JPH1058024A - Method for measuring and controlling tension of rolled stock in continuous hot rolling - Google Patents

Method for measuring and controlling tension of rolled stock in continuous hot rolling

Info

Publication number
JPH1058024A
JPH1058024A JP8222725A JP22272596A JPH1058024A JP H1058024 A JPH1058024 A JP H1058024A JP 8222725 A JP8222725 A JP 8222725A JP 22272596 A JP22272596 A JP 22272596A JP H1058024 A JPH1058024 A JP H1058024A
Authority
JP
Japan
Prior art keywords
tension
value
rolled material
looper
calculator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8222725A
Other languages
Japanese (ja)
Inventor
Naoharu Yoshitani
直治 芳谷
Harutoshi Okai
晴俊 大貝
Yusuke Konno
雄介 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8222725A priority Critical patent/JPH1058024A/en
Publication of JPH1058024A publication Critical patent/JPH1058024A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/50Tension control; Compression control by looper control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To always keep the performance of tension control in the desirable state, to prevent troubles and to improve productivity by correctly calculating the measured value of tension and also continuously changing the values of parameters of a tension controller corresponding to the thickness of a rolled stock, tension, rolling speed, or the like. SOLUTION: In an interstand tension control system, a tension calculator 9 and control parameter calculator 10 in addition to the tension controller are provided. In the tension calculator 9, by a calculation formula based on the theory of the strength of materials, the value of the tension of the rolled stock is calculated taking the dead weight and bending rigidity of the rolled stocking into consideration based on the measured value of the force which has effect on a looper between stands or exclusive roll for tension with the rolled stock every control period. On the other hand, in the control parameter calculator 10, the correction factor of the apparent elastic modulus of the rolled stock is determined by a prescribed calculating formula every control period, taking the deflection of the rolled stock caused by the dead weight and bending rigidity of the rolled stock into conderation, the value of the parameter is calculated based on the value of this correction factor and the value is outputted to a tension controller 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間連続圧延にお
ける圧延材張力の測定および制御方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring and controlling a rolled material tension in hot continuous rolling.

【0002】[0002]

【従来の技術】図1に、板材の熱間連続圧延における1
つのスタンド間と、その両端の圧延スタンドを示す。図
において、1は圧延材、2,3は圧延ロール、4,5は
圧延モータ、6,7はそれぞれルーパーとルーパーモー
タ、8は圧延材からルーパーに作用する押し下げ力検出
器、9は圧延材張力算出器、10は張力制御パラメータ
算出器、11は張力制御器を表わす。ここで8〜11の
各設備は、本発明実施のために必要とする。
2. Description of the Related Art FIG.
The rolling stands between two stands and the rolling stands at both ends are shown. In the drawing, 1 is a rolled material, 2 and 3 are rolling rolls, 4 and 5 are rolling motors, 6 and 7 are loopers and looper motors respectively, 8 is a pressing force detector acting on the looper from the rolled material, 9 is a rolled material. A tension calculator 10 is a tension control parameter calculator, and 11 is a tension controller. Here, each of the facilities 8 to 11 is required for implementing the present invention.

【0003】ここで、材料力学の理論等より明らかに、
次の1),2)が成り立つ。 1)押し下げ力の中で圧延材の曲げ剛性に起因する成分
は、張力に依存して変化する。 2)張力制御の操作量(ルーパートルク指令値)の変化
と張力変化との関係は、自重と曲げ剛性に起因する圧延
材たわみ量に依存して変化する。
Here, from the theory of material mechanics, etc.,
The following 1) and 2) hold. 1) The component of the pressing force due to the bending stiffness of the rolled material changes depending on the tension. 2) The relationship between the change in the operation amount of the tension control (looper torque command value) and the change in tension changes depending on the amount of deflection of the rolled material due to its own weight and bending rigidity.

【0004】従来技術では、特開昭54−2958号公
報と特開昭56−41009号公報に、スタンド間圧延
材を弾性体と考えたときの、圧延材の曲げに要するトル
ク(PM )を考慮した張力制御方法が記されている。こ
こで、PM [Nm]は次式で表わされる。 PM =C2 (48EILH S)/LR 3 (1) E: 圧延材ヤング率[N/m2 ] I: 圧延材断面2次モーメント[m4 ] LH :ルーパーによる圧延材持ち上げ高さ[m] S: ルーパーアーム長さ[m] LR :スタンド間距離[m] C2 :変換係数 注)後の記述と合わせるため、変数記号は該公報とは少
し異なっている。
[0004] In the prior art, in JP 54-2958 discloses a Sho 56-41009, when the stand-rolled material was considered elastic member, the torque required for bending of the rolled material (P M) Is described in consideration of the tension control method. Here, P M [Nm] is represented by the following equation. P M = C 2 (48EIL H S) / L R 3 (1) E: rolled material Young's modulus [N / m 2] I: rolled material moment of inertia [m 4] L H: High Lift rolled material by looper S [m] S: Looper arm length [m] L R : Stand-to-stand distance [m] C 2 : Conversion coefficient Note) The variable symbols are slightly different from those in this publication in order to match the later description.

【0005】PM は、ルーパーに必要なトルクの内、圧
延材の曲げに要する部分を表わす。該公報では、PM
値を用いて計算した、圧延材の曲げにくさを表わすパラ
メータ値に基づいて、ルーパーを用いた張力制御を行な
うか、それともルーパーレス張力制御を行うかの判定を
行っている。張力の値は、圧延モータの発生トルクと圧
延荷重の検出器から算出する。
[0005] P M, of the torque required for looper represents the portion required for the bending of the rolled material. In this publication, performed was calculated using the values of P M, based on the parameter value representing the bending difficulty of the rolled material, or perform tension control using a looper, or the determination of whether to looper less tension control ing. The value of the tension is calculated from the generated torque of the rolling motor and the detector of the rolling load.

【0006】一方、特開平7−16632号公報には、
ルーパーアームの角度、圧延材質量、などから、次式を
用いて、圧延材単位張力を目標値tfREF[kgf/mm2 ]に
追従させるようなルーパー電流指令値ILREF(=ルーパ
ートルク指令値)を算出する方法が示されている。 ILREF=g[(R1 /gL )tfREFA{sin(θ+β)−sin(θ−α)} +(R2 /gL )WS cosθ+(R3 /gL )WL cos θ]・10-3 (2) ただし、 θ: 角度に換算されるルーパー高さ g: 重力加速度 R1 : ルーパー回転中心からルーパーロール中心まで
の距離[mm] R2 : ルーパーロール半径 R3 : ルーパー回転中心からルーパー重心までの距離
[mm] gL : ルーパー機械とルーパー電動機の間のギア比 A: 圧延材の断面積 α,β:パスラインと圧延材のなす角度 WS : スタンド間圧延材質量 WL : ルーパー質量 上の式に基づいて、張力およびルーパー高さをそれぞれ
目標値に一致させるための、状態フィードバック制御系
を設計する。
On the other hand, JP-A-7-16632 discloses that
From the angle of the looper arm, the mass of the rolled material, and the like, a looper current command value I LREF (= looper torque command value) that causes the unit tension of the rolled material to follow the target value t fREF [kgf / mm 2 ] using the following equation: ) Is shown. I LREF = g [(R 1 / g L ) t fREF A {sin (θ + β) −sin (θ−α)} + (R 2 / g L ) W S cos θ + (R 3 / g L ) W L cos θ ] · 10 -3 (2) where θ: looper height converted to an angle g: gravitational acceleration R 1 : distance from the center of the looper rotation to the center of the looper roll [mm] R 2 : radius of the looper roll R 3 : looper Distance from the center of rotation to the center of gravity of the looper [mm] g L : Gear ratio between the looper machine and the looper motor A: Cross-sectional area of rolled material α, β: Angle between pass line and rolled material WS : Rolling material between stands the amount W L: based on the looper mass above formula, for matching the target value tension and looper height, respectively, to design the state feedback control system.

【0007】[0007]

【発明が解決しようとする課題】上に述べた従来技術に
おいては、まず押し下げ力と張力との関係に与える圧延
材の曲げ剛性の影響が、正しく考慮されていない。この
ことを以下に記す。特開昭54−2958号公報、特開
昭56−41009号公報に記載の上記(1)式を用い
ると、圧延材からルーパーへの押し下げ力FL [N] の
内、圧延材の曲げ剛性に起因する成分FLB[N] は、下式
で表わされる。 FLB=PM /S cosθ=C2 (48EILH )/LR 3 cosθ (3) ここでθは、ルーパーアームと水平線とのなす角であ
り、θを用いて、ルーパーアーム長さのFLBに垂直な成
分は、S cosθと表わされる。
In the above-mentioned prior art, the effect of the bending stiffness of the rolled material on the relationship between the pushing force and the tension is not properly considered. This is described below. JP 54-2958 discloses, using equation (1) described in JP-A-56-41009, among depression force F L [N] from the rolled material to the looper, the flexural rigidity of the strip component F LB due to [N] is expressed by the following equation. F LB = the P M / S cosθ = C 2 (48EIL H) / L R 3 cosθ (3) where theta, an angle formed between the looper arm and the horizontal line, by using the theta, F looper arm length The component perpendicular to LB is represented as S cos θ.

【0008】θがあまり変化しない場合は、48C2
cosθをまとめて定数とおくことができる。一方、軸力
を0とおいたときの両端固定梁の中央に、梁に垂直に力
LBを加えたときの、梁中央の変位をQとすると、梁の
曲げ理論における公知の式より、次式が成り立つ。 FLB=192EILH /L3 (4) したがって変換係数C2 を適切にとれば、(3)式は
(4)式に一致する。しかしながら実際は、圧延材には
軸力として張力Tが作用しており、Tの影響は無視でき
ないため、(3)式、および(3)式の導出元である
(1)式は、Tを考慮していない点で誤りであり、
(1),(3)式と異なる正しい式を用いる必要があ
る。FLBの正しい算出式は、圧延材からルーパーロール
または張力測定専用ロールに作用する押し下げ力に基づ
いて、圧延材張力を測定する場合にも必要である。
If θ does not change much, 48C 2 /
cosθ can be collectively set as a constant. On the other hand, assuming that the displacement of the center of the beam when a force F LB is applied perpendicularly to the beam at the center of the beam fixed at both ends when the axial force is set to 0 is Q, from the known formula in the beam bending theory, The formula holds. F LB = 192EIL H / L 3 (4) Therefore, if the conversion coefficient C 2 is appropriately selected, the equation (3) matches the equation (4). However, in actuality, the tension T acts on the rolled material as an axial force, and the influence of T cannot be ignored. Therefore, the equations (3) and (1), which is the derivation source of the equation (3), take the T into consideration. Is incorrect in that
It is necessary to use a correct expression different from the expressions (1) and (3). The correct formula for calculating the F LB is also necessary when measuring the rolled material tension based on the pressing force acting on the looper roll or the tension measurement roll from the rolled material.

