JPH1058720A - Method and device for thermally transferring recording - Google Patents

Method and device for thermally transferring recording

Info

Publication number
JPH1058720A
JPH1058720A JP21563696A JP21563696A JPH1058720A JP H1058720 A JPH1058720 A JP H1058720A JP 21563696 A JP21563696 A JP 21563696A JP 21563696 A JP21563696 A JP 21563696A JP H1058720 A JPH1058720 A JP H1058720A
Authority
JP
Japan
Prior art keywords
light
recording
scanning direction
pixel
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21563696A
Other languages
Japanese (ja)
Inventor
Tsutomu Ishii
努 石井
Haruo Harada
陽雄 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP21563696A priority Critical patent/JPH1058720A/en
Publication of JPH1058720A publication Critical patent/JPH1058720A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for thermally transferring recording capable of executing high quality intermediate gradation recording by utilizing a light emission device array wherein a plurality of light emission devices are juxtaposed in a main scanning direction. SOLUTION: A plurality of light emission devices each of which has a length in a sub-scanning direction is longer than a recording pixel are juxtaposed in a main scanning direction. The emission light generated by applying a voltage pulse to each of the light emission devices 1a is passed through an optical lens 2 capable of collecting the light in the sub-scanning direction to be made the collected light of which length in the sub-scanning direction is shorter than the recording pixel and to be emitted on an ink donor film 10. A voltage is repeatedly applied to the light emission device 1a so that the collected light is repeatedly emitted on a region to be melted on the ink donor film 10 in accordance with density data of each pixel and the ink donor film 10 is conveyed. The ink donor film 10 is intermittently conveyed by an interval shorter than the length of the recording pixel in the sub-scanning direction. An area of a dot in the recording pixel is varied to represent the intermediate gradation density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の発光素子を
主走査方向に並設した発光素子アレイを用い、各発光素
子において生じる発光光をインクドナ−フィルム上に照
射して中間調記録を行う熱転写記録方法及び熱転写記録
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a light emitting element array in which a plurality of light emitting elements are arranged side by side in the main scanning direction, and radiates light emitted from each light emitting element onto an ink donor film to perform halftone recording. The present invention relates to a thermal transfer recording method and a thermal transfer recording device.

【0002】[0002]

【従来の技術】従来、熱転写記録による中間調記録方式
としては、サ−マルヘッドを用いた昇華型熱転写記録と
溶融型熱転写記録が存在する。昇華型熱転写記録は、サ
−マルヘッドの発熱素子に大きなエネルギーを印加する
必要があるため印字時間がかかり、また、特殊紙を用い
るためコストが高い等の問題があった。
2. Description of the Related Art Conventionally, as a halftone recording system using thermal transfer recording, there are a sublimation type thermal transfer recording using a thermal head and a fusion type thermal transfer recording. The sublimation type thermal transfer recording has a problem that it takes a long time to print because large energy needs to be applied to the heat generating element of the thermal head, and the cost is high because special paper is used.

【0003】一方、溶融型熱転写記録は、小さなエネル
ギーで印字できコストも安いが、インクドナーフィルム
上のインクの転写は、発熱素子への印加エネルギーを変
化させても階調を再現できないため多階調記録が困難で
あり、ディザ法等のマトリックス法や、副走査分割法、
熱集中法等、発熱領域を小さくして多階調を再現する方
式が提案されている。例えば、副走査分割法は、副走査
方向長が主走査方向長より短い発熱素子を複数配置した
サ−マルヘッドを用い、各記録画素の濃度に応じて対応
する発熱素子への通電時間を制御するとともに、インク
ドナ−フィルム及び記録紙を記録画素の副走査方向長よ
り短い間隔で間欠搬送することにより、中間調を再現す
るものである(特開昭60−248074号公報、特開
平3−219969号公報参照)。
[0003] On the other hand, fusion type thermal transfer recording can be printed with small energy and is inexpensive, but the transfer of ink on an ink donor film cannot reproduce gradation even if the energy applied to the heating element is changed. Key recording is difficult, matrix method such as dither method, sub-scanning division method,
A method of reproducing multiple gradations by reducing the heat generation region, such as a heat concentration method, has been proposed. For example, the sub-scanning division method uses a thermal head in which a plurality of heating elements whose length in the sub-scanning direction is shorter than the length in the main scanning direction, and controls the energization time to the corresponding heating element according to the density of each recording pixel. In addition, halftones are reproduced by intermittently conveying an ink donor film and recording paper at intervals shorter than the length of recording pixels in the sub-scanning direction (Japanese Patent Application Laid-Open Nos. 60-248074 and 3-219969). Gazette).

【0004】しかし、上記副走査分割法において良好な
階調特性を得るため発熱素子を副走査方向に微細化する
と、抵抗値バラツキの影響が大きくなり、特にハイライ
ト部分の再現性に問題を生じる。また、製造上の信頼性
の点からも発熱素子の微細化には限界がある。
However, when the heating element is miniaturized in the sub-scanning direction in order to obtain good gradation characteristics in the above-described sub-scanning division method, the influence of resistance value variation increases, and a problem arises particularly in the reproducibility of a highlight portion. . In addition, there is a limit to miniaturization of the heating element from the viewpoint of manufacturing reliability.

【0005】上記サ−マルヘッドの微細化によって発熱
領域の面積を変化させる方法に代えて、レ−ザ−光をイ
ンクドナ−フィルム上に照射し、発熱領域を微小化する
装置が提案されているが、光学系による装置の大型化、
主走査方向への光源走査による印字速度の低下などの問
題点がある(特開昭59−143657号公報参照)。
[0005] Instead of the method of changing the area of the heat generating area by miniaturizing the thermal head, an apparatus has been proposed in which the heat generating area is miniaturized by irradiating a laser beam onto the ink donor film. , Enlargement of equipment by optical system,
There are problems such as a reduction in printing speed due to light source scanning in the main scanning direction (see JP-A-59-143657).

【0006】また、電子写真方式においては、感光体上
の発熱領域を微小化する方法として、複数の発光ダイオ
−ド(以後、LEDという)からなるLEDアレイにお
いて発生させた光を、レンズを通過させることにより副
走査方向に集光して感光体に照射し、発熱領域の副走査
方向長を記録画素より小さくするとともに、各記録画素
の濃度に応じてLEDの照射時間を制御し印字面積を変
化させて中間調を表現する電子写真記録装置が提案され
ている(特開平1−217476号公報参照)。
In the electrophotographic method, as a method of miniaturizing a heat generating area on a photoreceptor, light generated in an LED array including a plurality of light emitting diodes (hereinafter, referred to as LEDs) passes through a lens. By condensing light in the sub-scanning direction and irradiating it to the photoconductor, the length of the heating area in the sub-scanning direction is made smaller than that of the recording pixels, and the irradiation time of the LED is controlled according to the density of each recording pixel to reduce the printing area. There has been proposed an electrophotographic recording apparatus that expresses a halftone by changing the tone (see JP-A-1-217476).

【0007】[0007]

【発明が解決しようとする課題】しかし、熱転写記録に
おいては、固体化した熱溶融性インクを溶融させて記録
紙に転写させるため、感光体を溶融させる場合に比べて
非常に大きなエネルギ−を必要とする。このため、上記
電子写真記録装置の各LEDの発光エネルギ−は、熱転
写記録において熱溶融性インクを溶融するために必要な
エネルギ−(中間調記録の場合10mW程度)に対して
2〜3桁程度小さい。従って、上記電子写真記録装置に
おけるLEDアレイの発光光を感光体に照射して中間調
を表現する方法を、直ちに熱転写記録には適用できない
という問題点があった。
However, in the thermal transfer recording, since the solidified heat-fusible ink is melted and transferred to the recording paper, much larger energy is required as compared with the case where the photoreceptor is melted. And For this reason, the emission energy of each LED of the electrophotographic recording apparatus is about two to three orders of magnitude of the energy required for melting the hot-melt ink in thermal transfer recording (about 10 mW in the case of halftone recording). small. Therefore, there has been a problem that the method of expressing halftone by irradiating the photoconductor with light emitted from the LED array in the above electrophotographic recording apparatus cannot be immediately applied to thermal transfer recording.

