前述の(5)式を
使用して位相差Δp(deg)からスラグ含有量を算出
してもよい。計算に使用する(ノズル内がスラグの時の
2次電圧の位相),及び(ノズル内が溶融金属の時の2
次電圧の位相)は、あらかじめ実験により求めておく。The slag content may be calculated from the phase difference Δp (deg) by using the above equation (5) for the slag outflow detector 24. Used for calculation (phase of secondary voltage when slag is inside the nozzle) and (2 when phase is molten metal inside the nozzle)
The phase of the next voltage) is obtained in advance by an experiment.
【0035】−第2実施例− 第2実施例(上述の第2態様の一実施例)は、電磁遮蔽
リング6を強磁性体に変換するものであり、図面表記上
は図1と同等となるので、図示は省略したが、この実施
例は、第1実施例の電磁遮蔽リング6をそれと同様な形
状の強磁性体板とし、送信コイル4の巻数n1,電流I
1及び受信コイル5の巻数n2とした場合に、アンペア
・タ−ン(AT)をn1×I1≧7AT,n2=1.2n1と
したものである。その他の構成は第1実施例と同様であ
る。-Second Embodiment- A second embodiment (an embodiment of the second aspect described above) converts the electromagnetic shielding ring 6 to a ferromagnetic material, and is equivalent in drawing notation to FIG. In this embodiment, the electromagnetic shielding ring 6 of the first embodiment is a ferromagnetic plate having the same shape as the first embodiment, and the number of turns n1 of the transmission coil 4 and the current I
1 and the number of turns n2 of the receiving coil 5, the ampere turn (AT) is n1 × I1 ≧ 7AT, n2 = 1.2n1. Other configurations are the same as in the first embodiment.
【0036】−第3実施例− 図3に、第3実施例(上述の第3態様の一実施例)の縦
断面を示す。この実施例は、第1実施例の電磁遮蔽リン
グ6を削除し、送信コイル4と受信コイル5との中心間
距離Dを1.2R/2としたものである。Rは、送,受信
コイル4,5の中心半径である。送信コイル4の巻数n
1,電流I1及び受信コイル5の巻数n2とした場合
に、アンペア・タ−ン(AT)をn1×I1≧7AT,n2
=1.2n1としたものである。その他の構成は第1実施
例と同様である。Third Embodiment FIG. 3 shows a longitudinal section of a third embodiment (an embodiment of the third aspect described above). In this embodiment, the electromagnetic shielding ring 6 of the first embodiment is omitted, and the center distance D between the transmitting coil 4 and the receiving coil 5 is set to 1.2 R / 2. R is the center radius of the sending and receiving coils 4 and 5. Number of turns n of transmission coil 4
1, when the current I1 and the number of turns n2 of the receiving coil 5 are set, the ampere turn (AT) is n1 × I1 ≧ 7AT, n2
= 1.2n1. Other configurations are the same as in the first embodiment.
【図1】 本発明の第1実施例の構成を示す縦断面図で
ある。FIG. 1 is a longitudinal sectional view showing a configuration of a first embodiment of the present invention.
【図2】 図1に示す検出コイル装置(3〜7)送信コ
イル4と受信コイル5の磁気的結合の状態を示す、縦断
面図相当の模式図である。FIG. 2 is a schematic diagram corresponding to a longitudinal sectional view showing a state of magnetic coupling between a transmission coil 4 and a reception coil 5 of the detection coil devices (3 to 7) shown in FIG.
【図3】 本発明の第3実施例の構成を示す縦断面図で
ある。FIG. 3 is a longitudinal sectional view showing the configuration of a third embodiment of the present invention.
1:スラグ 2:溶融金属 3:溶融金属ノズル(耐火性) 4:送信コイル 5:受信コイル 6:電磁遮蔽リン
グ 7:ケ−シング1: Slag 2: Molten metal 3: Molten metal nozzle (fire resistance) 4: Transmitting coil 5: Receiving coil 6: Electromagnetic shielding ring 7: Casing
Claims (5)
周回する受信コイルを含む検出コイル装置において、前
記管体の外部かつ前記発信コイルと受信コイルの間に、
発信コイルが発生した磁界の受信コイルへの波及を抑制
する導電体を介挿したことを特徴とする検出コイル装
置。1. A detection coil device including a transmitting coil circling a tube and a receiving coil circling the tube, wherein a detecting coil device is provided outside the tube and between the transmitting coil and the receiving coil.
A detection coil device comprising a conductor interposed to suppress a magnetic field generated by a transmission coil from spreading to a reception coil.
周回する受信コイルを含む検出コイル装置において、前
記管体の外部かつ前記発信コイルと受信コイルの間に、
発信コイルが発生した磁界の受信コイルへの波及を抑制
する強磁性体を介挿したことを特徴とする検出コイル装
置。2. A detection coil device including a transmission coil circling a tube and a reception coil circling the tube, wherein a detection coil device is provided outside the tube and between the transmission coil and the reception coil.
A detection coil device including a ferromagnetic material that suppresses the transmission of a magnetic field generated by a transmission coil to a reception coil.
ルおよび該管体を周回する受信コイルを含む検出コイル
装置において、発信コイルが発生した磁界の、管体の外
空間での受信コイルへの波及を抑制するために、前記発
信コイルの中心と受信コイルの中心との距離Dを、D≧
R/2としたことを特徴とする検出コイル装置。3. A detection coil device including a transmitting coil having a center radius of R and a receiving coil circling the tube, receiving a magnetic field generated by the transmitting coil in an outer space of the tube. In order to suppress the influence on the coil, the distance D between the center of the transmitting coil and the center of the receiving coil is set as D ≧
A detection coil device characterized by R / 2.
ある、請求項1,請求項2又は請求項3記載の検出コイ
ル装置。4. The detection coil device according to claim 1, wherein the tube is a nozzle for injecting a molten metal into a mold.
電流実効値をI1、及び受信コイルの巻数をn2とした
場合、n1×I1≧7AT、n1≦n2である、請求項
1,請求項2,請求項3又は請求項4記載の検出コイル
装置。5. When the number of turns of the transmitting coil is n1, the effective current value of the alternating current is I1, and the number of turns of the receiving coil is n2, n1 × I1 ≧ 7AT and n1 ≦ n2. The detection coil device according to claim 2, 3, or 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16707996A JPH105958A (en) | 1996-06-27 | 1996-06-27 | Detection coil device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16707996A JPH105958A (en) | 1996-06-27 | 1996-06-27 | Detection coil device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH105958A true JPH105958A (en) | 1998-01-13 |
Family
ID=15843020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16707996A Ceased JPH105958A (en) | 1996-06-27 | 1996-06-27 | Detection coil device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH105958A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1486271A1 (en) * | 2003-06-13 | 2004-12-15 | MPC Metal Process Control AB | A method and a device for detecting slag |
EP1486272A1 (en) * | 2003-06-13 | 2004-12-15 | MPC Metal Process Control AB | A method and a device for detecting slag |
JP2008256664A (en) * | 2007-04-09 | 2008-10-23 | Diesel United:Kk | Electric conductor concentration measuring apparatus and method |
CN109996622A (en) * | 2016-11-29 | 2019-07-09 | 里弗雷克特里知识产权两合公司 | For detecting the method and mechanism that outpour the parameter in portion in the container of metallurgy |
-
1996
- 1996-06-27 JP JP16707996A patent/JPH105958A/en not_active Ceased
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1486271A1 (en) * | 2003-06-13 | 2004-12-15 | MPC Metal Process Control AB | A method and a device for detecting slag |
EP1486272A1 (en) * | 2003-06-13 | 2004-12-15 | MPC Metal Process Control AB | A method and a device for detecting slag |
WO2004110675A1 (en) * | 2003-06-13 | 2004-12-23 | Mpc Metal Process Control Ag | A method and a device for detecting slag |
WO2004110676A1 (en) * | 2003-06-13 | 2004-12-23 | Mpc Metal Process Control Ab | A method and a device for detecting slag |
US7639150B2 (en) | 2003-06-13 | 2009-12-29 | Mpc Metal Process Control Ag | Method and a device for detecting slag |
JP2008256664A (en) * | 2007-04-09 | 2008-10-23 | Diesel United:Kk | Electric conductor concentration measuring apparatus and method |
CN109996622A (en) * | 2016-11-29 | 2019-07-09 | 里弗雷克特里知识产权两合公司 | For detecting the method and mechanism that outpour the parameter in portion in the container of metallurgy |
CN109996622B (en) * | 2016-11-29 | 2022-03-29 | 里弗雷克特里知识产权两合公司 | Method and device for detecting a variable in a spout of a metallurgical vessel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2574655B2 (en) | Electromagnetic flow meter type detector | |
CA1270917A (en) | Method and apparatus for detecting slag in a flowing molten metal | |
KR970000376B1 (en) | Device for detecting slag of molten metal | |
US4212342A (en) | Method and apparatus for regulating the bath level of a continuous casting mold | |
US4279149A (en) | Process for measuring the level of metal in vessels, especially in continuous casting molds | |
JP2571330B2 (en) | Method and apparatus for measuring dielectric at metal strip position | |
JP2006292763A (en) | Device for measuring current | |
JPH105958A (en) | Detection coil device | |
JP6524849B2 (en) | Method and apparatus for measuring flow rate of molten steel in immersion nozzle, tundish for continuous casting and continuous casting method for multi-layer slab | |
JPH05505469A (en) | Device for inductively measuring the flow state of conductive liquid | |
RU2356684C2 (en) | Device for detection of slag content in molten metal stream | |
JP2018114548A (en) | Method and apparatus for measuring molten-steel flow rate in immersion nozzle, continuous casting tundish, and method for continuously casting bilayer cast piece | |
JPH11248517A (en) | Molten metal level detector | |
JPH11304566A (en) | Method and device for detecting level of molten steel in immersion nozzle of continuous casting | |
JPH08211083A (en) | Method and device for measuring flow velocity | |
JP3575264B2 (en) | Flow velocity measuring method and device | |
EP2603336B1 (en) | Device to detect the level of liquid metal in a casting apparatus and relative method | |
US5334935A (en) | Apparatus and method for detecting weak magnetic fields having a saturable core shaped to cancel magnetic fields parallel to the core | |
JPH07276018A (en) | Method for detecting fluid condition of molten steel in nozzle | |
JPH08211085A (en) | Flow velocity measuring device | |
JP2000162227A (en) | Method and apparatus for measurement of flow velocity | |
JP3163610B2 (en) | Electromagnetic flow meter | |
EP2379248B1 (en) | A continuous casting device | |
US20240344857A1 (en) | Flow rate measurement system | |
JPH08327647A (en) | Current velocity measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20040316 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A045 | Written measure of dismissal of application |
Effective date: 20040722 Free format text: JAPANESE INTERMEDIATE CODE: A045 |