【0009】一方、特開平7−16632号公報では、
(2)式からわかるように圧延材は圧延スタンドからル
ーパーまで直線と見なしていて、圧延材の自重や曲げ剛
性によるたわみは全く考慮されていない。しかしながら
このたわみの影響は、後述するように張力制御の適切な
パラメータ設定において無視できないため、たわみを正
しく考慮した関係式を求める必要がある。
On the other hand, in Japanese Patent Application Laid-Open No. 7-16632,
As can be seen from equation (2), the rolled material is regarded as a straight line from the rolling stand to the looper, and no consideration is given to the deflection of the rolled material due to its own weight or bending rigidity. However, since the influence of this deflection cannot be ignored in setting appropriate parameters for the tension control as described later, it is necessary to find a relational expression that correctly considers the deflection.

【0010】図2に、スタンド間距離が5.2[m] 、圧
延材が鋼板で厚みが3[mm]、鋼板ヤング率2.0×10
5 [N/m2 ]、ルーパー高さ(=ルーパーによる圧延材持
ち上げ高さ)0.17[m] の場合の、圧延スタンドとル
ーパー間における圧延材の空間経路を、種々の実効張力
値T-vに対して示す。ここで実効張力T-vとは、張力T
から、遠心力とつりあう成分を差し引いた値であり、次
式で表わされる。 T-v=T−mv2 [N] (5) ただし、 m:圧延材単位長さの質量[kg/m] v:圧延材速度[m/s] 図より、実効張力が小さいほど、圧延材自重および曲げ
剛性に起因する圧延材のたわみが大きく、無視できない
ことがわかる。
FIG. 2 shows that the distance between stands is 5.2 [m], the rolled material is steel plate, the thickness is 3 [mm], and the steel plate Young's modulus is 2.0 × 10.
In the case of 5 [N / m 2 ] and a looper height (= height of rolled material lifted by the looper) of 0.17 [m], the spatial path of the rolled material between the rolling stand and the looper is represented by various effective tension values T. Shown for -v . Here, the effective tension T -v is the tension T
Is a value obtained by subtracting a component that balances with the centrifugal force from the following equation, and is represented by the following equation. T− v = T−mv 2 [N] (5) where, m: mass of unit length of rolled material [kg / m] v: rolled material speed [m / s] From the figure, the smaller the effective tension, the lower the rolling It can be seen that the deflection of the rolled material due to its own weight and bending stiffness is large and cannot be ignored.

【0011】[0011]

【課題を解決するための手段】本発明の第1の特徴は、
熱間連続圧延のスタンド間において、ルーパーロールま
たは張力測定専用ロールで圧延材を持ち上げる際の、圧
延材から該ロールに作用する押し下げ力に基づいて圧延
材張力を測定し制御する方法において、該押し下げ力の
検出器と張力算出器とを設け、押し下げ力検出器では所
定のサンプリング周期ごとに押し下げ力を検出して張力
算出器へ入力し、張力算出器では同じ周期で該押し下げ
力検出値に基づいて、圧延材自重と曲げ剛性の影響を、
材料力学の理論に基づく所定の計算式により考慮して、
圧延材張力測定値を算出することであり、一方、第2の
特徴は、熱間連続圧延のスタンド間において、ルーパー
ロールまたは張力測定専用ロールで圧延材を持ち上げ、
圧延材から該ロールに作用する押し下げ力に基づいて張
力を測定するとともに、ルーパートルク指令値または圧
延ロール回転速度指令値を操作量として圧延材張力を制
御するようにした張力制御方法において、制御パラメー
タ算出器、および張力制御器を設け、上に記載の方法、
またはその他の方法で算出された張力測定値を制御パラ
メータ算出器と張力制御器へ入力し、制御パラメータ算
出器では該張力測定値を用いて、圧延材自重と曲げ剛性
により生じるスタンド間圧延材のたわみの影響を、材料
力学の理論に基づく所定の計算式により考慮して、圧延
材の見かけの弾性係数の修正率を求め、該修正率の値に
基づいて張力制御パラメータの値を算出して張力制御器
へ入力し、張力制御器では該張力制御パラメータ値を用
いて、操作量の値を算出し出力することである。
A first feature of the present invention is as follows.
In a method of measuring and controlling a rolled material tension based on a pressing force applied to a roll from a rolled material when a rolled material is lifted by a looper roll or a roll dedicated to tension measurement, between the stands of hot continuous rolling, A force detector and a tension calculator are provided, and the pressing force detector detects a pressing force at each predetermined sampling period and inputs the detected force to the tension calculator. The effect of the rolled material's own weight and bending stiffness
Considering a predetermined formula based on the theory of material mechanics,
It is to calculate the rolled material tension measurement value, while the second feature, between the stands of hot continuous rolling, lift the rolled material with a looper roll or a roll dedicated to tension measurement,
A tension control method for measuring a tension based on a pressing force acting on the roll from a rolled material, and controlling a rolled material tension using a looper torque command value or a rolling roll rotation speed command value as an operation amount. Providing a calculator and a tension controller, wherein the method described above,
Alternatively, the tension measurement value calculated by another method is input to the control parameter calculator and the tension controller, and the control parameter calculator uses the tension measurement value to calculate the tension between the stand and the rolled material caused by the bending rigidity. The influence of deflection is taken into account by a predetermined calculation formula based on the theory of material mechanics, the correction rate of the apparent elastic modulus of the rolled material is obtained, and the value of the tension control parameter is calculated based on the value of the correction rate. The input to the tension controller is to calculate and output the value of the manipulated variable using the tension control parameter value.

【0012】[0012]

【発明の実施の形態および実施例】本発明を用いれば、
鋼板の自重や曲げ剛性、およびそれらに起因する圧延材
たわみを、材料力学の理論に基づいて適切に考慮するこ
とにより、張力測定値を正しく算出可能となるととも
に、張力制御系のパラメータの値を、適切に変更するこ
とにより、張力制御の性能をつねに望ましい状態に保つ
ことができ、張力の安定化を通して、品質や生産性の向
上に寄与する。
Embodiments and Examples of the present invention
By properly considering the weight and bending stiffness of the steel sheet and the bending of the rolled material due to them, based on the theory of material mechanics, it is possible to calculate the tension measurement value correctly and to set the parameter value of the tension control system. By properly changing the tension, the performance of the tension control can always be maintained in a desirable state, and the quality and productivity can be improved through the stabilization of the tension.

【0013】図1の各部はつぎのように働く。まず押し
下げ力検出器8は、圧延材1からルーパーロール6に働
く押し下げ力FL [N] を検出し、圧延材張力算出器9に
入力する。該張力算出器9では、実効張力T-v[N] とF
L との間のつぎの関係式を用いて、T-v,Tの値を算出
し、張力制御パラメータ算出器10と張力制御器11へ
入力する。
Each part of FIG. 1 works as follows. First, the pressing force detector 8 detects the pressing force F L [N] acting on the looper roll 6 from the rolled material 1 and inputs the detected force to the rolled material tension calculator 9. The tension calculator 9 calculates the effective tension T -v [N] and F
The values of T -v and T are calculated using the following relational expression between L and T, and are input to the tension control parameter calculator 10 and the tension controller 11.

【0014】[0014]

【数1】 ただし、 L1 : 上流側圧延スタンドからルーパーまでの水平距
離[m] L2 : ルーパーから下流側圧延スタンドまでの水平距
離[m] T-vB :圧延材自重を無視した場合、圧延材がルーパー
から離れるときの実効張力値[N] 注)LR =L1 +L2 が成り立つ。
(Equation 1) However, L 1: the horizontal distance from the upstream side rolling stand until the looper [m] L 2: the horizontal distance from the looper to the downstream side rolling stand [m] T -vB: Ignoring the rolled material to its own weight, the rolling material looper Effective tension value when moving away from [N] Note) L R = L 1 + L 2 holds.

【0015】(6a)式と(6b)式とは、接続点T-v
=T-vB において、FL および∂FL /∂T-vの値がそ
れぞれ等しい。通常はT-v>T-vB が成り立ち、FL
(6a)式で表わされる。(6a)式において、(3)
式のFLBに相当する部分は第3項であり、(3)式と異
なり実効張力T-vに依存して変化する。上式の概略導出
過程とFL の具体例のグラフは後で示す。
Equations (6a) and (6b) are defined by the connection point T -v
= In T -VB, the value of F L and ∂F L / ∂T -v are equal, respectively. Usually holds the T -v> T -vB, F L is represented by (6a) equation. In the equation (6a), (3)
The part corresponding to FLB in the equation is the third term, which varies depending on the effective tension T- v , unlike equation (3). Graph embodiment of a schematic deriving process and F L of the above formula will be shown later.

【0016】つぎに張力制御パラメータ算出器10で
は、実効張力T-vの値を用いて、張力制御パラメータ値
を算出し、張力制御器11に値を入力する。張力制御器
では、ルーパートルク指令値(=ルーパー電流指令値)
を操作量としてPID[P(比例)+I(積分)+D
(微分)]制御方式で張力制御を行なう。このとき操作
量uの算出式(制御側)は公知の次式で与えられる。
Next, the tension control parameter calculator 10 calculates a tension control parameter value using the value of the effective tension T- v , and inputs the value to the tension controller 11. In the tension controller, looper torque command value (= looper current command value)
[P (proportional) + I (integral) + D
(Differential)] Tension control is performed by the control method. At this time, the calculation formula (control side) of the operation amount u is given by the following known formula.

【数2】 ここで、 t:時刻[s] e:張力制御偏差([張力目標値]−[張力算出値
(T)])[N] KP ,TI ,TD :制御パラメータ(制御パラメータ算
出器にて値を求める) 制御パラメータの内、TI ,TD は定数とし、KP の値
を、次式により算出する。 KP =KPO/cTL [N] (12) ここで、
(Equation 2) Here, t: time [s] e: tension control deviation ([tension target value] − [tension calculation value (T)]) [N] K P , T I , T D : control parameters (control parameter calculator Among the control parameters, T I and T D are constants, and the value of K P is calculated by the following equation. K P = K PO / c TL [N] (12) where:

【数3】 ただし、 cTL:たわみを考慮したときの、圧延材の見かけの弾性
係数の修正率(0<cTL<1) εTS:スタンド間圧延材のバネ定数[N/m] LBC:スタンド間圧延材の、たわみによる長さの増分
[m] KPO:正定数[N] 上のcTLを表わす式は、圧延材のたわみを考慮したとき
の、張力の時間的変化を表わす微分方程式より導出され
る。またcTLεTSは、スタンド間圧延材の見かけのバネ
定数を表わす。
(Equation 3) Here, c TL : Correction rate of apparent elastic modulus of the rolled material in consideration of deflection (0 <c TL <1) ε TS : Spring constant between stands [N / m] L BC : Between stands The increment of the length of rolled material due to deflection [m] K PO : Positive constant [N] The equation representing c TL on the above equation is obtained from the differential equation representing the temporal change in tension when the deflection of rolled material is considered. Derived. Further, c TL ε TS represents an apparent spring constant of the rolled material between stands.

【0017】従来制御ではKP の値はKPOに等しく定数
であったのに対して、本発明ではKP の値をcTLに反比
例させて変化させる。ここで∂LBC/∂Tの値はつねに
負で、Tが大きくなるとともに単調に増加して0に近づ
くため、修正率cTLの値は1より小さく、張力Tが大き
くなるにしたがって1に近づく。したがって、張力が十
分大きいときは、本発明と従来制御との違いは小さい
が、張力が小さいときは違いが大きい。KP の値を、
(12)式のようにcTLに反比例させることにより、c
TLの値の変化による張力動特性の変動を相殺して、制御
性能をつねに一定の望ましい状態に保つことができる。
一方、KPO,TI ,TD の値は、PID制御系設計にお
ける既存の方法で値を定めればよい。また制御開始時の
uの初期値は、(6a)式右辺の実効張力T-vにT-v
目標値を代入して得られる押し下げ力FL の値から求め
ればよい。
In the conventional control, the value of K P is a constant equal to K PO , whereas in the present invention, the value of K P is changed in inverse proportion to c TL . Here, the value of ∂L BC / ∂T is always negative, monotonically increases as T increases, and approaches 0, so the value of the correction rate c TL is smaller than 1, and increases as the tension T increases. Get closer. Therefore, when the tension is sufficiently large, the difference between the present invention and the conventional control is small, but when the tension is small, the difference is large. The value of K P
By making it inversely proportional to c TL as in equation (12), c
The control performance can always be kept in a constant desirable state by offsetting the fluctuation of the tension dynamic characteristic due to the change of the TL value.
On the other hand, the values of K PO , T I , and T D may be determined by existing methods in PID control system design. The initial value of u at the start of control can be determined from the value of depressing force F L obtained by substituting the target value of T -v the effective tension T -v of (6a) right side of the equation.

【0018】上式においてεTS,∂LBC/∂Tの値はお
のおの次式で算出し、cTLの計算に用いる。
In the above equation, the values of ε TS and ∂L BC / ∂T are calculated by the following equations, respectively, and used for calculating cTL .

【数4】 ただし、 LCi(i=1,2):スタンド間圧延材の、自重に起因
するたわみによる長さの増分[m] i=1,2はそれぞれ、上流側圧延スタンド〜ルーパー
間、ルーパー〜下流側スタンド間における値を表わす。 LB :スタンド間圧延材の、曲げ剛性起因のたわみによ
る長さの増分[m] T-vCi(i=1,2):圧延材がパスライン下部のガイ
ドに接触するときの、実効張力値[N] ,iの意味は上と
同様。 LCCi (i=1,2):実効張力値がT-vCiのときの、
Ciの値。 LHC:接触余裕[m] 、0または正の定数とする。 A:圧延材断面積[m2 ]
(Equation 4) Here, L Ci (i = 1, 2): length increment [m] of the rolled material between stands due to deflection caused by its own weight, i = 1, 2 is between the upstream rolling stand and the looper, and between the looper and the downstream, respectively. Indicates the value between the side stands. L B: a stand-rolled material, the bending increment of length due to bending stiffness due [m] T -vCi (i = 1,2): when the rolled material is in contact with the guide of the lower pass line, the effective tension value [N] and i have the same meaning as above. L CCi (i = 1, 2): When the effective tension value is T- vCi ,
The value of L Ci . L HC : Contact margin [m], 0 or a positive constant. A: Rolled material cross-sectional area [m 2 ]

【0019】以上の、FL および∂LBC/∂Tを表わす
式の、概略導出過程をつぎに示す。まず、ルーパーから
の押し上げ力と張力とが働く圧延材の、上流側スタンド
からルーパーまでの空間経路y(x)を表わす微分方程
式は、材料力学の理論に基づいて次式で表わされる。
[0019] The above, equations representing the F L and ∂L BC / ∂T, following the outline deriving process. First, a differential equation representing a spatial path y (x) from the upstream stand to the looper of a rolled material on which a pushing force and a tension from the looper act is expressed by the following equation based on the theory of material mechanics.

【数5】 ただし、 x:上流側スタンドを起点としたときの、圧延方向水平
距離[m] y:圧延材の空間経路[m] c5 ,c6 :積分定数
(Equation 5) However, x: when the upstream stand and a starting point, rolling direction horizontal distance [m] y: spatial path of the strip [m] c 5, c 6 : integration constant

【0020】上式は、定数係数の2次線形微分方程式で
あり、境界条件を以下のように定めることにより、解析
解(厳密解)を求めることができる。
The above equation is a second-order linear differential equation of a constant coefficient, and an analytical solution (exact solution) can be obtained by defining the boundary conditions as follows.

【0021】つぎにルーパー押し下げ力FL について
は、ルーパーより上流側圧延材からの力FL1と、下流側
圧延材からの力FL2とに分けて考えると、FL1は材料力
学の理論より次式で表わされる。
[0021] The next looper downward force F L is the force F L1 from the upstream side rolling member from the looper, when considered separately in the force F L2 from the downstream side rolling material, F L1 is the theoretical material Mechanics It is expressed by the following equation.

【数6】 ただし、 M:圧延材垂直断面に働くモーメント[Nm] FL2も同様に表され、したがってFL (=FL1+FL2
は、(24)式の解より求められる。
(Equation 6) However, M: moment acting on the rolled material vertical section [Nm] F L2 is also expressed in the same manner, thus F L (= F L1 + F L2)
Is obtained from the solution of equation (24).

【0022】一方、LBCについても、上と同様に上流側
圧延材に関する値LBC1 と、下流側圧延材に関する値L
BC2 とに分けると、LH <<L1 のときLBC1 は次式で
表される。
On the other hand, as for L BC , the value L BC1 for the upstream rolled material and the value L BC for the downstream rolled material are
If divided into a BC2, L BC1 when L H << L 1 is expressed by the following equation.

【数7】 BC2 についても同様であり、したがってLBC(=L
BC1 +LBC2 )は、(24)式の解より求められる。
(Equation 7) The same applies to L BC2 , so that L BC (= L
BC1 + LBC2 ) is obtained from the solution of the equation (24).

【0023】ただし(24)式の厳密解はかなり複雑で
あり、その上T-vの符号によって異なった形となる。そ
こでオンライン計算に適するように、厳密解の近似式
(簡易式)を導き、その近似式を用いて、FL ,∂LBC
/∂Tを表わす簡易式[(6),(16)式]を導い
た。図3、図4に、図2と同じ場合において、T-vとF
LおよびcTLとの関係をそれぞれ表わすグラフを、T-v
>0の範囲で示す。ただし圧延材厚みは、図3では10
[mm]、図4では図2と同じく3[mm]である。図3では、
,,の部分が、(6a)式の第1,2,3項を表
わし、第3項の大きさは無視できないことがわかる。ま
た図4より、修正率cTLの値は、実効張力変化とともに
大きく変化し、高精度の張力制御ではこの変化の考慮が
必要であることがわかる。また両図ともに、簡易式は厳
密解の良好な近似となっている。
However, the exact solution of equation (24) is rather complicated, and has a different shape depending on the sign of Tv . So to suit the line calculation leads approximation formula of exact solutions (simple expression), by using the approximate expression, F L, ∂L BC
A simplified expression [Equation (6), (16)] representing / ∂T was derived. FIGS. 3 and 4 show that T- v and F in the same case as FIG.
Graphs respectively showing the relationship between L and c TL are shown by T -v
> 0. However, the rolled material thickness is 10 in FIG.
In FIG. 4, it is 3 [mm] as in FIG. In FIG.
,, Represent the first, second, and third terms of equation (6a), and it can be seen that the magnitude of the third term cannot be ignored. FIG. 4 also shows that the value of the correction rate c TL greatly changes with a change in the effective tension, and it is necessary to consider this change in high-precision tension control. In both figures, the simplified formula is a good approximation of the exact solution.

【0024】図5に、本発明を用いた張力制御の実施例
を、従来制御との比較で示す。図5(a),(b)はそ
れぞれ、従来制御、本発明を用いた制御における、外乱
発生時の張力の時間的変化を張力目標値が大きい場合と
小さい場合とに分けて示している。外乱発生前の張力は
目標値に一致している。ここでの従来制御とは、修正率
TLの値を1に固定した場合である。また張力制御への
外乱としては、圧延材の厚み変動に起因する圧延材速度
変動などが考えられる。両制御ともに、図2,3,4と
同じ条件の下での制御であり、パラメータ値KPO
I ,TD に関しては、張力Tが十分大きいときに制御
系の挙動が望ましい状態となるように、両制御ともに同
じ値に設定する。
FIG. 5 shows an embodiment of tension control using the present invention in comparison with conventional control. FIGS. 5A and 5B show the temporal change of the tension when the disturbance occurs in the conventional control and the control using the present invention, separately for a case where the tension target value is large and a case where it is small. The tension before the occurrence of the disturbance matches the target value. Here, the conventional control is a case where the value of the correction rate c TL is fixed to 1. Further, as a disturbance to the tension control, a change in the speed of a rolled material due to a change in the thickness of the rolled material can be considered. Both controls are performed under the same conditions as in FIGS. 2, 3, and 4, and the parameter values K PO ,
Regarding T I and T D , both controls are set to the same value so that the behavior of the control system becomes a desirable state when the tension T is sufficiently large.

【0025】図5からわかるように、張力が大きいとき
は両制御ともに張力の挙動はほぼ同じである。一方張力
が小さいときは、従来制御では目標値からの最大偏差や
張力の目標値への整定時間はいずれも大きくなり、制御
性能が悪化しているのに対して、本発明を用いた制御で
は、制御性能は張力が変化してもほとんど変わらず、良
好な状態を保っている。
As can be seen from FIG. 5, when the tension is large, the behavior of the tension is substantially the same in both controls. On the other hand, when the tension is small, in the conventional control, the maximum deviation from the target value and the settling time of the tension to the target value are all large, and the control performance is deteriorated, whereas in the control using the present invention, In addition, the control performance hardly changes even when the tension changes, and the control performance is maintained in a good state.

【0026】[0026]

【発明の効果】以上の説明によって明らかなように、本
発明を用いれば、熱間連続圧延において、圧延材からス
タンド間ルーパーに作用する押し下げ力に基づいて、圧
延材の張力を正しく算出することができる。さらに張力
制御において、張力、ルーパー高さ、圧延材厚み、圧延
速度などの値が種々変化しても、制御性能をつねに望ま
しい状態に保つことができる。
As is apparent from the above description, according to the present invention, in hot continuous rolling, it is possible to correctly calculate the tension of a rolled material based on the pressing force acting on the looper between stands from the rolled material. Can be. Further, in the tension control, even if various values such as the tension, the height of the looper, the thickness of the rolled material, and the rolling speed change, the control performance can always be maintained in a desirable state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱間連続圧延におけるスタンド間張力制御系の
ブロック線図。
FIG. 1 is a block diagram of a tension control system between stands in hot continuous rolling.

【図2】スタンド間における圧延材の空間経路を表わす
図。
FIG. 2 is a diagram showing a spatial path of a rolled material between stands.

【図3】実効張力T-vとルーパーに働く押し下げ力FL
との関係を表わす図。
[Figure 3] The effective tension T -v and acting on the looper downward force F L
FIG.

【図4】実効張力T-vと修正率cTLとの関係を表わす
図。
FIG. 4 is a diagram illustrating a relationship between an effective tension T- v and a correction rate cTL .

【図5】本発明の実施例における、張力の時間的変化
を、従来制御の場合と比較して示した図。
FIG. 5 is a diagram showing a temporal change in tension in the embodiment of the present invention in comparison with the case of conventional control.

【符号の説明】[Explanation of symbols]

1 圧延材 2,3 圧延ロール 4,5 圧延モータ 6 ルーパー 7 ルーパーモータ 8 圧延材からルーパーに作用する押し下げ力検出
器 9 圧延材張力算出器 10 張力制御パラメータ算出器 11 張力制御器
DESCRIPTION OF SYMBOLS 1 Rolled material 2, 3 Roll roll 4, 5 Rolling motor 6 Looper 7 Looper motor 8 Depressing force detector which acts on a looper from a rolled material 9 Rolled material tension calculator 10 Tension control parameter calculator 11 Tension controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱間連続圧延のスタンド間において、ル
ーパーロールまたは張力測定専用ロールで圧延材を持ち
上げる際の、圧延材から該ロールに作用する押し下げ力
に基づいて圧延材張力を測定し制御する方法において、
該押し下げ力の検出器と張力算出器とを設け、押し下げ
力検出器では所定のサンプリング周期ごとに押し下げ力
を検出して張力算出器へ入力し、張力算出器では同じ周
期で該押し下げ力検出値に基づいて、圧延材自重と曲げ
剛性の影響を、材料力学の理論に基づく所定の計算式に
より考慮して、圧延材張力測定値を算出することを特徴
とする熱間連続圧延における圧延材張力測定・制御方
法。
When a rolled material is lifted by a looper roll or a roll dedicated to tension measurement between stands of hot continuous rolling, the rolled material tension is measured and controlled based on a pressing force acting on the rolled material from the rolled material. In the method,
The depressing force detector and the tension calculator are provided. The depressing force detector detects the depressing force at predetermined sampling cycles and inputs the detected depressing force to the tension calculator. The tension calculator detects the depressing force detection value at the same cycle. The rolled material tension in hot continuous rolling is characterized by calculating the measured value of the rolled material tension, taking into account the effects of the rolled material's own weight and bending stiffness on the basis of a predetermined calculation formula based on the theory of material mechanics. Measurement and control method.
【請求項2】 熱間連続圧延のスタンド間において、ル
ーパーロールまたは張力測定専用ロールで圧延材を持ち
上げ圧延材から該ロールに作用する押し下げ力に基づい
て張力を測定するとともに、ルーパートルク指令値また
は圧延ロール回転速度指令値を操作量として圧延材張力
を制御するようにした張力制御方法において、制御パラ
メータ算出器、および張力制御器を設け、請求項1に記
載の方法で算出された張力測定値を制御パラメータ算出
器と張力制御器へ入力し、制御パラメータ算出器では該
張力測定値を用いて、圧延材自重と曲げ剛性により生じ
るスタンド間圧延材のたわみの影響を、材料力学の理論
に基づく所定の計算式により考慮して、圧延材の見かけ
の弾性係数の修正率を求め、該修正率の値に基づいて張
力制御パラメータの値を算出して張力制御器へ入力し、
張力制御器では該張力制御パラメータ値を用いて、張力
測定値が張力目標値に一致するように操作量の値を算出
し出力することを特徴とする熱間連続圧延における圧延
材張力測定・制御方法。
2. Between the stands of hot continuous rolling, the rolled material is lifted by a looper roll or a roll dedicated to tension measurement, the tension is measured based on the pressing force acting on the roll from the rolled material, and the looper torque command value or A tension control method for controlling a rolled material tension using a rolling roll rotation speed command value as an operation amount, comprising a control parameter calculator and a tension controller, wherein a measured tension value calculated by the method according to claim 1. Is input to the control parameter calculator and the tension controller, and the control parameter calculator uses the measured tension value to determine the effect of the deflection of the rolled material between stands caused by the rolled material's own weight and bending rigidity based on the theory of material mechanics. The correction rate of the apparent elastic modulus of the rolled material is determined in consideration of a predetermined calculation formula, and the tension control parameter is determined based on the value of the correction rate. Calculate the value and input it to the tension controller.
The tension controller uses the tension control parameter value to calculate and output a manipulated variable value so that the measured tension value matches the target tension value, and outputs the value of the rolled material tension in hot continuous rolling. Method.
JP8222725A 1996-08-23 1996-08-23 Method for measuring and controlling tension of rolled stock in continuous hot rolling Withdrawn JPH1058024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8222725A JPH1058024A (en) 1996-08-23 1996-08-23 Method for measuring and controlling tension of rolled stock in continuous hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8222725A JPH1058024A (en) 1996-08-23 1996-08-23 Method for measuring and controlling tension of rolled stock in continuous hot rolling

Publications (1)

Publication Number Publication Date
JPH1058024A true JPH1058024A (en) 1998-03-03

Family

ID=16786932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8222725A Withdrawn JPH1058024A (en) 1996-08-23 1996-08-23 Method for measuring and controlling tension of rolled stock in continuous hot rolling

Country Status (1)

Country Link
JP (1) JPH1058024A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798495A (en) * 2011-05-26 2012-11-28 三菱电机株式会社 Tension force detection mechanism
CN102989783A (en) * 2012-12-25 2013-03-27 江西稀有稀土金属钨业集团有限公司 Automatic adjustment method and system of speed synchronism of casting machine and rolling machine
CN112050987A (en) * 2019-06-07 2020-12-08 特克斯玛格销售有限公司 Method for detecting tensile stress of circumferential belt
CN117505551A (en) * 2023-09-05 2024-02-06 江苏广兴丰茂科技有限公司 Workpiece quality control method and system for deformed steel continuous rolling process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798495A (en) * 2011-05-26 2012-11-28 三菱电机株式会社 Tension force detection mechanism
CN102989783A (en) * 2012-12-25 2013-03-27 江西稀有稀土金属钨业集团有限公司 Automatic adjustment method and system of speed synchronism of casting machine and rolling machine
CN112050987A (en) * 2019-06-07 2020-12-08 特克斯玛格销售有限公司 Method for detecting tensile stress of circumferential belt
CN112050987B (en) * 2019-06-07 2024-04-26 特克斯玛格销售有限公司 Method for detecting tensile stress of circumferential band
CN117505551A (en) * 2023-09-05 2024-02-06 江苏广兴丰茂科技有限公司 Workpiece quality control method and system for deformed steel continuous rolling process
CN117505551B (en) * 2023-09-05 2024-04-09 江苏广兴丰茂科技有限公司 Workpiece quality control method and system for deformed steel continuous rolling process

Similar Documents

Publication Publication Date Title
JPH1058024A (en) Method for measuring and controlling tension of rolled stock in continuous hot rolling
KR100534499B1 (en) Depressing position setting method for rolling plate
JPH0230766B2 (en)
JP2518746B2 (en) Hot rolling control method
JP2963240B2 (en) Tension control method for tandem rolling mill
JP3542896B2 (en) Thickness control method in rolling of steel sheet
JPS637846B2 (en)
JPH0698366B2 (en) Plate shape control method
JP3219975B2 (en) Roll bearing oil film thickness correction method for rolling mills
JPH08238513A (en) Method for calculating tension in tandem mill and controller
JP4238621B2 (en) Method for controlling meandering and manufacturing method of rolled steel sheet
KR100527065B1 (en) Method for compensating the tention between each stands of press mill
JP3125668B2 (en) Thickness control method in continuous rolling mill
JPH09136108A (en) Controller for hot tandem mill
JP3085851B2 (en) Model identification device and control device for hot rolling mill
JPH0671614B2 (en) Automatic thickness control device
JP3252991B2 (en) Rolling control method for continuous rolling mill
JP3490305B2 (en) Rolling mill thickness control device
JPS6011571B2 (en) Slip detection method and inter-stand tension control method and device using the same
JP2960011B2 (en) Method and apparatus for controlling thickness during acceleration and deceleration in rolling
JP2723003B2 (en) Control method of hot continuous rolling mill
SU512815A1 (en) The method of controlling the thickness of the rolled strip
JP3680806B2 (en) Method and apparatus for suppressing meandering of plate in rolling mill
JPH0714527B2 (en) Automatic thickness control device
CN115636312A (en) Self-weight correction method for elevator car

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104