【0008】本発明は上記実情に鑑み、複数の発光素子
を主走査方向に並設した発光素子アレイを用い、各発光
素子の発光光がインクドナ−フィルム上に塗布した熱溶
融性インクを溶融可能となるよう照射するとともに、高
品質な中間調記録を行うことができる熱転写記録方法及
び熱転写記録装置を提供することを目的とする。
In view of the above circumstances, the present invention uses a light emitting element array in which a plurality of light emitting elements are arranged side by side in the main scanning direction, and the emitted light of each light emitting element can melt the hot-melt ink applied on the ink donor film. It is an object of the present invention to provide a thermal transfer recording method and a thermal transfer recording apparatus capable of performing high-quality halftone recording while irradiating so as to achieve the above.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
請求項1の熱転写記録方法は、副走査方向長が記録画素
より長い発光素子を主走査方向に複数並設し、前記各発
光素子に電圧パルスを印加することにより生じる発光光
を、副走査方向に集光可能な光学レンズを通過させるこ
とにより副走査方向長が記録画素より短い集光光とし
て、熱溶融性インクを塗布したインクドナ−フィルム上
に照射し、前記インクドナ−フィルム上の各画素の濃度
デ−タに応じて溶融されるべき領域に対して前記集光光
が繰り返し照射されるよう、前記発光素子に繰り返し電
圧を印加するとともに前記インクドナ−フィルムを搬送
し、さらに、前記インクドナ−フィルムの搬送は、記録
画素の副走査方向長より短い間隔を単位とする間欠搬送
とし、前記各画素の濃度デ−タに応じて溶融された前記
熱溶融性インクを記録紙に転写させ、各記録画素中のド
ットの面積を変化させて中間調記録を行うことを特徴と
している。
According to a first aspect of the present invention, there is provided a thermal transfer recording method, wherein a plurality of light emitting elements each having a length in the sub-scanning direction longer than a recording pixel are arranged in the main scanning direction. An ink donor coated with hot-melt ink as condensed light having a length in the sub-scanning direction shorter than a recording pixel by passing light emitted by applying a voltage pulse through an optical lens capable of condensing in the sub-scanning direction. A voltage is repeatedly applied to the light emitting element so that the condensed light is repeatedly irradiated to a region to be melted according to the density data of each pixel on the ink donor film. The ink donor film is transported together, and the transport of the ink donor film is intermittent transport in units of an interval shorter than the length of the recording pixel in the sub-scanning direction, and each pixel is transported intermittently. Dode - is characterized in that the heat-meltable ink which is melted in accordance with the data is transferred to the recording sheet, by changing the area of the dots in each recording pixel performs halftone recording.

【0010】請求項2の熱転写記録装置は、以下の各構
成を備えたことを特徴としている。副走査方向長が記録
画素より長い発光素子を主走査方向に複数並設した発光
素子アレイ。前記各発光素子に対応画素の濃度デ−タに
応じた回数の電圧パルスを印加することにより各発光素
子の生じる発光回数を制御する駆動手段。前記各発光素
子の発光面側に配置され、前記発光光を副走査方向に集
光し、反発光素子側に配置される熱溶融性インクを塗布
したインクドナ−フィルム上に、副走査方向長が記録画
素より短い集光光として照射する光学レンズ。前記イン
クドナ−フィルムを、記録画素の副走査方向長より短い
間隔を単位とする間欠搬送するとともに、前記インクド
ナ−フィルム上の各画素の濃度デ−タに応じて溶融され
るべき領域に対して前記集光光が繰り返し照射されるよ
う搬送する搬送手段。そして、前記各画素の濃度デ−タ
に応じて溶融された熱溶融性インクが記録紙に転写さ
れ、各記録画素中のドットの面積変化により中間調記録
を行う。
According to a second aspect of the present invention, there is provided a thermal transfer recording apparatus including the following components. A light emitting element array in which a plurality of light emitting elements each having a length in the sub-scanning direction longer than a recording pixel are arranged in parallel in the main scanning direction. Driving means for controlling the number of times of light emission of each light emitting element by applying a voltage pulse of a number corresponding to the density data of the corresponding pixel to each light emitting element. Arranged on the light emitting surface side of each light emitting element, condenses the emitted light in the sub-scanning direction, and has a sub-scanning direction length on an ink donor film coated with a heat-meltable ink disposed on the anti-light emitting element side. An optical lens that irradiates as condensed light shorter than the recording pixels. The ink donor film is intermittently transported in units of intervals shorter than the length of the recording pixels in the sub-scanning direction, and the region to be melted according to the density data of each pixel on the ink donor film is described above. Conveying means for conveying the condensed light repeatedly. Then, the heat-meltable ink melted in accordance with the density data of each pixel is transferred to the recording paper, and halftone recording is performed by changing the area of the dot in each recording pixel.

【0011】請求項3の熱転写記録装置は、請求項2に
記載の熱転写記録装置において、前記光学レンズは副走
査方向の断面形状が前記発光素子側を底辺とする半円状
をなすことを特徴としている。
According to a third aspect of the present invention, in the thermal transfer recording apparatus according to the second aspect, the optical lens has a semicircular cross section in the sub-scanning direction with the light emitting element side as a base. And

【0012】請求項4の熱転写記録装置は、請求項2ま
たは請求項3に記載の熱転写記録装置において、前記各
発光素子は発光ダイオ−ドからなることを特徴としてい
る。
According to a fourth aspect of the present invention, in the thermal transfer recording apparatus according to the second or third aspect, each of the light emitting elements comprises a light emitting diode.

【0013】請求項5の熱転写記録装置は、請求項2ま
たは請求項3に記載の熱転写記録装置において、前記各
発光素子はレ−ザ−ダイオ−ドからなることを特徴とし
ている。
According to a fifth aspect of the present invention, there is provided a thermal transfer recording apparatus according to the second or third aspect, wherein each of the light emitting elements comprises a laser diode.

【0014】上記熱転写記録方法及び熱転写記録装置に
よれば、記録画素よりも面積の大きな発光素子において
生じた発光光を、副走査方向長が記録画素より短くなる
よう集光し、エネルギ−密度を上昇させた集光光として
インクドナ−フィルム上に照射するので、エネルギ−密
度が高く微小面積の発熱領域をインクインクドナ−フィ
ルム上に形成することができる。そして、電圧パルス数
及びインクドナ−フィルムの搬送を制御し、インクドナ
−フィルム上の溶融されるべき領域に繰り返し集光光を
照射させるので、集光光照射部分のエネルギ−密度をさ
らに上昇させて、熱溶融性インクを確実に溶融させて記
録紙に転写することができる。さらに、インクドナ−フ
ィルムを記録画素の副走査方向長より短い間隔を単位と
する間欠搬送して、微小面積の集光光照射領域を移動さ
せるので、各画素の濃度デ−タに応じて記録画素中のド
ットの面積を段階的に変化させて中間調記録を行うこと
ができる。
According to the thermal transfer recording method and the thermal transfer recording apparatus, light emitted from a light emitting element having a larger area than the recording pixel is condensed so that the length in the sub-scanning direction is shorter than that of the recording pixel, and the energy density is reduced. Since the raised condensed light is irradiated onto the ink donor film, a heat generation region having a high energy density and a small area can be formed on the ink ink donor film. Then, the number of voltage pulses and the conveyance of the ink donor film are controlled, and the area to be melted on the ink donor film is repeatedly irradiated with the condensed light, so that the energy density of the condensed light irradiation part is further increased, The hot-melt ink can be reliably melted and transferred to recording paper. Further, since the ink donor film is intermittently transported in units of intervals shorter than the length of the recording pixels in the sub-scanning direction to move the condensed light irradiation area having a small area, the recording pixels are adjusted according to the density data of each pixel. Halftone printing can be performed by changing the area of the middle dot stepwise.

【0015】[0015]

【発明の実施の形態】以下、本発明に係る熱転写記録方
法について、図1〜図3を参照しながら説明する。図1
は、発光素子において生じた発光光がインクドナ−フィ
ルム上に照射される様子を示す副走査方向断面図であ
る。発光素子1aは発光面がインクドナ−フィルム10
と対向するように距離Lを存して配置されており、両者
間には、副走査方向の断面形状が発光素子1a側を底辺
とする半円状をなす光学レンズ2が配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A thermal transfer recording method according to the present invention will be described below with reference to FIGS. FIG.
FIG. 4 is a sectional view in the sub-scanning direction showing a state in which light emitted from a light emitting element is irradiated onto an ink donor film. The light emitting surface of the light emitting element 1a is an ink donor film 10.
The optical lens 2 having a semicircular cross section in the sub-scanning direction with the light emitting element 1a side as the base is disposed between them.

【0016】発光素子1aは、主走査方向(紙面表裏方
向)に複数並設されて発光素子アレイ1を形成してお
り、光学レンズ2は主走査方向に延びる棒状をなし発光
素子アレイ1の各発光素子1aを覆うように配置されて
いる。各発光素子1aは、図示しない駆動手段に接続さ
れ、この駆動手段より対応する画素の濃度デ−タに応じ
た電圧パルスを印加されることにより発光する。尚、こ
こでは発光素子1aをLEDとして説明する。
A plurality of light emitting elements 1a are arranged side by side in the main scanning direction (the direction of the front and back of the paper) to form a light emitting element array 1, and the optical lens 2 has a rod-like shape extending in the main scanning direction. It is arranged so as to cover the light emitting element 1a. Each light emitting element 1a is connected to a driving unit (not shown), and emits light when a voltage pulse corresponding to the density data of the corresponding pixel is applied from the driving unit. Here, the light emitting element 1a is described as an LED.

【0017】図中下方には、LED1aをインクドナ−
フィルム10側から見た平面図を示す。また、図中上方
には、LED1a側から見たインクドナ−フィルム10
上の対応する記録画素領域を示す。LED1aは、副走
査方向長Lbが記録画素の副走査方向長Ldより長く、
主走査方向長Laは記録画素の主走査方向長Lcと同じ
である。すなわち記録画素の副走査方向長Ldが16
9.3μm(150DPI相当)であるのに対して、L
ED素子1aの副走査方向長Lbをほぼ4倍の680μ
mとし、発光面積を記録画素面積のほぼ4倍として発光
光のエネルギーを上昇させている。
In the lower part of the figure, an LED 1a is connected to an ink donor.
The top view seen from the film 10 side is shown. In the upper part of the figure, there is an ink donor film 10 viewed from the LED 1a side.
The upper corresponding recording pixel area is shown. The LED 1a has a length Lb in the sub-scanning direction longer than the length Ld of the recording pixel in the sub-scanning direction,
The length La in the main scanning direction is the same as the length Lc of the recording pixel in the main scanning direction. That is, the length Ld of the recording pixel in the sub-scanning direction is 16
9.3 μm (equivalent to 150 DPI), whereas L
The length Lb of the ED element 1a in the sub-scanning direction is almost quadrupled to 680 μm.
m, the energy of the emitted light is increased by making the emission area approximately four times the recording pixel area.

【0018】光学レンズ2は、副走査方向についての光
学特性が、LED1aより発せられた680μmの発光
光を距離Lの間に約14μm(Ldの1/12、図中
n)に集光するものを使用した。光学レンズ2は主走査
方向については変化を与えないので、図中上方に示す記
録画素領域は、副走査方向長が記録画素の1/12に集
光され面積が記録画素の1/12となった集光光によっ
て照射される。
The optical lens 2 has an optical characteristic in the sub-scanning direction that focuses 680 μm emitted light from the LED 1 a to about 14 μm (1/12 of Ld, n in the figure) during a distance L. It was used. Since the optical lens 2 does not change in the main scanning direction, the length of the recording pixel area shown in the upper part of the drawing in the sub-scanning direction is converged to 1/12 of the recording pixel, and the area becomes 1/12 of the recording pixel. Illuminated by the collected light.

【0019】インクドナーフィルム10のLED面側は
光吸収により発熱するよう黒色に作製されており(図示
せず)、上記集光光の照射によるエネルギ−密度が一定
以上に達すると、インクドナ−フィルム10上に塗布さ
れた熱溶融性インクが溶融して記録紙11に転写され、
記録画素の1/12の面積のドットが記録される。
The LED surface side of the ink donor film 10 is made black so as to generate heat by light absorption (not shown). When the energy density by the irradiation of the condensed light reaches a certain level or more, an ink donor film is formed. The hot-melt ink applied on 10 is melted and transferred to recording paper 11,
A dot having an area of 1/12 of the recording pixel is recorded.

【0020】上記集光光のインクドナ−フィルム10上
におけるエネルギー密度は、記録画素と同じ面積のLE
Dを発光させ、集光せずにそのままインクドナ−フィル
ムに照射した場合のエネルギ−密度(以後、基準エネル
ギ−密度と記載する)に比べ、4倍の発光量を1/12
に集光しているので、4x12倍=48倍まで高められ
ている。実際には光学系での損失があるが、損失分を見
込んでも1桁以上エネルギー密度を上昇させることがで
きる。
The energy density of the condensed light on the ink donor film 10 is equal to the LE of the same area as the recording pixel.
D emits light and emits light four times as much as 1/12 of the energy density (hereinafter referred to as reference energy density) when the ink is irradiated onto the ink donor film without focusing.
Since the light is condensed, the height is increased to 4 × 12 times = 48 times. Actually, there is a loss in the optical system, but the energy density can be increased by one digit or more even in consideration of the loss.

【0021】次に、上記LED1aにおいて生じる発光
光を光学レンズ2を介してインクドナ−フィルム10へ
照射し、インクドナ−フィルム10及び記録紙11を搬
送して中間調記録を行う方法について説明する。図1に
おいては、LED1aにおいて生じた発光光を、副走査
方向が記録画素の1/12となるよう集光した例につい
て説明したが、以下説明を容易にするため、副走査方向
長が記録画素の1/4となる場合について説明する。こ
のとき、集光光のエネルギー密度は、基準エネルギ−密
度に比べ、4倍の発光量を1/4に集光しているので、
4x4倍=16倍となる(実際には光学系の損失があ
る)。
Next, a method of irradiating the light emitted from the LED 1a to the ink donor film 10 through the optical lens 2 and conveying the ink donor film 10 and the recording paper 11 to perform halftone recording will be described. FIG. 1 illustrates an example in which the light emitted from the LED 1a is condensed so that the sub-scanning direction is 1/12 of the recording pixel. The case where it is 1 / of the above will be described. At this time, since the energy density of the condensed light is four times the amount of light emitted as compared to the reference energy density, it is condensed to 4.
4 × 4 = 16 times (actually, there is a loss of the optical system).

【0022】インクドナ−フィルム10上の熱溶融性イ
ンクを溶融させるために必要なエネルギ−密度は、実際
には熱溶融性インクや記録紙11の種類によって変化す
るが、ここでは、基準エネルギ−密度を1倍とした場
合、900倍程度とする。従って、記録画素の4倍の面
積のLED1aにおいて生じた発光光を、副走査方向が
記録画素の1/4となるよう集光した場合の集光光が、
光学系の損失分を考慮した場合13倍程度までエネルギ
−密度を上昇できるとすると、70回程度の集光光をイ
ンクドナ−フィルム11に繰り返し照射することによっ
てさらにエネルギ−密度を上昇させ、集光光の照射され
た部分の熱溶融性インクを溶融することができる。この
とき、集光光の照射部分に、隣接する領域への光照射等
により予熱が与えられている場合は、上記集光光の照射
回数は予熱に応じて低減させることができる。
The energy density required to melt the hot-melt ink on the ink donor film 10 actually varies depending on the hot-melt ink and the type of the recording paper 11, but here the reference energy density is used. Is set to about 1, and about 900 times. Therefore, the condensed light generated when the light emitted from the LED 1a having an area four times as large as the recording pixel is condensed so that the sub-scanning direction is 1 / of the recording pixel,
Assuming that the energy density can be increased to about 13 times in consideration of the loss of the optical system, the energy density is further increased by repeatedly irradiating the ink donor film 11 with about 70 times of condensed light, thereby condensing the light. The heat-meltable ink in the light-irradiated portion can be melted. At this time, if the pre-heat is given to the irradiated portion of the condensed light by light irradiation or the like to an adjacent area, the number of times of irradiation of the condensed light can be reduced according to the pre-heating.

【0023】図2は、各階調再現時のLED1aへの電
圧パルス印加とインクドナ−フィルム10及び記録紙1
1搬送のタイミングを示すタイミングチャ−トであり、
図3は、図2の各階調再現時の記録画素を示す。先ず、
1階調目は、LED1aに電圧パルスを印加せず、図3
の記録画素Aに示すように無印字で表現する。2階調目
は、インクドナ−フィルム10及び記録紙11の搬送を
停止した状態で、LED1aに72回の電圧パルスを繰
り返し印加し、インクドナ−フィルム10上に集光光を
72回照射する。このとき、記録画素の1/4の面積に
集光光が照射されるので、記録画素の1/4の面積の熱
溶融性インクを確実に溶融して記録紙11に転写し、記
録画素Bのドットを記録することができる。
FIG. 2 shows the application of a voltage pulse to the LED 1a and the ink donor film 10 and the recording paper 1 for each gradation reproduction.
This is a timing chart showing the timing of one transport,
FIG. 3 shows recording pixels at the time of reproducing each gradation in FIG. First,
In the first gradation, no voltage pulse is applied to the LED 1a, and FIG.
Is represented by no printing as shown by the recording pixel A. In the second gradation, while the conveyance of the ink donor film 10 and the recording paper 11 is stopped, a voltage pulse of 72 times is repeatedly applied to the LED 1a, and the condensed light is irradiated onto the ink donor film 10 72 times. At this time, the condensed light is applied to one-fourth the area of the recording pixel, so that the heat-fusible ink of one-fourth the area of the recording pixel is reliably melted and transferred to the recording paper 11, and the recording pixel B Dot can be recorded.

【0024】3階調目は、2階調目と同様の記録を行っ
た後、インクドナ−フィルム10及び記録紙11を副走
査方向に記録画素の1/16搬送し、LED1aに18
回の電圧パルスを繰り返し印加してインクドナ−フィル
ム10上に集光光を18回照射する。このとき、今回初
めて集光光を照射された領域sは集光光を18回しか照
射されていないが、2階調目の記録時に隣接する領域が
溶融転写可能な温度に加熱されているため、熱溶融性イ
ンクが確実に溶融して記録紙11に転写され、記録面積
が2階調目より副走査方向に記録画素の1/16拡大さ
れた記録画素Cが記録される。
In the third gradation, after the same recording as that in the second gradation is performed, the ink donor film 10 and the recording paper 11 are conveyed 1/16 of the recording pixels in the sub-scanning direction, and 18 LEDs are supplied to the LED 1a.
The condensed light is irradiated onto the ink donor film 10 18 times by repeatedly applying the voltage pulse twice. At this time, the region s irradiated with the condensed light for the first time is irradiated with the condensed light only 18 times, but the adjacent region is heated to a temperature at which the fusion transfer can be performed at the time of recording the second gradation. Then, the heat-meltable ink is reliably melted and transferred to the recording paper 11, and the recording pixel C whose recording area is enlarged by 1/16 of the recording pixel in the sub-scanning direction from the second gradation is recorded.

【0025】4階調目以後は、インクドナ−フィルム1
0及び記録紙11を副走査方向に記録画素の1/16搬
送し、LED1aに18回の電圧パルスを繰り返し印加
してインクドナ−フィルム10上に集光光を18回照射
すると、記録面積が前の階調より副走査方向に記録画素
の1/16拡大された記録画素D,E,…が順次記録さ
れる。
After the fourth gradation, the ink donor film 1
When the recording paper 11 is conveyed 1/16 of the recording pixel in the sub-scanning direction and the voltage pulse is repeatedly applied to the LED 1a 18 times and the condensed light is irradiated on the ink donor film 10 18 times, the recording area is increased. Are sequentially recorded in the sub-scanning direction from the gray scale of the recording pixels D, E,.

【0026】記録画素Fは最大濃度の14階調であり、
2階調目に対して12回のインクドナ−フィルム10及
び記録紙11の搬送と、各搬送に対するLED1aへの
18回の電圧パルスの繰り返し印加により記録される。
そして、記録画素の記録終了後、副走査方向に隣接する
次の記録画素領域へ移動するため、インクドナ−フィル
ム10及び記録紙11を副走査方向に記録画素の1/1
6ずつ4回搬送する。
The recording pixel F has a maximum density of 14 gradations.
Recording is performed by transporting the ink donor film 10 and the recording paper 11 12 times for the second gradation, and repeatedly applying 18 voltage pulses to the LED 1a for each transport.
After the recording of the recording pixels is completed, the ink donor film 10 and the recording paper 11 are moved to the next recording pixel area adjacent to the recording pixel in the sub-scanning direction.
It is conveyed four times by six.

【0027】次に、上記方法により実際に中間調記録を
行った結果について図4〜図5を参照しながら説明す
る。図4は、各階調再現時のLED1aへの電圧パルス
印加とインクドナ−フィルム10及び記録紙11搬送の
タイミングを示すタイミングチャ−トである。このと
き、LED1aにおいて生じた発光光を、副走査方向が
記録画素の1/12となるよう集光してインクドナ−フ
ィルム10上に照射し、インクドナーフィルム10及び
記録紙11の搬送は、記録画素の副走査方向長の1/2
88間隔の間欠搬送とする。
Next, the result of actually performing halftone printing by the above method will be described with reference to FIGS. FIG. 4 is a timing chart showing the timing of applying a voltage pulse to the LED 1a and transporting the ink donor film 10 and the recording paper 11 at each tone reproduction. At this time, the emitted light generated by the LED 1a is condensed so that the sub-scanning direction becomes 1/12 of the recording pixel and is irradiated onto the ink donor film 10, and the conveyance of the ink donor film 10 and the recording paper 11 1/2 of the length of the pixel in the sub-scanning direction
Intermittent conveyance at 88 intervals.

【0028】このとき、エネルギ−密度は、LED1a
において生じた発光光を副走査方向長が記録画素の1/
4となるよう集光した場合(図2、図3)に比べて3倍
となるため、22〜23回程度の集光光をインクドナ−
フィルム10に繰り返し照射することによってさらにエ
ネルギ−密度を上昇させ、集光光の照射された部分の熱
溶融性インクを溶融することができる。従って、図4に
示すように、2階調目は、インクドナ−フィルム10及
び記録紙11の搬送を停止した状態で、LED1aへの
24回の電圧パルスの繰り返し印加により、記録画素の
1/12の面積の熱溶融性インクを確実に溶融して記録
紙11に転写して記録した。
At this time, the energy density of the LED 1a
The length of the emitted light generated in the sub-scanning direction is 1 /
4 and 3 times as much as the light collected in FIG. 2 (FIGS. 2 and 3).
By repeatedly irradiating the film 10, the energy density can be further increased, and the heat-meltable ink in the portion irradiated with the condensed light can be melted. Accordingly, as shown in FIG. 4, in the second gradation, the conveyance of the ink donor film 10 and the recording paper 11 is stopped, and 24 times of the voltage pulse is repeatedly applied to the LED 1a. The heat-meltable ink having the area of was surely melted and transferred to the recording paper 11 for recording.

【0029】そして、3階調目は、2階調目と同様の記
録を行った後、インクドナ−フィルム10及び記録紙1
1を副走査方向に記録画素の1/288搬送しLED1
aに電圧パルスを1回印加することにより、集光光を1
回照射する。記録画素の1/12の領域に続く1/28
8の領域は、2階調目の記録時に隣接する領域が溶融転
写可能な温度に加熱されているため、1回の集光光照射
によってこの領域の熱溶融性インクが確実に溶融して記
録紙11に転写され、記録面積が2階調目より副走査方
向に記録画素の1/288拡大して記録される。
In the third tone, after the same recording as that in the second tone is performed, the ink donor film 10 and the recording paper 1 are printed.
1 is conveyed 1/288 of the recording pixel in the sub-scanning direction and LED1
a by applying a voltage pulse once to a.
Irradiate twice. 1/28 following 1/12 area of recording pixel
In the area 8, the adjacent area is heated to a temperature at which the fusion transfer can be performed at the time of recording the second gradation. The image is transferred onto the paper 11 and recorded with the recording area enlarged by 1/288 of the recording pixel in the sub-scanning direction from the second gradation.

【0030】4階調目以後は、インクドナ−フィルム1
0及び記録紙11を副走査方向に記録画素の1/288
搬送しLED1aに電圧パルスを1回印加することによ
り、記録面積を順次副走査方向に記録画素の1/288
ずつ拡大して記録する。
After the fourth gradation, the ink donor film 1
0 and the recording paper 11 in the sub-scanning direction
By transporting and applying a voltage pulse to the LED 1a once, the recording area is sequentially reduced to 1/288 of the recording pixel in the sub-scanning direction.
Enlarge and record each time.

【0031】図5は、上記中間調記録による階調特性と
理論値との比較図であり、直線は理論値を、各点は実際
の階調特性を示す。ここでは、インクドナ−フィルム1
0として高解像インクドナーフィルム(PET基材厚
3.5μm・インク塗布量1.5g/m2 )を用いて合
成紙に記録を行った。上記中間調記録によれば、特にハ
イライト特性に優れた低濃度から高濃度までの滑らかな
中間調記録が可能であり、再現階調数は128〜256
階調とすることができた。
FIG. 5 is a graph showing a comparison between the gradation characteristics obtained by the halftone printing and the theoretical values. The straight line indicates the theoretical values, and each point indicates the actual gradation characteristics. Here, the ink donor film 1
Recording was performed on synthetic paper using a high-resolution ink donor film (PET substrate thickness 3.5 μm, ink coating amount 1.5 g / m 2 ) as 0. According to the halftone recording, smooth halftone recording from low density to high density, which is particularly excellent in highlight characteristics, can be performed, and the number of reproduction gradations is 128 to 256.
The gradation could be obtained.

【0032】上記熱転写記録方法によれば、記録画素よ
り大きな面積のLED1aの生じる発光光を光学レンズ
2により副走査方向長が記録画素より短くなるよう集光
し、エネルギ−密度を上昇させた集光光としてインクド
ナ−フィルム上に照射するので、エネルギ−密度が高く
微小面積の発熱領域をインクドナ−フィルム10上に形
成することができる。そして、LED1aへの電圧パル
スの繰り返し印加数及びインクドナ−フィルム10の搬
送を制御し、インクドナ−フィルム10上の溶融される
べき領域に対して繰り返し集光光を照射させて、集光光
照射部分のエネルギ−密度をさらに上昇させるので、熱
溶融性インクを確実に溶融させて記録紙に転写すること
ができる。さらに、インクドナ−フィルム10を微小間
隔で間欠搬送し、微小面積の集光光照射領域を移動させ
るので、記録面積を順次段階的に拡大することができ、
各画素の濃度デ−タに応じて記録画素中のドットの面積
を変化させて中間調記録を行うことができる。
According to the thermal transfer recording method, the light emitted from the LED 1a having an area larger than the recording pixel is condensed by the optical lens 2 so that the length in the sub-scanning direction is shorter than that of the recording pixel, and the energy density is increased. Since the light is irradiated onto the ink donor film as light, a heat generation region having a high energy density and a small area can be formed on the ink donor film 10. Then, the number of repetitive application of the voltage pulse to the LED 1 a and the conveyance of the ink donor film 10 are controlled, and the area to be melted on the ink donor film 10 is repeatedly irradiated with the condensed light, so that the condensed light irradiation part Is further increased, so that the heat-fusible ink can be reliably melted and transferred to recording paper. Further, since the ink donor film 10 is intermittently conveyed at a minute interval and the condensed light irradiation area having a small area is moved, the recording area can be gradually increased step by step.
Halftone printing can be performed by changing the area of the dots in the printing pixels according to the density data of each pixel.

【0033】また、インクドナ−フィルム10上の発熱
領域は、記録画素より面積の大きなLED1aにおいて
生じた発光光を光学レンズ2を通過させて集光すること
により微小化しているので、各LED1aにおける発光
量のばらつきの記録画素への影響は小さいため、特にハ
イライト特性の優れた滑らかな中間調記録を行うことが
できる。
Further, the heat generation area on the ink donor film 10 is miniaturized by condensing the light emitted from the LED 1a having a larger area than the recording pixel through the optical lens 2, so that the light emission at each LED 1a is reduced. Since the influence of the variation in the amount on the recording pixels is small, it is possible to perform smooth halftone recording with particularly excellent highlight characteristics.

【0034】次に、本発明に係る熱転写記録装置につい
て、図6に示す構成概略図を参照しながら説明する。熱
転写記録装置は、複数の発光素子1aを主走査方向に並
設した発光素子アレイ1と、各発光素子1aに電圧パル
スを印加する駆動手段3と、発光素子アレイ1上のイン
クドナ−フィルム10側を覆うように配置された光学レ
ンズ2と、インクドナ−フィルム10及び記録紙11を
搬送する搬送ロ−ラ4a及びその動作を制御する搬送制
御部4bからなる搬送手段4と、から構成される。以
下、発光素子1aとしてLEDを使用した例について説
明する。
Next, the thermal transfer recording apparatus according to the present invention will be described with reference to the schematic configuration diagram shown in FIG. The thermal transfer recording apparatus includes a light emitting element array 1 in which a plurality of light emitting elements 1a are arranged in the main scanning direction, a driving unit 3 for applying a voltage pulse to each light emitting element 1a, and an ink donor film 10 side on the light emitting element array 1. And a transport unit 4 comprising a transport roller 4a for transporting the ink donor film 10 and the recording paper 11 and a transport control unit 4b for controlling the operation thereof. Hereinafter, an example in which an LED is used as the light emitting element 1a will be described.

