JPH1057332A - Manufacture of bioelectrode - Google Patents

Manufacture of bioelectrode

Info

Publication number
JPH1057332A
JPH1057332A JP8225457A JP22545796A JPH1057332A JP H1057332 A JPH1057332 A JP H1057332A JP 8225457 A JP8225457 A JP 8225457A JP 22545796 A JP22545796 A JP 22545796A JP H1057332 A JPH1057332 A JP H1057332A
Authority
JP
Japan
Prior art keywords
bioelectrode
polymer gel
monomer
electric conducting
sheet member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8225457A
Other languages
Japanese (ja)
Other versions
JP3320315B2 (en
Inventor
Yoshikazu Kobayashi
由和 小林
Shuichi Sasahara
秀一 笹原
Kazuhiro Yoshikawa
吉川  和宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP22545796A priority Critical patent/JP3320315B2/en
Publication of JPH1057332A publication Critical patent/JPH1057332A/en
Application granted granted Critical
Publication of JP3320315B2 publication Critical patent/JP3320315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a bioelectrode having a stable performance in a high speed and high efficiency by forming bioelectrode by adhering a not-electric conducting supporting member mounting an electrode device and a terminal on the surface of a highly electric conducting polymer gel obtained by photopolymerization of a monomer composition filled in a cavity formed on a sheet material. SOLUTION: A sheet material 1 is unwound from a roll and transported to a definite direction, a cavity 3 is continuously formed on the sheet by a thermoforming means 2 and a monomer composition liquid 4 is injected into the cavity 3 by a monomer composition injection means 14. The monomer composition 4 is polymerized by irradiating ultraviolet rays by an ultraviolet ray irradiation apparatus 5 to prepare a sticky and electric conducting polymer gel. Then a not-electric conducting supporting member 7 mounting an electrode device and a terminal 6 on the surface thereof is arranged on the surface of the sheet material 1 and is adhered to the surface of the polymer gel using the sticking property of the electric conducting polymer gel. A bioelectrode 9 is obtained by punching the sheet material 1 together with the not-electric conducting supporting member 7 to a desired shape by every cavities 3 by a punching means 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、心電図の測定、体
脂肪の測定、電気刺激治療等を行う際に、生体の皮膚面
に貼着して測定や治療を行うための生体電極の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a bioelectrode for performing measurement and treatment by attaching it to the skin surface of a living body when performing electrocardiogram measurement, body fat measurement, electrical stimulation therapy, and the like. It is about.

【0002】[0002]

【従来の技術】心電、筋電、脳波の測定等を行うには、
人体より発する微弱な電位を検出する。一方、体脂肪の
測定や電気刺激治療等を行うときには、人体の適正箇所
に電流を流す。これらの測定や治療に際しては、外部装
置と電気的に接続された電極(生体電極)を人体の適正
位置に貼付する。
2. Description of the Related Art In order to measure electrocardiograms, myoelectrics, brain waves, etc.
Detects weak electric potential emitted from the human body. On the other hand, when performing body fat measurement, electrical stimulation treatment, or the like, an electric current is applied to an appropriate part of the human body. At the time of these measurements and treatments, electrodes (biological electrodes) electrically connected to external devices are attached to appropriate positions on the human body.

【0003】例えば心電の測定を行う場合、電極に設け
た素子部を人体の皮膚面に接触させただけでは、精度よ
く測定することができないため、通常、生体電極の素子
部を、導電性を有するクリームやペースト(水糊に電解
質塩を含有させたもの)を介して人体の皮膚面に密着さ
せるようにしている。しかし、上記クリームやペースト
を人体の測定部位に予め塗布する作業が必要であるた
め、塗布作業が煩わしく、また被測定者に不快感を与え
るなどの弊害がある。
For example, when measuring the electrocardiogram, it is not possible to measure the electrocardiogram with high accuracy simply by bringing the element portion provided on the electrode into contact with the skin surface of a human body. The paste is made to adhere to the skin surface of the human body via a cream or paste having an electrolyte salt in water paste. However, since it is necessary to apply the cream or paste to the measurement site of the human body in advance, the application operation is troublesome, and there is an adverse effect such as giving the subject a discomfort.

【0004】また、通常は、被測定者ごとに1つの電極
を繰り返し使用しているため、衛生上の問題や皮膚感染
のおそれ、さらには使用時に被測定者に不快感を与える
といった問題があるため、安価で使い捨てが可能な生体
電極の提供が望まれている。そこで、ホック型端子を有
する電極素子の下部にスポンジなどの多孔質部材を固定
し、このスポンジ部分に導電性ペーストを介在させるこ
とにより構成される水糊電極が提案された(米国特許第
3817252号明細書)。しかし、このような従来の
水糊電極では、長時間連続使用した時に導電性ペースト
の乾燥性大きく、それに伴ってインピーダンスの上昇が
生じ、測定ができなくなる等の欠点があった。
[0004] Also, since one electrode is usually used repeatedly for each subject, there is a problem of hygiene and a possibility of skin infection, and further, there is a problem that the subject is uncomfortable when used. Therefore, it is desired to provide an inexpensive and disposable bioelectrode. Therefore, a water glue electrode has been proposed in which a porous member such as a sponge is fixed below an electrode element having a hook-type terminal, and a conductive paste is interposed in the sponge portion (US Pat. No. 3,817,252). Specification). However, such a conventional water-glue electrode has a drawback that the conductive paste has a large drying property when used continuously for a long period of time, which causes an increase in impedance and makes measurement impossible.

【0005】この欠点を改良すべく、導電性ペーストに
代わって導電性のソリッドゲルを用いた同様の電極も知
られている(特開昭52−95895号公報、同55−
81635号公報、同57−131428号公報)。従
来のソリッドゲルを用いた生体電極は、ゲルシートを打
ち抜いて円盤状等所定の形状にした後、これを、電極素
子及び端子を装着(配置)した非導電性支持部材とセパ
レートシートであるシート状樹脂材料とで挟着して製造
される。そのため、ゲル部分の打ち抜き、ゲルの貼り替
え等の製造上の操作が煩雑であり、また、ゲル部分の打
ち抜き、ゲルの貼り替え時の製造設備の不安定性から高
速かつ効率的に安定した性能の生体電極を得ることが困
難であった。また、ゲル部分の打ち抜きの際に打ち抜き
刃へのゲルの付着が激しく、頻繁に打ち抜き刃の洗浄を
する必要があり、かつ刃の消耗も激しいという欠点もあ
る。
In order to improve this drawback, a similar electrode using a conductive solid gel instead of a conductive paste is also known (Japanese Patent Application Laid-Open Nos. 52-95895 and 55-9555).
81635 and 57-131428). A bioelectrode using a conventional solid gel is formed by punching a gel sheet into a predetermined shape such as a disc, and then forming the sheet into a non-conductive support member on which electrode elements and terminals are mounted (arranged) and a separate sheet. It is manufactured by sandwiching it with a resin material. For this reason, manufacturing operations such as punching of the gel portion and replacement of the gel are complicated, and high-speed and efficient stable performance due to the instability of the manufacturing equipment at the time of punching the gel portion and replacing the gel. It was difficult to obtain a bioelectrode. In addition, when the gel portion is punched, the gel is strongly attached to the punching blade, and it is necessary to frequently clean the punching blade, and there is also a drawback that the blade is greatly consumed.

【0006】[0006]

【発明が解決しようとする課題】上述の欠点を解消する
ものとして、所定の凹部を形成したベース部材の凹部に
導電性ゲルを充填した後、硬化させ、あらかじめ粘着層
を形成したバッキング部材及び電極を貼着した生体電極
の製造方法が特開昭61-259644 号公報に記載されてい
る。この公報の実施例によると、ベース部材の凹部に、
カラヤゴム、グリセリンおよび塩化ナトリウムを混合し
た液状の導電性ゲルを充填し、約1〜2時間程度の放置
あるいは80℃程度で5分間加熱することにより硬化さ
せ、ついで接着剤が塗布されたバッキング部材に電極素
子および端子(金属スナップ)を取付け、このバッキン
グ部材を前記ベース部材の表面に貼着して生体電極を製
造している。
In order to solve the above-mentioned drawbacks, a backing member and an electrode in which a conductive gel is filled into a concave portion of a base member having a predetermined concave portion and then cured to form an adhesive layer in advance. A method for producing a bioelectrode to which is adhered is described in JP-A-61-259644. According to the embodiment of this publication,
Filled with a liquid conductive gel mixed with karaya rubber, glycerin and sodium chloride, left for about 1 to 2 hours or cured by heating at about 80 ° C. for 5 minutes, then to the backing member coated with adhesive An electrode element and a terminal (metal snap) are attached, and this backing member is attached to the surface of the base member to manufacture a bioelectrode.

【0007】この方法では、ゲル部分の打ち抜き、ゲル
の貼り替え等の製造上の操作の煩雑さは改善されるが、
連続工程において製造を行う上で、硬化までに要する時
間が非常に長いか、あるいは高温加熱によるベース部材
の熱変形等の問題がある。また、前述した導電性ゲルを
凹部に充填後、放冷固化する方法や、実開昭60-55405号
公報に示されるような熱重合による架橋反応でも、固化
またはゲルの硬化までの時間が長いという問題がある。
また、熱重合の場合、導電性高分子ゲルを形成するため
のモノマー配合液を加熱し、重合反応させるが、この重
合反応は発熱反応のため、さらに高温になり、ベース部
材が熱変形するという問題がある。これらの理由から、
従来の製造方法では、連続工程により高速にかつ効率的
に安定した性能の生体電極を製造することが困難であ
る。
According to this method, the complexity of manufacturing operations such as punching of a gel portion and replacement of a gel can be improved.
In manufacturing in a continuous process, there is a problem that the time required for curing is extremely long, or the base member is thermally deformed due to high-temperature heating. In addition, after filling the conductive gel into the recesses described above, a method of allowing to cool and solidify, or a crosslinking reaction by thermal polymerization as shown in Japanese Utility Model Application Laid-Open No. 60-55405, the time until solidification or curing of the gel is long. There is a problem.
In addition, in the case of thermal polymerization, a monomer-mixed liquid for forming a conductive polymer gel is heated to cause a polymerization reaction. However, since the polymerization reaction is an exothermic reaction, the temperature becomes higher and the base member is thermally deformed. There's a problem. for these reasons,
In the conventional manufacturing method, it is difficult to rapidly and efficiently manufacture a bioelectrode having stable performance by a continuous process.

【0008】本発明の目的は、上述の技術的課題を解決
し、高速でかつ効率よく、安定した性能の生体電極を製
造することが可能な生体電極の製造方法を提供すること
である。
An object of the present invention is to solve the above-mentioned technical problems and to provide a method for manufacturing a bioelectrode capable of manufacturing a bioelectrode having stable performance at high speed and efficiently.

【0009】[0009]

【課題を解決するための手段】本発明の生体電極の製造
方法は、シート部材に形成された凹部に、光重合開始剤
および重合性モノマーを含むモノマー配合液を充填し、
この凹部内で光重合を行って粘着性のある導電性高分子
ゲルとなし、ついでこの高分子ゲルの表面に、電極素子
と端子を取り付けた非導電性支持部材を貼着して生体電
極となすことを特徴とするものである。
According to a method of manufacturing a bioelectrode of the present invention, a concave portion formed in a sheet member is filled with a monomer mixture containing a photopolymerization initiator and a polymerizable monomer.
Photopolymerization is performed in the recess to form a sticky conductive polymer gel, and then a non-conductive support member with an electrode element and a terminal attached to the surface of the polymer gel to form a bioelectrode. It is characterized by doing.

【0010】本発明によれば、光重合開始剤を前記モノ
マー配合液に添加して光重合を行わせることにより、短
時間でゲル硬化反応を完結させることが出来る。また、
光重合では、モノマー配合液をあらかじめ冷却しておく
ことにより、重合反応時の温度上昇を抑えることができ
る。そのため、凹部を有する樹脂成型品は熱変形のおそ
れがなく、また高い耐熱変形性も要求されないので、シ
ート部材として使用するシート材料の選択の幅も広が
り、コスト的にも有利である。
According to the present invention, the photocuring initiator can be added to the above-mentioned monomer-containing solution to carry out photopolymerization, whereby the gel curing reaction can be completed in a short time. Also,
In the photopolymerization, the temperature rise during the polymerization reaction can be suppressed by cooling the monomer mixture in advance. For this reason, the resin molded product having the concave portion does not have a risk of thermal deformation and does not require high thermal deformation resistance, so that the range of choice of a sheet material used as a sheet member is widened, which is advantageous in terms of cost.

【0011】また、本発明の方法によって得られる生体
電極は、導電性高分子ゲルが内部に封入された構造を有
するため、製造中や輸送、使用時の取扱いが容易であ
る。さらに導電性高分子ゲルを封入したことにより、多
数の生体電極を1つにまとめて包装可能なため包装上の
手間が軽減される。加えて、本発明の方法によれば、導
電性高分子ゲルは不要部分が出ないので、歩留りが高
く、省資源化にも寄与する。
The bioelectrode obtained by the method of the present invention has a structure in which a conductive polymer gel is encapsulated, so that it is easy to handle during manufacture, transportation and use. Further, by encapsulating the conductive polymer gel, a large number of bioelectrodes can be packaged together in one, so that the labor for packaging is reduced. In addition, according to the method of the present invention, since unnecessary portions do not appear in the conductive polymer gel, the yield is high, which contributes to resource saving.

【0012】本発明の方法により生体電極を製造するに
あたっては、例えば、前記シート部材を一定方向に移送
し、その移送方向に沿って熱成形工程、モノマー配合液
注入工程および重合工程をこの順に設け、シート部材を
移送しながら前記熱成形工程で連続的にシート部材に多
数の凹部を形成し、形成された各凹部にモノマー配合液
を順次充填し、重合反応を行うのが好ましい。これによ
り、光重合により短時間でゲル硬化反応を完結させるこ
とと相まって、高い生産性で生体電極を製造することが
できるので、本発明の方法は特に大量生産に適してい
る。
In manufacturing a bioelectrode by the method of the present invention, for example, the sheet member is transferred in a certain direction, and a thermoforming step, a monomer compounding liquid injection step and a polymerization step are provided in this order along the transfer direction. Preferably, a large number of recesses are continuously formed in the sheet member in the thermoforming step while the sheet member is being transferred, and the formed recesses are sequentially filled with a monomer compounding liquid to carry out a polymerization reaction. This allows the bioelectrode to be produced with high productivity in combination with the completion of the gel curing reaction in a short time by photopolymerization. Therefore, the method of the present invention is particularly suitable for mass production.

【0013】前記モノマー配合液は、13〜30重量%
の重合性モノマー、16〜65重量%の水、20−65
重量%の多価アルコールおよび2−15重量%の電解質
塩を含む配合液であるのが、皮膚面に対する適度な粘着
性と高い導電性を付与するうえで好ましい。
[0013] The monomer-containing liquid is 13 to 30% by weight.
Polymerizable monomer, 16-65% by weight of water, 20-65
A liquid mixture containing a polyhydric alcohol in an amount of 2% by weight and an electrolyte salt in an amount of 2 to 15% by weight is preferable for imparting appropriate adhesion to the skin surface and high conductivity.

【0014】[0014]

【発明の実施の形態】本発明の生体電極の製造するため
の連続工程の概要を図1に示す。図1において、1はシ
ート部材であり、ロール状に巻回されている。かかるシ
ート部材1はロールから繰り出されて一定方向に移送さ
れながら、熱成形手段2によって連続的に凹部3が形成
される。また、シート部材1の幅方向にも、同様にして
熱成形手段2によって複数の凹部3が形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an outline of a continuous process for producing a bioelectrode of the present invention. In FIG. 1, reference numeral 1 denotes a sheet member, which is wound in a roll shape. The concave portion 3 is continuously formed by the thermoforming means 2 while the sheet member 1 is unreeled from the roll and transported in a certain direction. In the width direction of the sheet member 1, a plurality of recesses 3 are similarly formed by the thermoforming means 2.

【0015】シート部材1としては、熱成形が可能でか
つ後述する導電性高分子ゲルに対して離型性にすぐれた
ものが好ましく、例えばポリプロピレン、ポリエチレン
テレフタレート等のプラスチックシート、あるいは紙な
どを例示することができる。プラスチックシートや紙の
表面には離型性を高めるためにシリコーン処理を施して
もよい。また、シート部材1の厚さは、約0.1〜1m
m、好ましくは約0.3〜0.5mmであるのが適当で
ある。
The sheet member 1 is preferably a sheet member that can be thermoformed and has excellent releasability from a conductive polymer gel described later, for example, a plastic sheet such as polypropylene or polyethylene terephthalate, or paper. can do. The surface of the plastic sheet or paper may be subjected to a silicone treatment to enhance the releasability. The thickness of the sheet member 1 is about 0.1 to 1 m.
m, preferably about 0.3-0.5 mm.

【0016】熱成形手段2としては、例えば内部にヒー
タを内蔵しかつ上下に昇降する雄型と雌型とを備えた成
形装置があげられる。熱成形によって凹部3が形成され
たシート部材1は、モノマー配合液注入手段14に送ら
れ、モノマー配合液4が凹部3内に注入される。つい
で、紫外線照射装置5により紫外線をモノマー配合液4
に照射して重合を行わせ、粘着性のある導電性高分子ゲ
ルを得る。
The thermoforming means 2 includes, for example, a molding apparatus having a built-in heater and a male mold and a female mold which move up and down. The sheet member 1 in which the concave portions 3 are formed by thermoforming is sent to the monomer mixture liquid injection means 14, and the monomer mixture liquid 4 is injected into the concave portions 3. Next, ultraviolet rays are irradiated by the ultraviolet irradiation device 5 to the monomer mixture 4.
To polymerize to obtain a sticky conductive polymer gel.

【0017】重合後、シート部材1の表面に、電極素子
と端子6を取り付けた非導電性支持部材7を配置し、導
電性高分子ゲルの有する粘着性を利用して、高分子ゲル
の表面に貼着する。このとき、シート部材1に形成され
た各凹部3と、非導電性支持部材7に取り付けられた電
極素子と端子6との位置合わせに注意することが必要で
あり、例えば、電極素子と端子6とが凹部3の中央部に
位置するように非導電性支持部材7を貼り合わせる。
After the polymerization, a non-conductive support member 7 having an electrode element and a terminal 6 attached thereto is disposed on the surface of the sheet member 1, and the adhesive property of the conductive polymer gel is used to make use of the adhesive property of the conductive polymer gel. Stick it on At this time, it is necessary to pay attention to the alignment between each concave portion 3 formed in the sheet member 1 and the electrode element attached to the non-conductive support member 7 and the terminal 6. The non-conductive support member 7 is bonded so that the center of the recess 3 is located at the center of the recess 3.

【0018】非導電性支持部材7としては、特に限定さ
れるものではないが、生体電極を人体皮膚面へ貼付する
うえで、伸縮性がなく、柔軟でかつ比較的腰強度の高い
フィルムが好ましい。このようなフィルムとしては、例
えばポリプロピレン、ポリエチレンテレフタレート、ポ
リ塩化ビニル、ポリエチレン等の厚さが10〜500μ
m程度のフィルムがあげられる。
The non-conductive support member 7 is not particularly limited, but is preferably a film which does not have elasticity, is flexible and has relatively high waist strength for sticking the bioelectrode to the human skin surface. . As such a film, for example, the thickness of polypropylene, polyethylene terephthalate, polyvinyl chloride, polyethylene, etc. is 10 to 500 μm.
m.

【0019】非導電性支持部材7を貼付後、打抜き手段
8にて、凹部3ごとにシート部材1および非導電性支持
部材7を任意の形状に打ち抜いて生体電極9が得られ
る。打ち抜いた後のシート13は巻き取って回収する。
前記導電性高分子ゲルとしては、導電性を有し、かつ皮
膚に対して刺激性が少なく粘着性を有するものであれ
ば、いずれのものでも使用可能であり、特に限定される
ものではないが、例えばポリアクリルアミド、ポリアク
リル酸ナトリウム、ポリアクリル酸エステル等のポリア
クリル酸誘導体、ポリビニルピロリドン、ポリ−N−ビ
ニルアセトアミド等のポリ−N−ビニルアミド誘導体、
ポリウレタン等をマトリックスとし、これに水、電解質
塩等を含有させた導電性粘着ゲルが好適に使用可能であ
る。
After the non-conductive support member 7 is adhered, the sheet member 1 and the non-conductive support member 7 are punched out by the punching means 8 for each concave portion 3 into an arbitrary shape, whereby the bioelectrode 9 is obtained. The sheet 13 after punching is wound up and collected.
As the conductive polymer gel, any one may be used as long as it has conductivity, and has little irritation to the skin and adhesiveness, but is not particularly limited. For example, polyacrylamide, sodium polyacrylate, polyacrylic acid derivatives such as polyacrylate, polyvinylpyrrolidone, poly-N-vinylamide derivatives such as poly-N-vinylacetamide,
A conductive adhesive gel containing polyurethane or the like as a matrix and containing water, an electrolyte salt or the like can be suitably used.

【0020】かかる導電性高分子ゲルを形成するための
モノマー配合液4は、重合性モノマーと、共重合型の架
橋性モノマーと、電解質中性塩類と、湿潤剤と、水とを
含み、これに光重合開始剤を添加したものである。光重
合開始剤としては、例えばアセトフェノン系、ベンゾイ
ンエーテル系、リン系、ベンゾフェノン系、チオキサン
トン系、アゾ系等の光ラジカル重合開始剤、ジアゾニウ
ム塩、ジアリルヨードニウム塩、トリアリールスルホニ
ウム塩等の光カチオン重合開始剤などがあげられる。光
重合開始剤は必要に応じて単独でまたは2種以上を混合
して用いてもよい。また、光重合に依らないラジカル開
始剤やレドックス開始剤を併用してもよい。
The monomer mixture 4 for forming the conductive polymer gel contains a polymerizable monomer, a copolymerizable cross-linkable monomer, a neutral electrolyte salt, a wetting agent, and water. To which a photopolymerization initiator is added. Examples of the photopolymerization initiator include photoradical polymerization initiators such as acetophenone-based, benzoin ether-based, phosphorus-based, benzophenone-based, thioxanthone-based, and azo-based, and photocationic polymerization such as diazonium salts, diallyliodonium salts, and triarylsulfonium salts. Initiators and the like. The photopolymerization initiator may be used alone or as a mixture of two or more, if necessary. Further, a radical initiator or a redox initiator which does not depend on photopolymerization may be used in combination.

【0021】また、前記架橋性モノマーとしては、例え
ばメチレンビスアクリルアミド、ポリエチレングリコー
ルジアクリレート等の2重結合が2個以上ありかつアク
リル酸系モノマーと共重合性を示すものがあげられる。
前記湿潤剤としては、例えば単糖類、多糖類、ソルビト
ール、グリコール、グリセリン等の多価アルコール類な
どがあげられる。
Examples of the crosslinkable monomer include those having two or more double bonds such as methylenebisacrylamide and polyethylene glycol diacrylate and showing copolymerizability with an acrylic acid monomer.
Examples of the wetting agent include monosaccharides, polysaccharides, polyhydric alcohols such as sorbitol, glycol, and glycerin.

【0022】図2は上記のようにして製造される単一電
極としての生体電極9の一例を示している。図2に示す
ように、導電性高分子ゲル10が凹部3内に充填された
シート部材1の表面は非導電性支持部材7が配置されて
凹部3内を封入している。そして、非導電性支持部材7
には、一体に形成された電極素子11とホック型の端子
6とが取り付けられている。
FIG. 2 shows an example of the living body electrode 9 as a single electrode manufactured as described above. As shown in FIG. 2, a non-conductive support member 7 is disposed on the surface of the sheet member 1 in which the conductive polymer gel 10 is filled in the recess 3, thereby enclosing the recess 3. And the non-conductive support member 7
, An electrode element 11 and a hook-type terminal 6 which are integrally formed are attached.

【0023】この生体電極9を使用して心電などを測定
する場合には、端子6に心電図計のリード線を接続し、
ついでシート部材1を非導電性支持部材7から剥がし
て、導電性高分子ゲル10を人体の所定箇所に貼付す
る。図3および図4はそれぞれ本発明の方法を使用して
得られる生体電極の他の例を示している。すなわち、図
3に示す生体電極15は、シート部材の内面に粘着剤層
16を設けたものであって、人体皮膚面への貼着時に皮
膚面との密着性を良好なものにする。かかる粘着剤層1
6はあらかじめシート部材1の表面に形成しておくのが
よい。その場合、シート1は離型性を高めるために表面
が離型処理されたものであるのが好ましい。
When measuring an electrocardiogram or the like using the living body electrode 9, a lead wire of an electrocardiograph is connected to the terminal 6,
Next, the sheet member 1 is peeled off from the non-conductive support member 7, and the conductive polymer gel 10 is attached to a predetermined portion of the human body. 3 and 4 show another example of a bioelectrode obtained using the method of the present invention. That is, the bioelectrode 15 shown in FIG. 3 has the pressure-sensitive adhesive layer 16 provided on the inner surface of the sheet member, and has good adhesion to the skin surface when adhered to the skin surface of a human body. Such an adhesive layer 1
6 is preferably formed on the surface of the sheet member 1 in advance. In that case, it is preferable that the surface of the sheet 1 is subjected to a release treatment in order to enhance the releasability.

【0024】また、図4に示す生体電極19は、前記し
た電極素子11とホック型の端子6に代えて、電極素子
部17と端子部18とを非導電性支持部材7′の表面に
一体に形成したものである。前記素子部17と端子部1
8とは、例えば、導電性インクを用いて非導電性支持部
材7の表面に連続的にパターン印刷することにより形成
することができる。使用時には、測定機器に接続された
リード線(図示せず)を端子部18に接続して使用す
る。なお、図3、図4において、図2と同一部材には同
一符号を付して説明を省略した。
In the biological electrode 19 shown in FIG. 4, an electrode element portion 17 and a terminal portion 18 are integrated with the surface of the non-conductive support member 7 'instead of the electrode element 11 and the hook type terminal 6. It is formed in. The element part 17 and the terminal part 1
8 can be formed, for example, by continuous pattern printing on the surface of the non-conductive support member 7 using conductive ink. At the time of use, a lead wire (not shown) connected to the measuring device is connected to the terminal 18 for use. In FIGS. 3 and 4, the same members as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.

【0025】なお、本発明の方法は、上述した円盤形の
単一電極を製造する場合のみに限定されるものではな
く、シート部材に形成された凹部の形状を変えることに
より、任意の形状のゲル部分の生体電極を得ることがで
き、また複数の凹部を有するシート部材と複数の電極素
子及び端子を装着した非導電性支持部材を組み合わせる
ことにより、多極電極をも製造可能である。
It should be noted that the method of the present invention is not limited to the case where the above-mentioned single disk-shaped electrode is manufactured, but may be modified by changing the shape of the concave portion formed in the sheet member. A bioelectrode having a gel portion can be obtained, and a multi-electrode can also be manufactured by combining a sheet member having a plurality of recesses with a non-conductive support member having a plurality of electrode elements and terminals.

【0026】[0026]

【実施例】次に、実施例および比較例をあげて本発明の
方法を詳細に説明する。以下の説明において「部」は重
量部を、「%」は重量%をそれぞれ意味している。 実施例1および2 シート部材として、厚さ0.5mm のポリプロピレンシート
を使用し、熱成形によって直径2.5cm 、深さ0.2cm の凹
部を形成した。ついで、凹部内に導電性高分子ゲル用の
モノマー配合液約1gを注入充填した。
Next, the method of the present invention will be described in detail with reference to examples and comparative examples. In the following description, “parts” means parts by weight, and “%” means weight%. Examples 1 and 2 A polypropylene sheet having a thickness of 0.5 mm was used as a sheet member, and a concave portion having a diameter of 2.5 cm and a depth of 0.2 cm was formed by thermoforming. Then, about 1 g of a monomer compound solution for a conductive polymer gel was injected and filled into the concave portion.

【0027】使用したモノマー配合液は、重合性モノマ
ーとしてのアクリルアミドと、共重合型の架橋性モノマ
ー(架橋剤)としてのN,N'−メチレンビスアクリルアミ
ドと、電解質中性塩類としての塩化ナトリウムと、湿潤
剤としてのグリセリンとの各所定量を水に加えて撹拌溶
解してモノマー配合液を得、このモノマー配合液100
部に対し、光重合開始剤としてチバガイギー社のイルガ
キュア184 (1-hydroxy-cyclohexyl phenylketone )の
0.3部を添加し、撹拌溶解した。表1に、モノマー配
合液を構成する各成分の配合量(水を含む配合液総量に
対する%であり、残部は水である。以下同じ)を示す。
The monomer mixture used was composed of acrylamide as a polymerizable monomer, N, N'-methylenebisacrylamide as a copolymerizable crosslinkable monomer (crosslinking agent), and sodium chloride as a neutral salt of an electrolyte. , A predetermined amount of glycerin as a wetting agent was added to water and dissolved by stirring to obtain a monomer-containing liquid.
To this part, 0.3 part of Irgacure 184 (1-hydroxy-cyclohexyl phenylketone) manufactured by Ciba Geigy was added as a photopolymerization initiator, and the mixture was stirred and dissolved. Table 1 shows the amounts of the components constituting the monomer mixture (% with respect to the total amount of the mixture including water, and the balance is water; the same applies hereinafter).

【0028】得られたモノマー配合液は初期温度を4℃
に調整した後、凹部内に充填した。ついで、このモノマ
ー配合液に50ミリワット/cm2 の強度の紫外線を6
0秒間照射し、重合架橋反応を行った。このとき、紫外
線照射開始からゲルの急激な温度上昇が開始するまでの
時間(秒)を測定し、同時に硬化反応中の最高温度を測
定した。
The initial temperature of the obtained monomer mixture liquid is 4 ° C.
After adjusting to, the concave portion was filled. Then, an ultraviolet ray having an intensity of 50 milliwatt / cm 2 was applied to the monomer mixture solution for 6 minutes.
Irradiation was performed for 0 second to perform a polymerization crosslinking reaction. At this time, the time (second) from the start of the ultraviolet irradiation to the start of the rapid temperature rise of the gel was measured, and at the same time, the maximum temperature during the curing reaction was measured.

【0029】得られた導電性高分子ゲルの表面に、電極
素子(Ag/AgCl 電極)及びホック端子を装着した軟質ポ
リ塩化ビニルのフィルム(非導電性支持部材、厚さ80
μm)を貼り合わせ、直径30mmの円形に打ち抜き、生
体電極を得た。 実施例3 重合開始剤として、光重合開始剤(前出のイルガキュア
184)0.1部と、レドックス重合開始剤としての4
%ペルオキソ二硫酸カリウム水溶液3部および2%ピロ
亜硫酸カリウム水溶液3部とを混合し、初期温度を10
℃とした。これを50ミリワット/cm2 の強度の紫外
線を10秒間照射し、180秒間静置して重合架橋反応
を行った以外は実施例1と同様にして、生体電極を得
た。 実施例4 初期温度を25℃とした以外は実施例1と同様にして、
生体電極を得た。 実施例5 重合性モノマーとしての48%アクリル酸ナトリウム水
溶液、共重合型の架橋性モノマーとしてのN,N'−メチレ
ンビスアクリルアミドおよび湿潤剤としてのグリセリン
を水を加え撹拌溶解してモノマー配合液を作成し、この
モノマー配合液に光重合開始剤(前出のイルガキュア1
84)を0.5部添加した以外は、実施例1と同様にし
て、生体電極を得た。上記各成分の配合量は表1に示
す。 比較例1および2 実施例1および2で使用した光重合開始剤(前出のイル
ガキュア184)に代えて、レドックス重合開始剤とし
ての4%ペルオキソ二硫酸カリウム水溶液5部と、2%
ピロ亜硫酸カリウム水溶液を5部とを混合し、初期温度
を25℃に調整した後、60℃に保持した加熱板上で5
分間重合架橋反応を行った以外は、実施例1および2と
同様して、生体電極を得た。 比較例3 カラヤゴム、塩化ナトリウム、グリセリンおよび水を撹
拌混合し、導電性高分子ゲル配合液を得、その約1g
を、凹部を有するシート部材の凹部内に充填した。つい
で、初期温度25℃で、80℃に保持した加熱板上で1
0分間加熱固化させた。得られた導電性高分子ゲル上面
に、電極素子(Ag/AgCl 電極)及びホック端子を装着し
た軟質ポリ塩化ビニルのフィルム(非導電性支持部材、
厚さ80μm)を貼りあわせ、直径30mmの円形に打ち抜
いた。それ以外は実施例1および2と同様にして生体電
極を得た。上記各成分の配合量は表1に示す。 比較例4 非架橋ポリアクリル酸(分子量1,000,000 )、塩化ナト
リウム、グリセリンおよび水を加えて撹拌混合し、導電
性高分子ゲル配合液を得、その約1gを、凹部を有する
シート部材の凹部内に充填した。これを66℃に保持し
た加熱板上で30分間加熱固化させた。得られた導電性
高分子ゲル上面に、電極素子(Ag/AgCl電極)及びホッ
ク端子を装着した軟質ポリ塩化ビニルのフィルム(非導
電性支持部材、厚さ80μm)を貼りあわせ、直径30mm
の円形に打ち抜いた。それ以外は実施例1および2と同
様にして生体電極を得た。上記各成分の配合量は表1に
示す。 比較例5および6 重合性モノマーとしての48%アクリル酸ナトリウム水
溶液、共重合型の架橋性モノマーとしてのN,N'−メチレ
ンビスアクリルアミド、電解質中性塩類としての塩化ナ
トリウム、湿潤剤としてのグリセリンを水に加えて撹拌
溶解し、得られたモノマー配合液100部に前出のレド
ックス系重合開始剤としての4%ペルオキソ二硫酸カリ
ウム水溶液5.5部および2%ピロ亜硫酸カリウム水溶
液4.0部を混合し、撹拌溶解した以外は実施例5と同
様にして生体電極を得た。
On the surface of the obtained conductive polymer gel, a soft polyvinyl chloride film (non-conductive support member, thickness of 80) having electrode elements (Ag / AgCl electrodes) and hook terminals mounted thereon
μm) were laminated and punched into a circle having a diameter of 30 mm to obtain a bioelectrode. Example 3 As a polymerization initiator, 0.1 part of a photopolymerization initiator (Irgacure 184 described above) and 4 parts of a redox polymerization initiator were used.
3 parts of a 2% aqueous potassium peroxodisulfate solution and 3 parts of a 2% aqueous potassium pyrosulfite solution were mixed.
° C. A bioelectrode was obtained in the same manner as in Example 1 except that this was irradiated with ultraviolet light having an intensity of 50 mW / cm 2 for 10 seconds and allowed to stand for 180 seconds to carry out a polymerization crosslinking reaction. Example 4 The procedure of Example 1 was repeated except that the initial temperature was 25 ° C.
A bioelectrode was obtained. Example 5 A 48% aqueous solution of sodium acrylate as a polymerizable monomer, N, N'-methylenebisacrylamide as a copolymerizable crosslinkable monomer, and glycerin as a wetting agent were added to water, and dissolved by stirring to prepare a monomer mixture. After preparing the monomer mixture, add a photopolymerization initiator (Irgacure 1
A bioelectrode was obtained in the same manner as in Example 1, except that 0.5 part of 84) was added. Table 1 shows the amounts of the components. Comparative Examples 1 and 2 Instead of the photopolymerization initiator (Irgacure 184 described above) used in Examples 1 and 2, 5 parts of a 4% aqueous potassium peroxodisulfate solution as a redox polymerization initiator, and 2%
After mixing 5 parts of an aqueous solution of potassium pyrosulfite and adjusting the initial temperature to 25 ° C., the mixture was heated on a heating plate maintained at 60 ° C.
A bioelectrode was obtained in the same manner as in Examples 1 and 2, except that the polymerization crosslinking reaction was carried out for 1 minute. Comparative Example 3 Karaya gum, sodium chloride, glycerin and water were stirred and mixed to obtain a conductive polymer gel compounded liquid, and about 1 g thereof was obtained.
Was filled in the concave portion of the sheet member having the concave portion. Then, at an initial temperature of 25 ° C., 1
It was solidified by heating for 0 minutes. On the upper surface of the obtained conductive polymer gel, a soft polyvinyl chloride film (a non-conductive support member, with an electrode element (Ag / AgCl electrode) and a hook terminal)
(Thickness: 80 μm), and punched into a circle having a diameter of 30 mm. Otherwise, a bioelectrode was obtained in the same manner as in Examples 1 and 2. Table 1 shows the amounts of the components. Comparative Example 4 Non-crosslinked polyacrylic acid (molecular weight: 1,000,000), sodium chloride, glycerin and water were added and mixed by stirring to obtain a conductive polymer gel compounding solution. About 1 g of the solution was placed in the concave portion of the sheet member having the concave portion. Filled. This was heated and solidified on a heating plate maintained at 66 ° C. for 30 minutes. A flexible polyvinyl chloride film (non-conductive support member, thickness: 80 μm) with an electrode element (Ag / AgCl electrode) and a hook terminal attached to the upper surface of the obtained conductive polymer gel, and a diameter of 30 mm
Punched into a circle. Otherwise, a bioelectrode was obtained in the same manner as in Examples 1 and 2. Table 1 shows the amounts of the components. Comparative Examples 5 and 6 A 48% aqueous solution of sodium acrylate as a polymerizable monomer, N, N'-methylenebisacrylamide as a copolymerizable crosslinkable monomer, sodium chloride as an electrolyte neutral salt, and glycerin as a wetting agent were used. The mixture was added to water and dissolved by stirring. To 100 parts of the obtained monomer mixture, 5.5 parts of a 4% aqueous solution of potassium peroxodisulfate and 4.0 parts of a 2% aqueous solution of potassium pyrosulfite as a redox-based polymerization initiator were added. A bioelectrode was obtained in the same manner as in Example 5, except that the mixture was mixed and dissolved by stirring.

【0030】実施例1〜5および比較例1〜6で得られ
た各生体電極について、シート部材の熱変形状態を観察
した。さらに、高分子ゲルの重合に伴う乾燥率として、
重合前のモノマー配合液の重量と、重合後非導電性支持
部材張り付け前の重量を測定し、減少重量を百分率で表
した。また、製造から24時間後に生体電極の電極対イ
ンピーダンスを測定した。また、7日後に生体電極のゲ
ル部分の残存モノマー量を液体クロマトグラフィーによ
って測定した。なお、電極対インピーダンスは以下の測
定方法によって測定した。 (電極対インピーダンスの測定)作製した生体電極のシ
ート部材をゲルから剥がし、2つの生体電極のゲル同士
をくっつけ電極対とした。信号発生器とオシロスコープ
とを同軸ケーブルで接続し、出力電圧が10Vp-p 、出
力波形が正弦波、周波数が10Hzの出力状態になるよ
うに信号発生器を調整した。
With respect to each of the bioelectrodes obtained in Examples 1 to 5 and Comparative Examples 1 to 6, the thermal deformation state of the sheet member was observed. Furthermore, as a drying rate accompanying the polymerization of the polymer gel,
The weight of the monomer mixture before the polymerization and the weight before the non-conductive support member was attached after the polymerization were measured, and the reduced weight was expressed as a percentage. Further, 24 hours after the production, the electrode pair impedance of the bioelectrode was measured. Seven days later, the amount of residual monomer in the gel portion of the bioelectrode was measured by liquid chromatography. The electrode pair impedance was measured by the following measurement method. (Measurement of Electrode Pair Impedance) The sheet member of the prepared bioelectrode was peeled off from the gel, and the gels of the two bioelectrodes were attached to each other to form an electrode pair. The signal generator and the oscilloscope were connected by a coaxial cable, and the signal generator was adjusted so that the output voltage was 10 Vp-p, the output waveform was a sine wave, and the frequency was 10 Hz.

【0031】図5に示すように、電極対20と1MΩの
抵抗値Rを有する抵抗器21とを接続した。信号発生器
22から電極対に電圧V1 を印加した際に電極対20に
より電圧降下する電圧値V2 をオシロスコープ23にて
測定し、下記の関係式からインピーダンス|Z|を算出
した。 |Z|=R×V2 /(V1 −V2 ) (但し、R=1MΩ、V1 =10Vである。) 測定結果を表1に併せて示す。
As shown in FIG. 5, an electrode pair 20 was connected to a resistor 21 having a resistance R of 1 MΩ. When the voltage V1 was applied from the signal generator 22 to the electrode pair, the voltage value V2 of the voltage drop by the electrode pair 20 was measured by the oscilloscope 23, and the impedance | Z | was calculated from the following relational expression. | Z | = R × V2 / (V1−V2) (where R = 1 MΩ and V1 = 10 V) The measurement results are also shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】以上のように本発明によれば、高速でか
つ効率よく、安定した性能の生体電極を製造することが
できるという効果があり、連続工程による生産に好適で
ある。
As described above, according to the present invention, there is an effect that a bioelectrode having stable performance can be produced at high speed and efficiently, and is suitable for production by a continuous process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の生体電極の製造方法を示す工程説明図
である。
FIG. 1 is a process explanatory view showing a method for producing a bioelectrode of the present invention.

【図2】本発明の方法によって得られる生体電極の一例
を示す断面図である。
FIG. 2 is a cross-sectional view showing an example of a biological electrode obtained by the method of the present invention.

【図3】本発明の方法によって得られる生体電極の他の
例を示す断面図である。
FIG. 3 is a cross-sectional view showing another example of the bioelectrode obtained by the method of the present invention.

【図4】本発明の方法によって得られる生体電極のさら
に他の例を示す断面図(同図(a))とその平面図(同
図(b))である。
4A and 4B are a cross-sectional view (FIG. 4A) and a plan view (FIG. 4B) showing still another example of a biological electrode obtained by the method of the present invention.

【図5】電極対インピーダンスの測定方法を示す説明図
である。
FIG. 5 is an explanatory diagram showing a method of measuring an electrode pair impedance.

【符号の説明】[Explanation of symbols]

1 シート部材 2 熱成形手段 3 凹部 4 モノマー配合液 5 紫外線照射装置 7 非導電性支持部材 9 生体電極 10 導電性高分子ゲル 11 電極素子 15 生体電極 19 生体電極 DESCRIPTION OF SYMBOLS 1 Sheet member 2 Thermoforming means 3 Concave part 4 Monomer compound liquid 5 Ultraviolet irradiation device 7 Non-conductive support member 9 Bioelectrode 10 Conductive polymer gel 11 Electrode element 15 Bioelectrode 19 Bioelectrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】シート部材に形成された凹部に、光重合開
始剤および重合性モノマーを含むモノマー配合液を充填
し、この凹部内で光重合を行って粘着性のある導電性高
分子ゲルとなし、ついでこの高分子ゲルの表面に、電極
素子と端子を取り付けた非導電性支持部材を貼着して生
体電極となすことを特徴とする生体電極の製造方法。
1. A concave portion formed in a sheet member is filled with a monomer compounding liquid containing a photopolymerization initiator and a polymerizable monomer, and photopolymerization is performed in the concave portion to form a sticky conductive polymer gel. None. Then, a non-conductive support member having an electrode element and a terminal attached thereto is attached to the surface of the polymer gel to form a bioelectrode.
【請求項2】前記シート部材が一定方向に移送され、そ
の移送方向に沿って熱成形工程、モノマー配合液注入工
程および重合工程がこの順に設けられており、シート部
材を移送しながら前記熱成形工程で連続的にシート部材
に多数の凹部を形成し、形成された各凹部にモノマー配
合液を順次充填し、重合反応を行うことを特徴とする請
求項1記載の生体電極の製造方法。
2. The method according to claim 1, wherein the sheet member is transferred in a fixed direction, and a thermoforming step, a monomer compounding liquid injection step and a polymerization step are provided in this order along the transfer direction. 2. The method for producing a bioelectrode according to claim 1, wherein a large number of recesses are continuously formed in the sheet member in the step, and the formed recesses are sequentially filled with a monomer compounding solution to carry out a polymerization reaction.
【請求項3】前記モノマー配合液が、13〜30重量%
の重合性モノマー、16〜65重量%の水、20〜65
重量%の湿潤剤および2〜15重量%の電解質塩を含む
配合液である請求項1の生体電極の製造方法。
3. The method according to claim 1, wherein the monomer mixture liquid is 13 to 30% by weight.
Polymerizable monomer, 16 to 65% by weight of water, 20 to 65%
The method for producing a bioelectrode according to claim 1, wherein the mixture is a liquid mixture containing a wetting agent of 2 wt% and an electrolyte salt of 2 to 15 wt%.
JP22545796A 1996-08-27 1996-08-27 Bioelectrode manufacturing method Expired - Fee Related JP3320315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22545796A JP3320315B2 (en) 1996-08-27 1996-08-27 Bioelectrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22545796A JP3320315B2 (en) 1996-08-27 1996-08-27 Bioelectrode manufacturing method

Publications (2)

Publication Number Publication Date
JPH1057332A true JPH1057332A (en) 1998-03-03
JP3320315B2 JP3320315B2 (en) 2002-09-03

Family

ID=16829647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22545796A Expired - Fee Related JP3320315B2 (en) 1996-08-27 1996-08-27 Bioelectrode manufacturing method

Country Status (1)

Country Link
JP (1) JP3320315B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899840B2 (en) 2001-12-11 2005-05-31 The Procter & Gamble Company Process for making pre-formed objects
CN106691433A (en) * 2016-12-08 2017-05-24 苏州峰佳医疗科技有限公司 ECG measuring apparatus and sensor diaphragm preparation method thereof
WO2019069774A1 (en) * 2017-10-05 2019-04-11 積水化成品工業株式会社 Adhesive hydrogel and medical electrode using same
JP2019099957A (en) * 2017-12-05 2019-06-24 孝子 椎原 Therapeutic method of eyelash extension

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899840B2 (en) 2001-12-11 2005-05-31 The Procter & Gamble Company Process for making pre-formed objects
US7021031B2 (en) 2001-12-11 2006-04-04 The Procter & Gamble Company Process for making pre-formed objects
US7037570B2 (en) 2001-12-11 2006-05-02 The Procter & Gamble Company Pre-formed objects
CN106691433A (en) * 2016-12-08 2017-05-24 苏州峰佳医疗科技有限公司 ECG measuring apparatus and sensor diaphragm preparation method thereof
WO2019069774A1 (en) * 2017-10-05 2019-04-11 積水化成品工業株式会社 Adhesive hydrogel and medical electrode using same
JPWO2019069774A1 (en) * 2017-10-05 2020-08-27 積水化成品工業株式会社 Adhesive hydrogel and medical electrode using the same
JP2019099957A (en) * 2017-12-05 2019-06-24 孝子 椎原 Therapeutic method of eyelash extension

Also Published As

Publication number Publication date
JP3320315B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
US4226247A (en) Biological electrode
US4820263A (en) Apparatus and method for iontophoretic drug delivery
US6592898B2 (en) Bioadhesive compositions comprising hydrophobic polymers
CA2319361C (en) Medical electrode and method of manufacture
CA2925982C (en) Medical electrode having useful life indicator
CA2653593C (en) Medical electrode containing a hydrophilic polymer
US20060029652A1 (en) Absorbent hydrogel compositions
JP2015521085A (en) Multifunctional biological electrode worn for a long time
JPH02241465A (en) Condacting skin coat for utilization of current for medical treatment and cosmetic treatment
JP5250287B2 (en) Gel electrode
JP3320315B2 (en) Bioelectrode manufacturing method
JP6830164B2 (en) Adhesive hydrogel and medical electrodes using it
CN107929805A (en) A kind of metal/hydrogel combine dressing for promoting wound healing and preparation method thereof
JP2005213455A (en) Conducting pressure sensitive adhesive composition, method for producing the same and biomedical electrode using the conducting pressure sensitive adhesive composition
JP3429198B2 (en) Self-crosslinkable polymer copolymer solution, polymer gel, and method for producing the same
US20080033492A1 (en) Electro-therapy method
JPH11290286A (en) Electroconductive polymer gel and manufacturing method and use thereof
CN201040143Y (en) Disposable electrical defibrillation conductive label
CN210698497U (en) Micro-current therapeutic plaster
CN216676701U (en) Electrode plate with microneedle structure
CN109350045B (en) Manufacturing method of electrocardio flexible sensor
CN110811604B (en) Flexible electrocardiogram electrode patch and preparation method thereof
US20230397870A1 (en) Conductive Hydrogel-Based Wearable Health Monitors
CN115770343A (en) Flexible coated microneedle array electrode for tactile stimulation, preparation method and application
CN116478425A (en) Double-layer conductive adhesive hydrogel for electrocardiograph patch sensing and electrocardiograph patch

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140621

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees