JPH1055975A - Silicon crystal body for semiconductor device - Google Patents

Silicon crystal body for semiconductor device

Info

Publication number
JPH1055975A
JPH1055975A JP20958596A JP20958596A JPH1055975A JP H1055975 A JPH1055975 A JP H1055975A JP 20958596 A JP20958596 A JP 20958596A JP 20958596 A JP20958596 A JP 20958596A JP H1055975 A JPH1055975 A JP H1055975A
Authority
JP
Japan
Prior art keywords
single crystal
silicon
area
diameter
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20958596A
Other languages
Japanese (ja)
Inventor
Yasuhiro Mochizuki
康弘 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20958596A priority Critical patent/JPH1055975A/en
Publication of JPH1055975A publication Critical patent/JPH1055975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thyristors (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily produce a large-diameter, highly pure silicon single crystal wafer by providing a single crystal rod with a resistivity controlled by neutron irradiation in an area for element, providing a polycrystal through CVD method in an area for handling around the single crystal rod, and by forming a concentric double circular layer thereby. SOLUTION: The head and bottom parts of a single crystal are cut off and removed, and their periphery is shaped, and then it is cut into cylindrical block, resulting in a silicon single crystal rod 10 whose resistivity is controlled in the area for element through neutron irradiation. A single crystal layer or a polycrystal silicon layer 11 is piled up around the rod 10. It is cut into wafers, and they are ground and cleaned to obtain a silicon semiconductor substrate 12, so that the concentric central area thereof is formed of an NTD high-quality single crystal 13 and the peripheral area thereof is formed of double circular layer of CVD single crystal or polycrystal 14. Thus, a large-diameter highly pure silicon single crystal wafer can be produced easily.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置特にサ
イリスタのような大容量半導体装置に用いるシリコン単
結晶体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon single crystal used for a semiconductor device, particularly a large capacity semiconductor device such as a thyristor.

【0002】[0002]

【従来の技術】近年、国内の電力需要の増大に伴い、電
力系統連系や安定化の装置設備の大型化が必要となって
きている。従来は系統端末での小容量連系で300〜6
00MWの周波数変換器FC(Frequency Converter),
直流送電用変換器HVDC(HighVoltage Direct Curren
t)が用いられている。新しい動向では基幹系統内の大
容量連系で2000〜3000MWの直流送電用変換器
HVDCを始めとして、周波数変換器FC,直流連系設
備BTB(Back To Back),無効電力補償装置SVC(St
atic Var Conpensator)の大容量化が必須である。これ
らの電力変換装置では、数個〜数100個の半導体装置
が直平列に接続して用いられる。電力変換装置の部品点
数の削減による高信頼化やコンパクト化,高効率化のた
めには、半導体装置の大容量化や損失低減が必須であ
る。
2. Description of the Related Art In recent years, with the increase in domestic power demand, it has become necessary to increase the size of equipment for power system interconnection and stabilization. Conventionally, 300 to 6 for small capacity interconnection at system terminals
00MW frequency converter FC (Frequency Converter),
DC power transmission converter HVDC (High Voltage Direct Curren
t) is used. In the new trend, HVDC, a DC transmission converter of 2000 to 3000 MW in large capacity interconnection in the trunk system, frequency converter FC, DC interconnection equipment BTB (Back To Back), reactive power compensator SVC (St.
atic Var Conpensator) is indispensable. In these power converters, several to hundreds of semiconductor devices are connected and used in a straight line. In order to achieve high reliability, compactness, and high efficiency by reducing the number of components of the power converter, it is essential to increase the capacity and reduce the loss of the semiconductor device.