【0035】LEDアレイ1は、複数のLED1aを主
走査方向に一列に配置して解像度300DPI程度に構
成され、その発光面がインクドナ−フィルム10と対向
している。各LED1aは、副走査方向長が記録画素よ
り長く、主走査方向は記録画素と同じ長さのものを使用
し、発光面積は記録画素面積よりも大きい。各LED1
aは、それぞれ駆動手段3と接続されており、駆動手段
3から電圧パルスを印加することにより発光し、対応す
る画素の濃度デ−タに応じて印加される電圧パルス数に
よって発光回数すなわち発光量が増減する。
The LED array 1 has a plurality of LEDs 1a arranged in a line in the main scanning direction and has a resolution of about 300 DPI, and its light emitting surface faces the ink donor film 10. Each of the LEDs 1a has a length in the sub-scanning direction longer than that of a recording pixel, has the same length in the main scanning direction as that of the recording pixel, and has a light emitting area larger than the recording pixel area. Each LED1
a is connected to the driving means 3 and emits light when a voltage pulse is applied from the driving means 3; Increases or decreases.

【0036】光学レンズ2は、副走査方向の断面形状が
LEDアレイ1側を底辺とする半円状をなしているの
で、各LED1aにおいて生じた発光光を副走査方向に
集光し、エネルギ−密度の上昇した微小面積の集光光と
してインクドナ−フィルム10へ照射する。このとき、
主走査方向へは集光されない。発光光の集光率は、光学
レンズ2の形状に伴って変化させることができる。
Since the optical lens 2 has a semicircular cross-section in the sub-scanning direction with the LED array 1 side as the base, the light emitted from each LED 1a is condensed in the sub-scanning direction and energy is reduced. The ink donor film 10 is irradiated as condensed light having a small area with increased density. At this time,
No light is collected in the main scanning direction. The light collection rate of the emitted light can be changed according to the shape of the optical lens 2.

【0037】インクドナーフィルム10のLED面側は
光吸収により発熱するよう黒色に作製されており(図示
せず)、上記集光光の照射によるエネルギ−密度が一定
以上に達すると、インクドナ−フィルム10上に塗布さ
れた熱溶融性インクが溶融して記録紙11に転写され
る。
The LED surface side of the ink donor film 10 is made black so as to generate heat by light absorption (not shown). When the energy density due to the irradiation of the condensed light reaches a certain level or more, an ink donor film is formed. The hot-melt ink applied on the sheet 10 is melted and transferred to the recording paper 11.

【0038】続いて、上記熱転写記録装置により中間調
記録を行う方法について説明する。上記集光光のエネル
ギ−密度は、インクドナ−フィルム10上の熱溶融性イ
ンクを溶融させるに至っていないので、インクドナ−フ
ィルム上の各画素の濃度デ−タに応じて溶融されるべき
領域に対しては、集光光を繰り返し照射してさらにエネ
ルギ−密度を上昇させ、熱溶融性インクを溶融させ得る
エネルギ−密度を与える必要がある。この集光光の照射
回数は、熱溶融性インクを溶融させるために必要なエネ
ルギ−密度を、1回の集光光照射によるエネルギ−密度
で除することにより算出される。このとき、集光光の照
射部分に、隣接する領域への光照射等により予熱が与え
られている場合は、上記集光光の照射回数は予熱に応じ
て低減させることができる。
Next, a method of performing halftone recording by the above-described thermal transfer recording apparatus will be described. Since the energy density of the condensed light is not enough to melt the hot-melt ink on the ink donor film 10, the energy density of the condensed light is determined based on the density data of each pixel on the ink donor film according to the density data. In other words, it is necessary to further increase the energy density by repeatedly irradiating the condensed light to give an energy density capable of melting the hot-melt ink. The number of times of irradiation of the condensed light is calculated by dividing the energy density necessary for melting the hot-melt ink by the energy density of one irradiation of the condensed light. At this time, if the pre-heat is given to the irradiated portion of the condensed light by light irradiation or the like to an adjacent area, the number of times of irradiation of the condensed light can be reduced according to the pre-heating.

【0039】駆動手段3は、各画素の濃度デ−タにて応
じた溶融されるべき領域に対しては、上記回数の集光光
が照射されるよう、対応するLED1aに同回数の電圧
パルスを繰り返し印加する。また、搬送制御部4bは、
上記溶融されるべき領域に対して対応するLED1aに
電圧パルスが繰り返し印加される期間において、その領
域が集光光の照射範囲内にとどまるよう搬送ロ−ラ4a
を駆動し、インクドナ−フィルム10及び記録紙11を
搬送する。この、駆動手段3と搬送制御部4bとの動作
を、図示しない制御手段により同期動作させることによ
り、上記溶融されるべき領域の熱溶融性インクを確実に
溶融して記録紙11へ転写することができる。
The driving means 3 applies the same number of voltage pulses to the corresponding LED 1a so that the area to be melted corresponding to the density data of each pixel is irradiated with the above-mentioned number of condensed lights. Is repeatedly applied. In addition, the transport control unit 4b
During a period in which a voltage pulse is repeatedly applied to the LED 1a corresponding to the region to be melted, the transport roller 4a is set so that the region remains within the irradiation range of the condensed light.
Is driven to convey the ink donor film 10 and the recording paper 11. By synchronizing the operation of the driving unit 3 and the conveyance control unit 4b by a control unit (not shown), the heat-meltable ink in the area to be melted is reliably melted and transferred to the recording paper 11. Can be.

【0040】また、搬送制御部4bは、インクドナ−フ
ィルム10及び記録紙11が記録画素の副走査方向長よ
り短い間隔を単位とする間欠搬送されるよう搬送ロ−ラ
4aを駆動する。 この間欠搬送により、各記録画素中
のドットの面積を段階的に拡大することができる。
The transport controller 4b drives the transport roller 4a so that the ink donor film 10 and the recording paper 11 are transported intermittently in units of intervals shorter than the length of the recording pixels in the sub-scanning direction. By this intermittent conveyance, the area of the dots in each recording pixel can be increased stepwise.

【0041】上記熱転写記録装置によれば、記録画素よ
り大きな面積のLED1aの生じる発光光を光学レンズ
2により副走査方向長が記録画素より短くなるよう集光
し、エネルギ−密度を上昇させた集光光としてインクド
ナ−フィルム上に照射するので、エネルギ−密度が高く
微小面積の発熱領域をインクドナ−フィルム10上に形
成することができる。そして、インクドナ−フィルム1
0上の溶融されるべき領域が熱溶融性インクを溶融させ
るために必要なエネルギ−密度を得るよう、駆動手段3
により対応するLED1aへ電圧パルスを繰り返し印加
するとともに、搬送制御部4bにより、電圧パルスの繰
り返し印加される期間においてインクドナ−フィルム1
0の上記領域が集光光の照射範囲内にとどまるようイン
クドナ−フィルム10を搬送するので、集光光照射部分
の熱溶融性インクを確実に溶融させて記録紙に転写する
ことができる。さらに、搬送制御部4bにより、インク
ドナ−フィルム10を微小間隔で間欠搬送し、微小面積
の集光光照射領域を移動させるので、記録面積を順次段
階的に拡大することができ、各画素の濃度デ−タに応じ
て記録画素中のドットの面積を変化させて中間調記録を
行うことができる。
According to the thermal transfer recording apparatus, the light emitted from the LED 1a having a larger area than the recording pixel is condensed by the optical lens 2 so that the length in the sub-scanning direction is shorter than that of the recording pixel, and the energy density is increased. Since the light is irradiated onto the ink donor film as light, a heat generation region having a high energy density and a small area can be formed on the ink donor film 10. And the ink donor film 1
Drive means 3 so that the area to be melted on 0 obtains the energy density necessary to melt the hot melt ink.
, A voltage pulse is repeatedly applied to the corresponding LED 1a, and the transport control unit 4b controls the ink donor film 1 during a period in which the voltage pulse is repeatedly applied.
Since the ink donor film 10 is conveyed so that the above-mentioned area of 0 stays within the irradiation range of the condensed light, the heat-meltable ink in the converged light irradiation part can be reliably melted and transferred to the recording paper. Further, the ink control unit 4b intermittently conveys the ink donor film 10 at a small interval and moves the condensed light irradiation region having a small area, so that the recording area can be sequentially increased step by step, and the density of each pixel can be increased. Halftone printing can be performed by changing the area of the dots in the printing pixels according to the data.

【0042】また、インクドナ−フィルム10上の発熱
領域は、記録画素より面積の大きなLED1aにおいて
生じた発光光を光学レンズ2を通過させて集光すること
により微小化しているので、各LED1aにおける発光
量のばらつきの記録画素への影響は小さいため、特にハ
イライト特性の優れた滑らかな中間調記録を行うことが
できる。光学レンズ2の形状を変化させて副走査方向へ
の集光率を高めると、さらにエネルギ−密度が高く微小
面積の発熱領域を形成することができ、多階調の中間調
記録を行うことができる。
Further, the heat generating area on the ink donor film 10 is miniaturized by condensing the light emitted from the LED 1a having a larger area than the recording pixel through the optical lens 2, so that the light emitted from each LED 1a is reduced. Since the influence of the variation in the amount on the recording pixels is small, it is possible to perform smooth halftone recording with particularly excellent highlight characteristics. By changing the shape of the optical lens 2 to increase the light collection rate in the sub-scanning direction, it is possible to form a heat generation region having a higher energy density and a smaller area, and perform multi-tone halftone printing. it can.

【0043】上記説明においては、発光素子アレイ1と
してLEDアレイを使用したが、レーザ−ダイオ−ドを
主走査方向に複数並設したレ−ザ−ダイオ−ドアレイを
使用しても同様の効果を奏することができる。また、光
学レンズ2としては、副走査方向の断面形状が半円状を
なすものに限られず、発光素子において生じた発光光を
副走査方向に集光可能なものであればよい。また、各L
ED1aの発光量は、駆動手段3により各LED1aへ
の電圧パルス数を変化させることによって制御している
が、各LED1aへの電圧印加時間を変化させる方法も
考えられる。
In the above description, the LED array is used as the light emitting element array 1. However, the same effect can be obtained by using a laser diode array in which a plurality of laser diodes are arranged in the main scanning direction. Can play. Further, the optical lens 2 is not limited to a lens having a semicircular cross section in the sub-scanning direction, and may be any lens that can collect light emitted from the light emitting element in the sub-scanning direction. Also, each L
The light emission amount of the ED 1a is controlled by changing the number of voltage pulses to each LED 1a by the driving unit 3, but a method of changing the voltage application time to each LED 1a is also conceivable.

【0044】[0044]

【発明の効果】本発明によれば、記録画素より面積の大
きい発光素子において生じた発光光を光学レンズを通過
させて集光し、エネルギ−密度を上昇させた集光光とし
てインクドナ−フィルム上に照射することにより、エネ
ルギー密度が高く微小面積の発熱領域をインクドナ−フ
ィルム上に形成することができる。そして、発光素子へ
の電圧パルスの繰り返し印加数及びインクドナ−フィル
ムの搬送を制御し、インクドナ−フィルム上の溶融され
るべき領域に繰り返し集光光を照射させて、熱溶融性イ
ンクを溶融させるために必要なエネルギ−密度を与える
ので、集光光照射領域のエネルギ−密度をさらに上昇さ
せ、熱溶融性インクを確実に溶融させて記録紙に転写す
ることができる。さらに、インクドナ−フィルムを微小
間隔で間欠搬送し、微小面積の集光光照射領域を移動さ
せるので、記録面積を順次段階的に拡大することがで
き、各画素の濃度デ−タに応じて記録画素中のドットの
面積を変化させて中間調記録を行うことができる。
According to the present invention, light emitted from a light emitting element having a larger area than a recording pixel is condensed by passing through an optical lens, and condensed light having an increased energy density is formed on the ink donor film. By irradiating the ink, a heat generation region having a high energy density and a small area can be formed on the ink donor film. Then, the number of repetitive application of the voltage pulse to the light emitting element and the conveyance of the ink donor film are controlled, and the area to be melted on the ink donor film is repeatedly irradiated with the condensed light to melt the hot melt ink. , The energy density of the focused light irradiation area can be further increased, and the heat-fusible ink can be reliably melted and transferred to recording paper. Furthermore, since the ink donor film is intermittently conveyed at minute intervals and the condensed light irradiation area having a small area is moved, the recording area can be gradually increased step by step, and recording is performed in accordance with the density data of each pixel. Halftone printing can be performed by changing the area of a dot in a pixel.

【0045】また、インクドナ−フィルム上に形成され
る発熱領域は、記録画素より面積の大きい発光素子の発
光光を光学レンズを通過させて集光することにより微小
化するので、各発光素子の発光量のばらつきの記録画素
への影響は小さいので、特にハイライト特性の優れた滑
らかな中間調記録を行うことができる。光学レンズの形
状を変化させて副走査方向への集光率を高めることによ
り、さらにエネルギ−密度が高く微小面積の発熱領域を
形成することができ、多階調の中間調記録を行うことが
できる
Further, the heat generating area formed on the ink donor film is miniaturized by condensing the light emitted from the light emitting element having a larger area than the recording pixel through the optical lens. Since the influence of the variation in the amount on the recording pixels is small, it is possible to perform smooth halftone recording with particularly excellent highlight characteristics. By changing the shape of the optical lens to increase the light collection rate in the sub-scanning direction, it is possible to form a heat generation region having a higher energy density and a smaller area, and perform multi-tone halftone printing. it can

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の熱転写記録方法による発光素子の発
光光の集光方法を示す副走査方向の拡大断面説明図であ
る。
FIG. 1 is an enlarged sectional explanatory view in the sub-scanning direction showing a method of condensing light emitted from a light emitting element by a thermal transfer recording method of the present invention.

【図2】 本発明の熱転写記録方法による中間調記録時
のタイミングチャ−トである。
FIG. 2 is a timing chart at the time of halftone recording by the thermal transfer recording method of the present invention.

【図3】 本発明の熱転写記録方法による中間調記録の
印字結果を示す説明図である。
FIG. 3 is an explanatory diagram showing a print result of halftone recording by the thermal transfer recording method of the present invention.

【図4】 本発明の熱転写記録方法による中間調記録時
のタイミングチャ−トである。
FIG. 4 is a timing chart at the time of halftone recording by the thermal transfer recording method of the present invention.

【図5】 本発明の熱転写記録方法よる中間調記録の階
調特性説明図である。
FIG. 5 is an explanatory diagram of gradation characteristics of halftone recording by the thermal transfer recording method of the present invention.

【図6】 本発明の熱転写記録装置を示す構成概略説明
図である。
FIG. 6 is a schematic diagram illustrating the configuration of a thermal transfer recording apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1…発光素子アレイ、 1a…発光素子、 2…光学レ
ンズ、 3…駆動手段、 4…搬送手段、 4a…搬送
ロ−ラ、 4b…搬送制御部、 10…インクドナ−フ
ィルム、 11…記録紙
DESCRIPTION OF SYMBOLS 1 ... Light emitting element array, 1a ... Light emitting element, 2 ... Optical lens, 3 ... Driving means, 4 ... Conveying means, 4a ... Conveying roller, 4b ... Conveying control part, 10 ... Ink donor film, 11 ... Recording paper

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】副走査方向長が記録画素より長い発光素子
を主走査方向に複数並設し、 前記各発光素子に電圧パルスを印加することにより生じ
る発光光を、副走査方向に集光可能な光学レンズを通過
させることにより副走査方向長が記録画素より短い集光
光として、熱溶融性インクを塗布したインクドナ−フィ
ルム上に照射し、 前記インクドナ−フィルム上の各画素の濃度デ−タに応
じて溶融されるべき領域に対して前記集光光が繰り返し
照射されるよう、前記発光素子に繰り返し電圧を印加す
るとともに前記インクドナ−フィルムを搬送し、 さらに、前記インクドナ−フィルムの搬送は、記録画素
の副走査方向長より短い間隔を単位とする間欠搬送と
し、 前記各画素の濃度デ−タに応じて溶融された前記熱溶融
性インクを記録紙に転写させ、各記録画素中のドットの
面積を変化させて中間調記録を行う、ことを特徴とする
熱転写記録方法。
1. A light-emitting element having a length in the sub-scanning direction longer than a recording pixel is arranged in a row in the main scanning direction, and light emitted by applying a voltage pulse to each of the light-emitting elements can be condensed in the sub-scanning direction. As a condensed light having a length in the sub-scanning direction shorter than the recording pixel by passing through a simple optical lens, onto the ink donor film coated with the heat-meltable ink, and the density data of each pixel on the ink donor film. In order to repeatedly irradiate the condensed light to the region to be melted in accordance with the above, while repeatedly applying a voltage to the light emitting element and transporting the ink donor film, further transporting the ink donor film, The intermittent conveyance is performed in units of intervals shorter than the length of the recording pixels in the sub-scanning direction, and the hot-melt ink melted according to the density data of each pixel is transferred to recording paper. And performing halftone printing by changing the area of the dots in each printing pixel.
【請求項2】副走査方向長が記録画素より長い発光素子
を主走査方向に複数並設した発光素子アレイと、 前記各発光素子に対応画素の濃度デ−タに応じた回数の
電圧パルスを印加することにより各発光素子の生じる発
光回数を制御する駆動手段と、 前記各発光素子の発光面側に配置され、前記発光光を副
走査方向に集光し、反発光素子側に配置される熱溶融性
インクを塗布したインクドナ−フィルム上に、副走査方
向長が記録画素より短い集光光として照射する光学レン
ズと、 前記インクドナ−フィルムを、記録画素の副走査方向長
より短い間隔を単位とする間欠搬送するとともに、前記
インクドナ−フィルム上の各画素の濃度デ−タに応じて
溶融されるべき領域に対して前記集光光が繰り返し照射
されるよう搬送する搬送手段とを備え、 前記各画素の濃度デ−タに応じて溶融された熱溶融性イ
ンクが記録紙に転写され、各記録画素中のドットの面積
変化により中間調記録を行う、ことを特徴とする熱転写
記録装置。
2. A light-emitting element array in which a plurality of light-emitting elements whose length in the sub-scanning direction is longer than a recording pixel are arranged in the main scanning direction, and a voltage pulse of a number of times corresponding to the density data of a pixel corresponding to each light-emitting element. Driving means for controlling the number of times of light emission generated by each light emitting element by applying the light, and arranged on the light emitting surface side of each light emitting element, condensing the emitted light in the sub-scanning direction, and arranged on the side opposite to the light emitting element An optical lens for irradiating condensed light whose length in the sub-scanning direction is shorter than a recording pixel on the ink donor film coated with the heat-meltable ink, and an interval shorter than the length of the recording pixel in the sub-scanning direction of the ink donor film. Transport means for transporting the condensed light repeatedly so as to repeatedly irradiate the area to be melted according to the density data of each pixel on the ink donor film, A thermal transfer printing apparatus, characterized in that the heat-fusible ink melted in accordance with the density data of each pixel is transferred to a recording sheet, and halftone printing is performed by changing the area of the dots in each recording pixel.
【請求項3】前記光学レンズは副走査方向の断面形状が
前記発光素子側を底辺とする半円状をなすことを特徴と
する請求項2に記載の熱転写記録装置。
3. The thermal transfer recording apparatus according to claim 2, wherein the optical lens has a semicircular cross section in the sub-scanning direction with the light emitting element side as a base.
【請求項4】前記各発光素子は発光ダイオ−ドからなる
ことを特徴とする請求項2または請求項3に記載の熱転
写記録装置。
4. A thermal transfer recording apparatus according to claim 2, wherein each of said light emitting elements comprises a light emitting diode.
【請求項5】前記各発光素子はレ−ザ−ダイオ−ドから
なることを特徴とする請求項2または請求項3に記載の
熱転写記録装置。
5. A thermal transfer recording apparatus according to claim 2, wherein each of said light-emitting elements comprises a laser diode.
JP21563696A 1996-08-15 1996-08-15 Method and device for thermally transferring recording Pending JPH1058720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21563696A JPH1058720A (en) 1996-08-15 1996-08-15 Method and device for thermally transferring recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21563696A JPH1058720A (en) 1996-08-15 1996-08-15 Method and device for thermally transferring recording

Publications (1)

Publication Number Publication Date
JPH1058720A true JPH1058720A (en) 1998-03-03

Family

ID=16675693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21563696A Pending JPH1058720A (en) 1996-08-15 1996-08-15 Method and device for thermally transferring recording

Country Status (1)

Country Link
JP (1) JPH1058720A (en)

Similar Documents

Publication Publication Date Title
JP2930717B2 (en) Thermal printer
JP2933715B2 (en) Thermal printer
JP3053110B2 (en) Thermal printer
JP2009292159A (en) Method of printing image on object to be printed and device for inputting energy to printing ink carrier
JPH1058720A (en) Method and device for thermally transferring recording
JP3902814B2 (en) Image recording method
JPH05293995A (en) Fused type thermal transfer recording method
JP3574160B2 (en) Serial thermal printing method
JP2002117541A (en) Preheating beam for optical recording
JP2643536B2 (en) Melt type thermal transfer recording method
JP3059573B2 (en) Thermal recording method and apparatus
EP0435284B1 (en) Image recording system
EP1241867A2 (en) A method and apparatus for controlling exposure amplitude and printed track width by pulse width modulation
JPH0789235A (en) Thermal transfer recording
JP2001520954A (en) Writing device for heat-sensitive materials
JP2539949B2 (en) Image recording device
JP2929323B2 (en) Current transfer type recording method and apparatus, and ink film
JP2000229427A (en) Image recording apparatus
JPH0617550Y2 (en) Light emitting diode print head
JPH06198974A (en) Density gradation printing method and device
JPH11334143A (en) Apparatus and method for recording image
JPH01299057A (en) Thermal transfer type printer
JP2664803B2 (en) Thermal recording method
JPH03281358A (en) Laser thermal transfer recorder
JPH10272794A (en) Image recording method