【0003】従来の大容量半導体装置は、円形のシリコ
ン単結晶半導体基板(ウエハ)を用いてそれより一廻り
小さいほぼ円形の半導体素子(ペレット)で形成されて
いる。耐電圧が数kV,電流容量が数kA以上の大容量
半導体装置用の半導体素子は、1枚の半導体基板から1
つ作られる。
A conventional large-capacity semiconductor device is formed using a circular silicon single crystal semiconductor substrate (wafer) and a substantially circular semiconductor element (pellet) which is slightly smaller than the substrate. A semiconductor element for a large-capacity semiconductor device having a withstand voltage of several kV and a current capacity of several kA or more can be obtained from a single semiconductor substrate.
One is made.

【0004】半導体装置の大容量化、特に電流容量を大
きくするためには、半導体素子をできるだけ大きく(大
面積化)することが効果的であり、そのためには大面積
の半導体基板が必要となる。
In order to increase the capacity of a semiconductor device, in particular, to increase the current capacity, it is effective to increase the size of the semiconductor element as much as possible (to increase the area). For this purpose, a semiconductor substrate having a large area is required. .

【0005】一方、高耐圧の半導体素子を製造するため
の半導体基板は、抵抗率が高くかつ均一であること、結
晶性が優れ、重金属はもちろん酸素や炭素等の不純物含
有量が低く高純度であることが要求されている。このた
め、シリコンの単結晶製造では、るつぼ等を使用せずに
高純度の結晶が得られる帯域溶融法(フローティングゾ
ーン法:Floating Zone:FZ)で作成し、その後、抵抗
率を精密に調整するために原子炉で中性子を照射して原
子核反応によりシリコンをリンに変換してドーピング
(Neutron Transmutaion Doping:NTD)している。
On the other hand, a semiconductor substrate for manufacturing a semiconductor device having a high withstand voltage has a high resistivity and uniformity, has excellent crystallinity, has a low impurity content of not only heavy metals but also oxygen and carbon, and has a high purity. It is required to be. For this reason, in the production of single crystals of silicon, they are prepared by a zone melting method (floating zone method: FZ) that can obtain high-purity crystals without using a crucible or the like, and then the resistivity is precisely adjusted. For this purpose, neutrons are irradiated in a nuclear reactor to convert silicon into phosphorus by a nuclear reaction and doping (Neutron Transmutaion Doping: NTD).

【0006】なお、この種の結晶製造に関するものに
は、例えば、特開昭50−81473 号公報,阿部孝夫著“シ
リコン 結晶成長とウェーハ加工”培風舘,(1994
年5月),伊藤辰夫・戸田真人:半導体の放射線加工・
シリコンの中性子照射ドーピング:放射線と産業第64
号p.19〜23(1994年12月)等に詳細に説明さ
れている。
Japanese Patent Application Laid-Open No. Sho 50-81473, “Silicon Crystal Growth and Wafer Processing” by Takao Abe, Baifukan, (1994)
May), Tatsuo Ito and Masato Toda: Radiation processing of semiconductors
Neutron irradiation doping of silicon: Radiation and industry No. 64
Nos. 19 to 23 (December 1994) and the like.

【0007】[0007]

【発明が解決しようとする課題】大容量の半導体装置の
開発のためには、次のものが必要である。
In order to develop a large-capacity semiconductor device, the following is required.

【0008】(1)素材としての、大口径高純度シリコ
ン単結晶ウエハ、(2)大容量半導体装置の設計技術、
(3)大口径ウエハを均一に処理するプロセス装置及び
プロセス技術、(4)大口径ペレットのパッケージング
技術、(5)高電圧,大電流の特性評価設備及び解析技
術 これらのうち大多数は現行技術の拡張で実現可能である
が、困難なことは、大口径シリコン単結晶ウエハの製造
である。今までのシリコン半導体装置の大容量化の歴史
はシリコン単結晶の高純度化と大口径化の歴史といって
も過言ではない。そして現状では、NTD法による高純
度高精度ドーピングは直径約6インチまで可能となった
が、装置・設備(原子炉の照射孔径)の制約のためこれ
が限度である。シリコンのドーピングには核変換に役立
つ熱中性子が多く、照射欠陥を引き起こす高速中性子が
少ない重水炉(出力5〜20MW級)が適しているが、
現在国内で照射可能な重水炉は直径158mmまでであ
り、その照射孔を大きくすることは経済的に容易ではな
い。
(1) a large-diameter high-purity silicon single crystal wafer as a material; (2) a design technology for a large-capacity semiconductor device;
(3) Process equipment and process technology for processing large-diameter wafers uniformly, (4) Packaging technology for large-diameter pellets, (5) High-voltage, large-current characteristic evaluation equipment and analysis technology Most of these are current A difficult but difficult task that can be achieved by expanding the technology is the production of large-diameter silicon single-crystal wafers. It is not an exaggeration to say that the history of increasing the capacity of silicon semiconductor devices so far is the history of increasing the purity and diameter of silicon single crystals. At present, high-purity and high-precision doping by the NTD method is possible up to a diameter of about 6 inches, but this is the limit due to restrictions on equipment and facilities (irradiation hole diameter of a nuclear reactor). For doping of silicon, a heavy water reactor (power 5 to 20 MW class) that has many thermal neutrons useful for transmutation and few fast neutrons that cause irradiation defects is suitable.
Currently, heavy water reactors that can be irradiated in Japan are up to 158 mm in diameter, and it is not economically easy to enlarge the irradiation hole.

【0009】一方、大口径ウエハを均一に処理するプロ
セス装置及びプロセス技術は、LSIの分野では直径8イ
ンチのシリコンウエハが常用されており、直径12イン
チ用のプロセス装置・技術の検討も進められており、大
容量半導体装置のプロセスにも適用可能である。
On the other hand, as a processing apparatus and a processing technique for uniformly processing a large-diameter wafer, an 8-inch diameter silicon wafer is commonly used in the field of LSI, and a study is being made on a processing apparatus and technology for a 12-inch diameter. Therefore, the present invention can be applied to a process of a large-capacity semiconductor device.

【0010】本発明の目的は、大口径高純度シリコン単
結晶ウエハを比較的簡単に製造することにある。
An object of the present invention is to manufacture a large-diameter high-purity silicon single crystal wafer relatively easily.

【0011】[0011]

【課題を解決するための手段】上記目的は、以下の手段
により、達成される。
The above object is achieved by the following means.

【0012】(1)従来の方法で作製した円柱形の高品
位NTD半導体単結晶ロッドの周囲に単結晶層または多
結晶層を堆積させる。その後、ウエハ状に加工する。
(1) A single-crystal layer or a polycrystalline layer is deposited around a cylindrical high-quality NTD semiconductor single-crystal rod manufactured by a conventional method. Then, it is processed into a wafer shape.

【0013】(2)上記の2重輪層構造の半導体基板ウ
エハを用いて、通常の半導体製造プロセスを実施する。
この時、高品位の結晶領域の全面を利用して半導体素子
を形成し、ウエハのハンドリングは周囲に堆積させた単
結晶層または多結晶層領域を使用する。
(2) An ordinary semiconductor manufacturing process is performed using the semiconductor substrate wafer having the double-layered structure.
At this time, a semiconductor element is formed using the entire surface of the high-quality crystal region, and a wafer is handled using a single-crystal layer or a polycrystal layer region deposited therearound.

【0014】(3)上記ウエハをペレタイズしてウエハ
周囲の単結晶層または多結晶層を除去し、端面を加工す
る。
(3) The above wafer is pelletized to remove a single crystal layer or a polycrystal layer around the wafer, and the end face is processed.

【0015】これにより、高品位単結晶の全面を利用す
ることができ、大容量半導体装置を製造することが可能
となる。大容量半導体装置が開発されると、それを用い
た電力変換装置は部品点数の削減が図られ小型化,高信
頼化,低損失化及び大容量化が可能となる。
Thus, the entire surface of the high-quality single crystal can be used, and a large-capacity semiconductor device can be manufactured. When a large-capacity semiconductor device is developed, the number of components in a power conversion device using the semiconductor device can be reduced, and miniaturization, high reliability, low loss, and large capacity can be achieved.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施例を図面を用
いて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0017】実施例1 図1は本発明による大容量半導体装置の製造工程を示
す。
Embodiment 1 FIG. 1 shows a manufacturing process of a large capacity semiconductor device according to the present invention.

【0018】図1(a)はシリコン単結晶ロッド10で
ある。製法フローティングゾーン法(FZ法),直径約1
60mm,結晶成長方向〈111〉、抵抗率は4500Ω
−cm以上である。この単結晶の肩(頭部)及びテイル
(尾部)を切断除去し、周囲を整形し直径156±1mm
とした後、長さ約650mmの円筒形ブロックに切断した
ものである。その後、重水炉で中性子を照射した。中性
子照射は、均一化のためシリコンブロックを回転させな
がら、中性子線束密度1.5×1013n/cm2・sで照射
時間65min である。放射能冷却後水洗し残留放射能検
査後、1200℃,1h酸素気流中でアニールして、照
射ダメージを取り除いた。抵抗率は340〜390Ω−
cmである。
FIG. 1A shows a silicon single crystal rod 10. Manufacturing method Floating zone method (FZ method), diameter about 1
60 mm, crystal growth direction <111>, resistivity 4500Ω
−cm or more. The shoulder (head) and tail (tail) of this single crystal are cut and removed, the periphery is shaped, and the diameter is 156 ± 1 mm.
, And then cut into a cylindrical block having a length of about 650 mm. After that, neutrons were irradiated in a heavy water reactor. The neutron irradiation is performed at a neutron flux density of 1.5 × 10 13 n / cm 2 · s for 65 min while the silicon block is rotated for uniformity. After cooling the radioactivity and washing with water, and after examining the residual radioactivity, it was annealed in an oxygen stream at 1200 ° C. for 1 hour to remove irradiation damage. The resistivity is 340-390Ω-
cm.

【0019】図1(b)は上記シリコン単結晶ロッドの
周囲に単結晶層または多結晶シリコン層11を堆積させ
た状態を示す。単結晶層または多結晶シリコン層11は
FZ法の原料となる多結晶ロッドの析出と同じく、三塩
化シラン(SiHCl3)の水素還元により、厚みは20
〜25mmである。この時、基板のシリコン単結晶ロッド
10が単結晶であるためエピタキシャル成長して単結晶
層が堆積することもある。特にシリコン単結晶ロッド1
0に接した周囲は単結晶化しやすい。しかし以下の工程
では、この堆積層11が単結晶層であるか多結晶層であ
るかは特別な問題ではない。
FIG. 1B shows a state in which a single crystal layer or a polycrystalline silicon layer 11 is deposited around the silicon single crystal rod. The single-crystal layer or the polycrystalline silicon layer 11 has a thickness of 20 by hydrogen reduction of silane trichloride (SiHCl 3 ), similarly to the deposition of a polycrystalline rod as a raw material of the FZ method.
2525 mm. At this time, since the silicon single crystal rod 10 of the substrate is a single crystal, a single crystal layer may be deposited by epitaxial growth. Especially silicon single crystal rod 1
The periphery in contact with 0 is apt to be single crystallized. However, in the following steps, it does not matter whether the deposited layer 11 is a single crystal layer or a polycrystalline layer.

【0020】図1(c)は外周研削及びノッチ加工した
後、ウエハに切断(スライシング)し、図1(d)は、
更に、機械研磨(ラッピング),面取り(ベベリン
グ),化学的機械的研磨(ポリシング),洗浄して完成
したシリコン半導体基板12の断面模式図を示す。この
シリコン半導体基板12は直径165±0.5mm ,厚み
1.250mm であり、同心円状の中心の領域はNTD高
品位単結晶13、周囲の領域はCVD単結晶または多結
晶14の2重輪層構造である。この工程は通常のウエハ
製造工程と同一である。
FIG. 1 (c) shows an outer periphery ground and notched, and then cuts (slicing) into a wafer.
Further, a schematic cross-sectional view of the silicon semiconductor substrate 12 completed by mechanical polishing (lapping), chamfering (beveling), chemical mechanical polishing (polishing), and cleaning is shown. The silicon semiconductor substrate 12 has a diameter of 165 ± 0.5 mm and a thickness of 1.250 mm. The center region of the concentric circle is an NTD high-grade single crystal 13, and the surrounding region is a double ring layer of a CVD single crystal or polycrystal 14. Structure. This process is the same as a normal wafer manufacturing process.

【0021】図1(e)は上記シリコン半導体基板12
を用いて作成した大容量のサイリスタ用のペレット15
を示す。従来とほぼ同様の酸化,イオン打込み,拡散,
ホトリソグラフィ,メタル蒸着,パッシベーション等の
プロセス技術を使用して、pnpnの4層構造と電極を
形成し、その後ペレタイズ・端面加工し、その大きさは
直径150mmである。サイリスタのトリガ方式として赤
外発光ダイオードによる光トリガ方式のため、ペレット
内に受光部を設置してある。大面積基板を用いることに
より、受光部やゲートパターンの配置の自由度が得ら
れ、サイリスタのターンオンの拡がり速度を早め、拡が
り領域を広めることができる。
FIG. 1E shows the silicon semiconductor substrate 12.
Thyristor pellets 15 prepared using
Is shown. Oxidation, ion implantation, diffusion,
A pnpn four-layer structure and an electrode are formed by using a process technology such as photolithography, metal deposition, and passivation, and then are pelletized and edge-processed, and have a diameter of 150 mm. A light receiving section is installed in the pellet because the thyristor is triggered by an infrared light emitting diode as a trigger method. By using a large-area substrate, the degree of freedom in the arrangement of the light receiving portion and the gate pattern can be obtained, the speed of spreading the turn-on of the thyristor can be increased, and the spreading region can be widened.

【0022】図1(f)は石英製の光ファイバー16と
共に圧接型パッケージ17にセットした状態を示す。
FIG. 1F shows a state in which the optical fiber 16 made of quartz is set in a press-contact type package 17 together with the optical fiber 16.

【0023】この結果、順方向及び逆方向耐圧6kV以
上,電流容量(平均オン電流)6.6kA,1パルスのサ
ージオン電流550kA,最大オン電圧2.1V ,臨界
オン電流上昇率(di/dt)350A/μs以上を確
認した。
As a result, the forward and reverse breakdown voltage is 6 kV or more, the current capacity (average on current) is 6.6 kA, the surge on current of one pulse is 550 kA, the maximum on voltage is 2.1 V, and the critical on current rise rate (di / dt). 350 A / μs or more was confirmed.

【0024】なお、従来の直径150mmのシリコンウエ
ハを用いた場合には、ペレットの直径は最大136mm程
度であり、上記と同等の素子構造では電流容量は最大
5.6kAまでである。
When a conventional silicon wafer having a diameter of 150 mm is used, the diameter of the pellet is up to about 136 mm, and the current capacity is up to 5.6 kA in the element structure equivalent to the above.

【0025】2000MWの直流連系設備BTBの製造
には上記の光トリガサイリスタ672個が必要である。一
方、従来の耐電圧6kV,電流容量5.6kA クラスの
素子では約800個が必要であり、電力変換器の約15
%のサイズ小型化と9%の損失低減が達成できた。また
部品点数削減による高信頼化が期待できる。
In order to manufacture the 2000 MW DC interconnection equipment BTB, 672 light trigger thyristors are required. On the other hand, about 800 elements are required for a conventional element having a withstand voltage of 6 kV and a current capacity of 5.6 kA, and about 15 elements of the power converter are required.
% Size reduction and 9% loss reduction were achieved. Also, high reliability can be expected by reducing the number of parts.

【0026】実施例2 図2(a)及び(b)は本発明による大容量ゲートター
ンオフサイリスタ用のペレット20の平面図及び断面図
を示す。図1と同様のNTD高品位単結晶21とCVD
単結晶または多結晶22と2重輪層型の大面積シリコン
基板を用いて製造したものである。従来とほぼ同様の酸
化,イオン打込み,拡散,ホトリソグラフィ,メタル蒸
着,パッシベーション等のプロセス技術により、pnp
nの4層構造と電極を形成した。素子の大きさは直径1
50mmである。その後、圧接型にパッケージングした。
Embodiment 2 FIGS. 2A and 2B are a plan view and a sectional view of a pellet 20 for a large-capacity gate turn-off thyristor according to the present invention. NTD high quality single crystal 21 and CVD similar to FIG.
It is manufactured using a single crystal or polycrystal 22 and a double-layered large-area silicon substrate. Pnp by process technology such as oxidation, ion implantation, diffusion, photolithography, metal deposition, passivation, etc.
An n-layer structure and electrodes were formed. Element size is diameter 1
50 mm. Thereafter, it was packaged in a pressure welding type.

【0027】このゲートターンオフサイリスタは微細な
ユニット(長さ1.8mm,幅0.16mm)約1万2000
個を多重のリング状に配置したものである。大面積基板
を用いることにより、ゲートパターンの配置の自由度が
得られ、サイリスタのターンオン及びターンオフのペレ
ット内(ユニット間)の動作の均一化が達成できる。こ
の結果、順方向耐圧8kV以上,可制御電流容量8k
A,最大オン電圧4.2V,ターンオフ時間40μsを確
認した。
This gate turn-off thyristor has a fine unit (length 1.8 mm, width 0.16 mm) of about 12,000.
The pieces are arranged in multiple rings. By using a large-area substrate, the degree of freedom in the arrangement of the gate pattern can be obtained, and the operation of turning on and off the thyristor in the pellet (between units) can be made uniform. As a result, the forward breakdown voltage is 8 kV or more, and the controllable current capacity is 8 kV.
A, a maximum on-voltage of 4.2 V and a turn-off time of 40 μs were confirmed.

【0028】上記のゲ−トタ−ンオフサイリスタ384
個を用いて、300MVA級の自励式電力変換器(F
C,BTB)を組み立てることができる。一方、従来の
耐電圧6kV,電流容量6kAクラスの素子では約56
0個が必要であり、電力変換器のサイズ小型化,損失低
減および部品点数削減による高信頼化に貢献できる。
The above gate turn-off thyristor 384
Using a self-excited power converter of 300 MVA class (F
C, BTB) can be assembled. On the other hand, a conventional device of a withstand voltage of 6 kV and a current capacity of 6 kA class has about 56
Zero power is required, which can contribute to high reliability by downsizing the power converter, reducing loss, and reducing the number of parts.

【0029】上記実施例では、直径150mm以上の1ウ
エハ1ペレットについて説明したが、1ウエハから直径
数10mmの丸型ペレットや角型ペレットを複数個製造す
る場合にも適用できる。図3(a),(b)は1つのウエ
ハから複数個のペレットを切り出す場合の状態を示す。
ペレットサイズに余裕ができ、大容量化のみならず、パ
ターン設計の自由度を確保して高性能化や低コスト化す
ることも可能である。
In the above embodiment, one pellet per wafer having a diameter of 150 mm or more has been described. However, the present invention can be applied to a case where a plurality of round pellets or square pellets having a diameter of several tens mm are manufactured from one wafer. FIGS. 3A and 3B show a state in which a plurality of pellets are cut out from one wafer.
The size of the pellet can be afforded, and not only the capacity can be increased, but also the degree of freedom in pattern design can be ensured to achieve high performance and low cost.

【0030】[0030]

【発明の効果】本発明によれば、大面積の半導体基板お
よびそれを用いた大面積の半導体素子(ペレット)を容
易に作成でき、半導体装置の大容量化を達成できる。
According to the present invention, a large-area semiconductor substrate and a large-area semiconductor element (pellet) using the same can be easily formed, and a large-capacity semiconductor device can be achieved.

【0031】また、大面積の半導体基板が得られること
により、半導体素子のパターン設計に自由度が大きくな
り、素子特性の改善が図れる。
Further, since a semiconductor substrate having a large area can be obtained, the degree of freedom in designing a pattern of a semiconductor element is increased, and the element characteristics can be improved.

【0032】更に、大容量の半導体装置が作成できるこ
とにより、これを多数個使用する電力変換装置の小型
化,高信頼化,高効率化が可能となる。
Further, since a large-capacity semiconductor device can be manufactured, it is possible to reduce the size, increase the reliability, and increase the efficiency of a power converter that uses a large number of semiconductor devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の第1の実施例による大面積半導
体装置の製造工程を示す模式図。
FIG. 1 is a schematic view showing a manufacturing process of a large-area semiconductor device according to a first embodiment of the present invention.

【図2】図2は本発明の第2の実施例による大面積半導
体装置のペレットの平面及び断面を示す模式図。
FIG. 2 is a schematic view showing a plane and a cross section of a pellet of a large-area semiconductor device according to a second embodiment of the present invention.

【図3】図3は本発明の第3の実施例による大面積半導
体装置のペレットの平面配置の模式図である。
FIG. 3 is a schematic diagram of a planar arrangement of pellets of a large-area semiconductor device according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…シリコン単結晶ロッド、11…単結晶または多結
晶シリコン層、12…シリコン半導体基板、13,21
…NTD高品位単結晶、14,22…CVD単結晶また
は多結晶、15…大容量サイリスタ用ペレット、17…
パッケージ、20…大容量ゲートターンオフサイリスタ
用のペレット。
DESCRIPTION OF SYMBOLS 10 ... Single-crystal silicon rod, 11 ... Single-crystal or polycrystalline silicon layer, 12 ... Silicon semiconductor substrate, 13, 21
... NTD high-quality single crystal, 14, 22 ... CVD single crystal or polycrystal, 15 ... Pellet for large capacity thyristor, 17 ...
Package, 20: Pellet for large-capacity gate turn-off thyristor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体素子用のシリコン結晶体であって、
素子となる領域は中性子照射により抵抗率を制御された
単結晶、周辺のハンドリング用の領域はCVD法による
単結晶または多結晶の同心円状2重輪層からなることを
特徴とするシリコン結晶体。
1. A silicon crystal for a semiconductor element,
A silicon crystal wherein the element region is a single crystal whose resistivity is controlled by neutron irradiation, and the surrounding handling region is a single crystal or polycrystalline concentric double-ring layer formed by a CVD method.
JP20958596A 1996-08-08 1996-08-08 Silicon crystal body for semiconductor device Pending JPH1055975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20958596A JPH1055975A (en) 1996-08-08 1996-08-08 Silicon crystal body for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20958596A JPH1055975A (en) 1996-08-08 1996-08-08 Silicon crystal body for semiconductor device

Publications (1)

Publication Number Publication Date
JPH1055975A true JPH1055975A (en) 1998-02-24

Family

ID=16575279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20958596A Pending JPH1055975A (en) 1996-08-08 1996-08-08 Silicon crystal body for semiconductor device

Country Status (1)

Country Link
JP (1) JPH1055975A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008506A1 (en) 2002-07-11 2004-01-22 Mitsui Engineering & Shipbuilding Co.,Ltd. Large-diameter sic wafer and manufacturing method thereof
JP2006344823A (en) * 2005-06-09 2006-12-21 Sumco Corp Silicon wafer for igbt and its manufacturing method
JP2007535800A (en) * 2003-10-16 2007-12-06 クリー インコーポレイテッド Method for forming a power semiconductor device using a boule-grown silicon carbide drift layer and power semiconductor device formed thereby
KR101050641B1 (en) 2007-06-27 2011-07-19 도쿄엘렉트론가부시키가이샤 Substrate Processing Unit and Shower Head
US8617311B2 (en) 2006-02-21 2013-12-31 Sumco Corporation Silicon single crystal wafer for IGBT and method for manufacturing silicon single crystal wafer for IGBT

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008506A1 (en) 2002-07-11 2004-01-22 Mitsui Engineering & Shipbuilding Co.,Ltd. Large-diameter sic wafer and manufacturing method thereof
JP2005532697A (en) * 2002-07-11 2005-10-27 三井造船株式会社 Large-diameter SiC wafer and manufacturing method thereof
US7544249B2 (en) 2002-07-11 2009-06-09 Mitsui Engineering Co. Ltd. Large-diameter SiC wafer and manufacturing method thereof
JP4654030B2 (en) * 2002-07-11 2011-03-16 三井造船株式会社 SiC wafer and manufacturing method thereof
KR101027364B1 (en) 2002-07-11 2011-04-11 미쯔이 죠센 가부시키가이샤 Large-diameter sic wafer and manufacturing method thereof
JP2007535800A (en) * 2003-10-16 2007-12-06 クリー インコーポレイテッド Method for forming a power semiconductor device using a boule-grown silicon carbide drift layer and power semiconductor device formed thereby
JP2012134513A (en) * 2003-10-16 2012-07-12 Cree Inc Methods of forming power semiconductor devices using boule-grown silicon carbide drift layers, and power semiconductor devices formed by the method
JP2006344823A (en) * 2005-06-09 2006-12-21 Sumco Corp Silicon wafer for igbt and its manufacturing method
US8617311B2 (en) 2006-02-21 2013-12-31 Sumco Corporation Silicon single crystal wafer for IGBT and method for manufacturing silicon single crystal wafer for IGBT
KR101050641B1 (en) 2007-06-27 2011-07-19 도쿄엘렉트론가부시키가이샤 Substrate Processing Unit and Shower Head

Similar Documents

Publication Publication Date Title
CA1168742A (en) Thin film solar cell
KR102100909B1 (en) Solar cell having an emitter region with wide bandgap semiconductor material
US3900943A (en) Silicon semiconductor device array and method of making same
EP0061923B1 (en) Semiconductor device having a polycrystalline thin film
JPH0394476A (en) Manufacture of substrate for selective crystal growth and selective crystal growth method and manufacture of solar cell by using these substrates
WO2018150861A1 (en) Silicon carbide laminated substrate and production method therefor
JP2010003899A (en) Silicon wafer, semiconductor device, method of manufacturing silicon wafer and method of manufacturing semiconductor device
JPH05235391A (en) Thin film solar cell and its manufacture and manufacture of semiconductor device
CN104409345A (en) Manufacturing method of silicon epitaxial wafer of large-power PIN device
JPH1055975A (en) Silicon crystal body for semiconductor device
JP2017509168A (en) Multijunction solar cell with through-substrate vias
US4366338A (en) Compensating semiconductor materials
Ludemann et al. Dry processing of mc-silicon thin-film solar cells on foreign substrates leading to 11% efficiency
US20120167969A1 (en) Zener Diode Within a Diode Structure Providing Shunt Protection
CN115084271A (en) Silicon carbide power device and processing and manufacturing method thereof
US20030183159A1 (en) Process for producing single crystal silicon wafers
US4383268A (en) High-current, high-voltage semiconductor devices having a metallurgical grade substrate
TW201137944A (en) Semiconductor substrate, method for making a semiconductor substrate, and method for making a photo-electric conversion device
US5489555A (en) Method for forming a photoelectric conversion device
JPH0878709A (en) Solar battery
WO1995032524A1 (en) Semiconductor device in silicon carbide with passivated surface
US20120258561A1 (en) Low-Temperature Method for Forming Amorphous Semiconductor Layers
US3935587A (en) High power, high frequency bipolar transistor with alloyed gold electrodes
JPH08330197A (en) Large-capacity semiconductor device, its manufacture and manufacture of semiconductor substrate
JP5621271B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor