JPH105561A - Atomizing method and device therefor - Google Patents

Atomizing method and device therefor

Info

Publication number
JPH105561A
JPH105561A JP8167297A JP16729796A JPH105561A JP H105561 A JPH105561 A JP H105561A JP 8167297 A JP8167297 A JP 8167297A JP 16729796 A JP16729796 A JP 16729796A JP H105561 A JPH105561 A JP H105561A
Authority
JP
Japan
Prior art keywords
sectional area
atomized
fluid
cross
atomizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8167297A
Other languages
Japanese (ja)
Inventor
Tomihisa Naito
藤 富 久 内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIRACLE KK
S G ENG KK
Original Assignee
MIRACLE KK
S G ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIRACLE KK, S G ENG KK filed Critical MIRACLE KK
Priority to JP8167297A priority Critical patent/JPH105561A/en
Priority to KR1019970024268A priority patent/KR19990001064A/en
Priority to TW086108958A priority patent/TW368434B/en
Priority to EP97304673A priority patent/EP0815930A1/en
Priority to CN97114036A priority patent/CN1174752A/en
Publication of JPH105561A publication Critical patent/JPH105561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To excellently atomize various materials and to keep various costs low by using this atomizing device high in cleanability and capable of being easily made compact. SOLUTION: A material to be atomized and a fluid are passed through a chamber member 22 having a relatively large cross section and then through a member 24 provided with the part having a minute cross section. In this case, ultrasonic vibration is generated by the resonance between the chamber member 22 and the member 24, and a stress is repeatedly exerted on the material to be atomized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分散、乳化、混
合、撹拌、破砕、その他の分野で用いられる微粒化方法
及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for atomization used in dispersion, emulsification, mixing, stirring, crushing and other fields.

【0002】[0002]

【従来の技術】各種材料を微粒化すると、例えば分散、
乳化、混合、破砕等の分野において、その材料が有する
本来の機能が充分に発揮され、極めて良好な結果が得ら
れることが広く知られている。そのため、各種材料を微
粒化する方法及び装置の開発が、従来から強く要請され
ている。
2. Description of the Related Art When various materials are atomized, for example, dispersion,
It is widely known that in the fields of emulsification, mixing, crushing and the like, the original function of the material is sufficiently exerted and extremely good results are obtained. Therefore, the development of a method and an apparatus for atomizing various materials has been strongly demanded.

【0003】ここで微粒化装置においては、材料の純粋
化(コンタミレス化)の要求が非常に高いため、微粒子
が存在し得る部分が良好に洗浄されなくてはならない。
[0003] Here, in the atomization apparatus, since the demand for purification (contamination-less) of the material is extremely high, a portion where fine particles may exist must be cleaned well.

【0004】また、従来の微粒化装置においては、高圧
を発生させる必要がある。そのため、高圧ポンプ或いは
圧縮機等を備え付ける必要性があるため、大型化、高価
格化を余儀なくされている。そのため、従来の微粒化装
置においては、小型化及び洗浄性の向上が非常に強く要
請されていた。
Further, in the conventional atomizing apparatus, it is necessary to generate a high pressure. Therefore, it is necessary to provide a high-pressure pump, a compressor, and the like, so that the size and the price have to be increased. For this reason, in the conventional atomization apparatus, there has been a very strong demand for downsizing and improvement in cleanability.

【0005】流体中の物質を、流体の衝突、擾乱、乱
流、拡大、又は縮流等によるキャビテーションの発生に
より微粒化するものとして、例えば特開平2−2615
25号公報には、材料の微粒化を行う部材であるジェネ
レータ内のノズルディスクに、透孔と溝部とを形成した
技術が開示されている。また、米国特許4533254
号明細書には、ノズル穴とフィルム状室とを組合せた技
術が示されている。そして、これ等の従来技術によれ
ば、材料の微粒化は達成できる。
[0005] Japanese Patent Application Laid-Open No. 2-2615 discloses a method in which a substance in a fluid is atomized by the occurrence of cavitation due to collision, disturbance, turbulence, expansion, or contraction of the fluid.
No. 25 discloses a technique in which a through hole and a groove are formed in a nozzle disk in a generator which is a member for atomizing a material. No. 4,533,254.
The specification discloses a technique in which a nozzle hole and a film-shaped chamber are combined. And according to these conventional techniques, atomization of the material can be achieved.

【0006】[0006]

【発明が解決しようとする課題】しかし、上述した従来
技術では、材料を微粒化する部材は、チャンバ内のディ
スク及び/又はノズルが、溝部や薄いフィルム状室等に
形成された流路によって構成されているが、流路中の折
曲箇所において応力集中が発生し、該折曲箇所の角部が
摩耗して磨り減ってしまう、という問題が存在する。
However, in the above-mentioned prior art, the member for atomizing the material is such that the disk and / or the nozzle in the chamber is constituted by a flow path formed in a groove or a thin film-shaped chamber. However, there is a problem that stress concentration occurs at a bent portion in the flow channel, and the corner portion of the bent portion is worn and worn away.

【0007】また、流体或いは微粒化するべき材料(材
粒)と前記部材とが接触する面積(接触表面積)が大き
いため、洗浄性が低いという問題も有している。
In addition, since the area (contact surface area) between the fluid or the material to be atomized (particles) and the member is large, there is also a problem that cleaning properties are low.

【0008】さらに、流体を圧縮するための装置が圧縮
機又はポンプであるため、所定の微粒化を達成するため
の圧力を得ようとすれば、装置全体が大型化するという
問題も有している。
Further, since the device for compressing the fluid is a compressor or a pump, if the pressure for achieving the predetermined atomization is to be obtained, there is a problem that the entire device becomes large. I have.

【0009】これに加えて、洗浄性が低いため維持コス
トが嵩んでしまう、装置全体が大型化或いは(高圧に対
応できる様な)高性能化するため製造コストが高価であ
る、等の理由から、従来の微粒化装置は各種コストの高
騰化を招いてしまう。
In addition, the maintenance cost is increased due to the low cleaning property, and the manufacturing cost is high due to the increase in size of the entire apparatus or the high performance (corresponding to high pressure), and the like. However, the conventional atomizing apparatus causes various costs to increase.

【0010】また微粒化処理に際しては、微粒化された
対象物の粒径が自由に設計出来ること、所謂「粒径設
計」が理想とされている。しかし従来の技術において
は、その様な粒径設計は不可能であった。
In the atomization treatment, it is ideal that the particle size of the atomized object can be freely designed, so-called "particle size design". However, in the prior art, such a particle size design was not possible.

【0011】本発明は上述した従来技術の問題点に鑑み
て提案されたものであり、各種材料を良好に微粒化する
ことが出来て、しかも、洗浄性が高く、コンパクト化が
容易であり、各種コストを低く抑えることが出来る様な
微粒化方法及び装置の提供を目的としている。
The present invention has been proposed in view of the above-mentioned problems of the prior art, and is capable of satisfactorily atomizing various materials, has high cleaning properties, and is easy to make compact. It is an object of the present invention to provide an atomizing method and an apparatus capable of keeping various costs low.

【0012】[0012]

【課題を解決するための手段】発明者等は種々の研究の
結果、従来のキャビテーションによる微粒化では無く
て、全く別の理論による微粒化、すなわち音響理論或い
は共鳴理論に基づいた微粒化、を行えば極めて良好な結
果が得られることを見出だした。本発明は、その様な
(従来のキャビテーションによる微粒化の理論とは全く
別の)理論による微粒化方法及び装置に関する。
As a result of various studies, the present inventors have found that, instead of the conventional atomization by cavitation, atomization by a completely different theory, that is, atomization based on acoustic theory or resonance theory. It has been found that very good results can be obtained if done. The present invention relates to a method and an apparatus for atomizing by such a theory (completely different from the conventional theory of atomization by cavitation).

【0013】本発明の微粒化方法は、微粒化するべき材
料を流体と混合して微粒化する微粒化方法において、前
記微粒化するべき材料及び流体を比較的大きな断面積を
有するチャンバ部材を介して微小断面積を有する部分を
備えた部材に流過させる工程を有し、該工程に際して、
前記チャンバ部材と前記微小断面積を有する部分と前記
流体との共鳴により超音波振動を発生し、微粒化するべ
き材料に対して応力を繰り返し作用せしめることを特徴
としている。
[0013] In the atomization method of the present invention, the material to be atomized is mixed with a fluid to atomize the material, and the material to be atomized and the fluid are passed through a chamber member having a relatively large cross-sectional area. Having a step of flowing through a member having a portion having a small cross-sectional area,
Ultrasonic vibration is generated by resonance between the chamber member, the portion having the minute cross-sectional area, and the fluid, and a stress is repeatedly applied to a material to be atomized.

【0014】また本発明の微粒化装置は、微粒化するべ
き材料を流体と混合して微粒化する微粒化装置におい
て、比較的大きな断面積を有するチャンバ部材と、微小
断面積を有する部分を備えた部材と、前記微粒化するべ
き材料及び流体を前記チャンバ部材及び微小断面積を有
する部分を備えた部材に供給する供給配管系とを有し、
前記チャンバ部材及び微小断面積を有する部分を備えた
部材は、微粒化するべき材料に対して応力を繰り返し作
用させるため、前記チャンバ部材及び微小断面積を有す
る部分と前記流体とが共鳴を起こして超音波振動を発生
する様に構成されている。
Further, the atomizing device of the present invention is a device for atomizing a material to be atomized by mixing the material to be atomized with a fluid, the chamber member having a relatively large sectional area, and a portion having a small sectional area. And a supply piping system for supplying the material and the fluid to be atomized to the chamber member and a member having a portion having a small cross-sectional area,
The member provided with the chamber member and the portion having a small cross-sectional area, in order to repeatedly apply stress to the material to be atomized, the chamber member and the portion having a small cross-sectional area and the fluid cause resonance It is configured to generate ultrasonic vibration.

【0015】本発明の微粒化方法或いは微粒化装置を実
施するに際して、微小断面積を有する部分を備えた前記
部材は、円筒形の中空部材であるのが好ましい。そし
て、その様な円筒形の中空部材としては、例えば注射針
の様な細径な金属製円筒形部材が好適である。
In carrying out the atomizing method or the atomizing apparatus of the present invention, it is preferable that the member having a portion having a small cross-sectional area is a cylindrical hollow member. As such a cylindrical hollow member, a thin metal cylindrical member such as an injection needle is suitable.

【0016】本発明の微粒化方法或いは微粒化装置を実
施するに際して、微小断面積を有する部分を備えた前記
部材は、複数の直線流路を有しているのが好ましい。こ
こで、複数の直線流路を有する前記部材としては、例え
ば、複数の細径金属製円筒形部材を複数本束ねたもの、
或いは、該束ねた細径金属製円筒形部材を粉末合金で焼
結したもの、中実円筒形の部材を放電加工して複数の貫
通孔を形成したもの等を採用するのが好ましい。
In implementing the atomizing method or the atomizing apparatus of the present invention, it is preferable that the member having a portion having a minute cross-sectional area has a plurality of straight flow paths. Here, as the member having a plurality of straight flow paths, for example, a bundle of a plurality of small-diameter metal cylindrical members,
Alternatively, it is preferable to adopt a material obtained by sintering the bundled small-diameter metal cylindrical member with a powder alloy, or a member obtained by forming a plurality of through holes by subjecting a solid cylindrical member to electrical discharge machining.

【0017】上述した様な構成を具備する本発明の微粒
化方法及び装置によれば、微粒化するべき材料及び流体
が前記チャンバ部材及び微小断面積を有する部分を備え
た部材を流過する際に、前記チャンバ部材及び微小断面
積を有する部分と前記流体との共鳴により超音波振動を
発生する。すなわち、微小断面積を有する部分を備えた
部材を通過する際に、所謂「フローノイズ」に該当する
振動が発生し、その振動とチャンバ部材との共鳴振動数
を持つ振動が、該チャンバ内に伝播する。その際に、チ
ャンバ部材及び微小断面積を有する部分と前記流体との
共鳴振動数が非常に高いため、超音波振動が発生する。
According to the atomizing method and the apparatus of the present invention having the above-described structure, when the material and the fluid to be atomized flow through the chamber member and the member provided with the portion having the small sectional area. Then, ultrasonic vibration is generated by resonance between the chamber member and a portion having a small cross-sectional area and the fluid. That is, when passing through a member having a portion having a small cross-sectional area, vibration corresponding to so-called “flow noise” is generated, and the vibration and the vibration having the resonance frequency of the chamber member are generated in the chamber. Propagate. At this time, since the resonance frequency between the chamber member and the portion having a small cross-sectional area and the fluid is very high, ultrasonic vibration is generated.

【0018】前記チャンバ部材及び微小断面積を有する
部分を備えた部材内を流過する際に、キャビテーション
或いは側壁面との衝突等により、(微粒化するべき)材
料に対して、曲げ応力や剪断応力が作用する。ここで本
発明によれば、超音波振動が発生する結果、該材料へ曲
げ応力或いは剪断応力が作用する繰り返し回数は、従来
の微粒化装置では到達不可能な程度の大きな値となる。
そして、微粒化するべき材料に対する曲げ応力(キャビ
テーション、側壁面との衝突、その他に起因する曲げ応
力或いは剪断応力)が作用する繰り返し回数が飛躍的に
増大することにより、当該材料に対する理想的な微粒化
が達成されるのである。
When flowing through the chamber member and the member having a portion having a small cross-sectional area, the material (to be atomized) is subjected to bending stress or shearing due to cavitation or collision with a side wall surface. Stress acts. Here, according to the present invention, as a result of the generation of the ultrasonic vibration, the number of repetitions at which the bending stress or the shear stress acts on the material has a large value that cannot be reached by the conventional atomizing apparatus.
Then, the number of repetitions at which a bending stress (bending stress or shear stress caused by cavitation, collision with a side wall surface, or the like) acts on the material to be atomized increases drastically, so that an ideal fine particle for the material is obtained. Is achieved.

【0019】本発明において、微小断面積を有する部分
を備えた前記部材の内径、長さ、流体圧力を適宜設定す
れば、微粒化された対象物の粒径分布が非常にシャープ
となる。そして、粒径分布が非常にシャープであるとい
うことは、微粒化された対象物の粒径が均一に揃ってい
ることを意味している。換言すると、本発明によれば、
微粒化処理において理想とされていたが、従来の技術で
は実現不可能であった粒径設計が、可能となるのであ
る。すなわち、微小断面積を有する部分を備えた前記部
材の内径、当該部材を流過する流体の圧力を適宜設定す
れば、所定の粒径で微粒化することが可能となるのであ
る。なお、微小断面積を有する部分を備えた前記部材の
長さ寸法を大きくすれば、粒径分布がより一層シャープ
となる。すなわち、正確な粒径設計が可能となるのであ
る。
In the present invention, by appropriately setting the inner diameter, length, and fluid pressure of the member having a portion having a minute cross-sectional area, the particle size distribution of the atomized object becomes very sharp. The fact that the particle size distribution is very sharp means that the particle size of the atomized object is uniform. In other words, according to the present invention,
This makes it possible to design a particle size which was ideal in the atomization treatment but could not be realized by the conventional technology. That is, by appropriately setting the inner diameter of the member having a portion having a small cross-sectional area and the pressure of the fluid flowing through the member, it is possible to atomize the particles with a predetermined particle size. It should be noted that the particle size distribution becomes sharper if the length of the member having a portion having a small cross-sectional area is increased. That is, accurate particle size design becomes possible.

【0020】ここで、本発明の微粒化方法及び装置を実
施した場合、洗浄が必要で且つ微粒化された材料(材
粒)と接触するのは前記チャンバ部材及び微小断面積を
有する部分を備えた部材のみであるため、微粒化が完了
した後の洗浄も当該2部材のみを対象とすれば良い。そ
のため、洗浄性或いは洗浄効率も従来のものに比較して
遥かに高い数値となる。
Here, when the method and apparatus for atomization of the present invention are carried out, the parts which need to be cleaned and come into contact with the atomized material (particles) include the chamber member and a portion having a minute cross-sectional area. Since only the two members are used, the cleaning after the atomization is completed may be performed only on the two members. Therefore, the cleaning property or cleaning efficiency is much higher than the conventional one.

【0021】また、前記微小断面積を有する部分を備え
た部材を流路としているため、隅部或いは角部を多数設
ける必要が無い。従って、隅部或いは角部に応力集中が
発生することや、それによる摩耗の恐れも無い。
In addition, since the member having the portion having the small cross-sectional area is used as the flow path, it is not necessary to provide many corners or corners. Therefore, there is no risk of stress concentration occurring at the corners or corners, and there is no risk of wear due to the stress concentration.

【0022】また、前記微小断面積を有する部分を備え
た部材は、後述する様に極めて小さい部材が採用される
ので、該部材と微粒化された材料とが接触する面積(接
触表面積)も極めて小さくなる。そのため、前記洗浄性
が向上するのである。
Further, since the member having the portion having the minute cross-sectional area is an extremely small member as described later, the area (contact surface area) where the member contacts the atomized material is extremely small. Become smaller. Therefore, the cleaning property is improved.

【0023】さらに本発明の微粒化方法及び装置によれ
ば、前記チャンバ部材及び微小断面積を有する部分と前
記流体との共鳴により超音波振動を発生する様に、前記
部材の形状、寸法、その他の各種パラメータを設定すれ
ば、従来の微粒化装置の様な超高圧を必要としなくな
る。そのため、装置全体のコンパクト化が極めて容易に
促進される。
Further, according to the atomization method and apparatus of the present invention, the shape, size, etc. of the member such that ultrasonic vibration is generated by resonance between the chamber member and a portion having a small cross-sectional area and the fluid. By setting the above various parameters, it is no longer necessary to use an ultra-high pressure unlike the conventional atomization apparatus. Therefore, the downsizing of the entire apparatus is promoted very easily.

【0024】本発明の超音波振動発生装置は、微小断面
積を有する部分を備えた部材と、該部材に流体を供給す
る供給配管系とを有し、微小断面積を有する部分を備え
た部材は、前記微小断面積を有する部分と前記流体との
共鳴により超音波振動を発生する様に構成されている。
そのため、前記チャンバ部材及び微小断面積を有する部
分を備えた部材の形状、寸法、そこを通過する流体の圧
力、その他の各種パラメータを適宜設定すれば、極めて
容易に固有な超音波振動を得ることが出来る。現時点に
おいて、超音波振動を得るためには圧電素子と高周波の
交流電流が必須のものであることを考慮すれば、超音波
振動の利用分野においても本発明の利用価値は極めて高
いのである。
An ultrasonic vibration generator according to the present invention has a member having a portion having a minute cross-sectional area, and a supply piping system for supplying a fluid to the member, and a member having a portion having a minute cross-sectional area. Is configured to generate ultrasonic vibration by resonance between the portion having the small cross-sectional area and the fluid.
Therefore, by appropriately setting the shape and dimensions of the chamber member and the member having a portion having a small cross-sectional area, the pressure of the fluid passing therethrough, and other various parameters, it is extremely easy to obtain unique ultrasonic vibration. Can be done. At present, the application value of the present invention is extremely high also in the application field of ultrasonic vibration, considering that a piezoelectric element and a high-frequency alternating current are essential for obtaining ultrasonic vibration.

【0025】[0025]

【発明の実施の形態】以下、添付図面を参照しつつ、本
発明の実施形態を説明する。図1において、本発明の微
粒化方法を実施するための装置(微粒化装置)は、全体
を符号10で示されている。該装置10は、微粒化する
べき材料及び水(流体)が供給される貯溜部12と、流
量及び吐出圧力可変タイプのポンプ14と、前記材料の
微粒化を行う部分である微粒化部材20とを有してお
り、これ等の各部材は配管系L1中で直列に介装されて
いる。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, an apparatus (an atomizing apparatus) for implementing the atomizing method of the present invention is indicated by reference numeral 10 as a whole. The apparatus 10 includes a storage unit 12 to which a material to be atomized and water (fluid) are supplied, a pump 14 of a variable flow rate and a discharge pressure type, and an atomizing member 20 which is a part for atomizing the material. These members are interposed in series in the piping system L1.

【0026】貯溜部12には、配管系L2を介して、材
料供給源16より微粒化するべき材料(例えば、オイ
ル)が供給される。また、配管系L3を介して、水供給
源18より流体である水が供給される。そして、前記配
管系L1,L2,L3により、供給配管系が構成されて
いる。
A material (for example, oil) to be atomized is supplied from a material supply source 16 to the storage unit 12 via a piping system L2. Further, water as a fluid is supplied from the water supply source 18 through the piping system L3. A supply piping system is configured by the piping systems L1, L2, and L3.

【0027】微粒化部材20は、チャンバ部材22と、
金属製で細径の円筒形中空部材24(微小断面積を有す
る部分を備えた部材)とを有している。図1から明らか
な様に、チャンバ部材22の断面積は比較的大きい。或
いは、チャンバ部材22の断面積は、部材24の断面積
に比較して大きい。
The atomizing member 20 includes a chamber member 22 and
And a metal-made cylindrical hollow member 24 having a small diameter (a member having a portion having a minute cross-sectional area). 1, the cross-sectional area of the chamber member 22 is relatively large. Alternatively, the cross-sectional area of the chamber member 22 is larger than the cross-sectional area of the member 24.

【0028】なお図1において、符号DDは、微粒化部
材20において微粒化された前記材料と水との混合物を
利用する各種処理機構を示している。
In FIG. 1, reference numeral DD denotes various processing mechanisms that use a mixture of the material and water atomized in the atomizing member 20.

【0029】図1の実施形態において、微粒化処理に際
しては、微粒化するべき材料を材料供給源16より配管
L2を介して貯溜部12へ供給し、且つ、水供給源18
から水を供給する。貯溜部12へ供給された材料及び水
は、ポンプ14によりヘッドを付加され、配管L1を介
して、微粒化部材20に供給される。
In the embodiment shown in FIG. 1, during the atomization treatment, the material to be atomized is supplied from the material supply source 16 to the storage section 12 via the pipe L2, and the water supply source 18
Supply water from. The material and water supplied to the storage unit 12 are provided with a head by the pump 14 and supplied to the atomization member 20 via the pipe L1.

【0030】微粒化部材20において、円筒形中空部材
24(微小断面積を有する部分を備えた部材)はジェッ
ト噴流を形成するに際して、所謂「フローノイズ」の発
生源となる。換言すれば、円筒形中空部材24は音源と
して作用する。また、チャンバ部材22と円筒形中空部
材24との共鳴振動数は非常に高く、超音波振動に相当
する(後述の実施例参照)。そのため、円筒形中空部材
24が音源として作用すると、チャンバ部材22及び円
筒形中空部材24内の流体と、超音波振動程度の高い振
動数で共鳴する。高い振動数で共鳴する結果、微粒化部
材20に供給された材料は、部材22,24内の壁面と
の衝突或いはキャビテーションにより曲げ応力或いは剪
断応力が作用する回数が、非常に多くなる(後述の実施
例参照)。そのため、非常に良好な微粒化が達成され
る。
In the atomizing member 20, the cylindrical hollow member 24 (member having a portion having a small cross-sectional area) is a source of so-called "flow noise" when forming a jet jet. In other words, the cylindrical hollow member 24 acts as a sound source. Further, the resonance frequency of the chamber member 22 and the cylindrical hollow member 24 is very high, and corresponds to the ultrasonic vibration (see the embodiment described later). Therefore, when the cylindrical hollow member 24 acts as a sound source, it resonates with the fluid in the chamber member 22 and the cylindrical hollow member 24 at a frequency as high as ultrasonic vibration. As a result of resonating at a high frequency, the material supplied to the atomizing member 20 has a very large number of times that bending stress or shear stress acts due to collision or cavitation with the wall surfaces inside the members 22, 24 (described later). See Examples). Therefore, very good atomization is achieved.

【0031】図1の実施形態において、円筒形中空部材
24は金属製で細径の単一管から成る部材として示され
ている。しかし、図2で示す様に、複数の金属製の細径
円筒形中空部材24A・・・をベルト部材26,26で
束ねたものと、チャンバ部材22とを組み合わせて微粒
化部材(符号20Aで示す)を構成しても良い。
In the embodiment of FIG. 1, the cylindrical hollow member 24 is shown as a member made of a single thin metal tube. However, as shown in FIG. 2, a plurality of metal-made small-diameter cylindrical hollow members 24A... Bundled by belt members 26 and 26 and a chamber member 22 are combined to form an atomizing member (reference numeral 20A). (Shown).

【0032】或いは、図3で符号24Bで示す部材の様
に、図1及び図2で示す金属製の細径円筒形中空部材2
4,24A・・・よりも大径の円筒形部材27に複数の
貫通孔28・・・を穿孔しても良い。ここで、複数の貫
通孔28・・・を穿孔するに際しては、多軸穿孔機械を
用いるのが好ましい。
Alternatively, like the member indicated by reference numeral 24B in FIG. 3, the metal small-diameter cylindrical hollow member 2 shown in FIGS.
A plurality of through holes 28 may be formed in the cylindrical member 27 having a larger diameter than 4, 24A,. Here, when drilling the plurality of through holes 28, it is preferable to use a multi-axis drilling machine.

【0033】ここで、図3においては複数の貫通孔28
・・・の内径が同一のものとして示されているが、複数
の粒径の微粒化物質が要求される場合には、貫通孔28
・・・の内径を複数の異なった数値とすることが可能で
ある。例えばアルミナの高純度セラミックで前記円筒形
部材27を構成すれば、当該セラミックは所謂「連泡構
造」であるので、0.01mm程度の多数の細孔が存在
する。このセラミック製の円筒形部材27に対して放電
加工を行なえば、放電加工により形成された貫通孔の内
径は0.3mm程度であるので、2種類の内径寸法
(0.01mm、0.03mm)が達成される。
Here, in FIG. 3, a plurality of through holes 28 are provided.
Are shown as having the same inner diameter, but when atomized substances of a plurality of particle sizes are required, the through holes 28
.. Can be a plurality of different numerical values. For example, if the cylindrical member 27 is made of a high-purity ceramic of alumina, the ceramic has a so-called "open-cell structure", so that there are many pores of about 0.01 mm. If electric discharge machining is performed on the ceramic cylindrical member 27, the inner diameter of the through hole formed by electric discharge machining is about 0.3 mm, so that two types of inner diameter dimensions (0.01 mm and 0.03 mm) are used. Is achieved.

【0034】[0034]

【第1実施例】図4は、本発明の微粒化方法及び装置を
モデル化した装置を示している。全体を符号100で示
す微粒化装置は、図示しない供給配管系を介して水(流
体)及び微粒化するべき材料(リン酸カルシウム10%
と分散剤ピロリシサンナリウム0.2%:流入粒子サイ
ズは5.13μm)とが供給される流入側Iと、流入側
Iに設けた継手部分Jと、3つのチャンバ(チャンバ部
材に相当)C1,C2,C3と、チャンバ間に介装され
た2つのノズル(微小断面積を有する部分を備えた部材
に相当)N1,N2と、微粒化された材料と水との混合
物の流出口OL(流出側O)とを備えている。
FIG. 4 shows an apparatus which models the atomization method and apparatus of the present invention. The atomizing device indicated by the reference numeral 100 is provided with water (fluid) and a material to be atomized (calcium phosphate 10%) through a supply piping system (not shown).
And the dispersant 0.2% pyrrolicisanarium: the inlet particle size is 5.13 μm), a joint J provided on the inlet side I, and three chambers (corresponding to chamber members). C1, C2, C3, two nozzles N1 and N2 interposed between the chambers (corresponding to members having a small cross-sectional area), and an outlet OL for a mixture of atomized material and water (Outflow side O).

【0035】ノズルN1,N2の内径dは0.2mm、
チャンバC1,C2,C3の内径Dは7mmである(図
5参照)。図示はされていないが、ノズルN1,N2の
長さ(図4において矢印L方向の寸法)は合計で0.5
mmであり、チャンバC2の長さは20mmである。
The inner diameter d of the nozzles N1 and N2 is 0.2 mm,
The inner diameter D of the chambers C1, C2, and C3 is 7 mm (see FIG. 5). Although not shown, the total length of the nozzles N1 and N2 (the dimension in the direction of the arrow L in FIG. 4) is 0.5.
mm, and the length of the chamber C2 is 20 mm.

【0036】る。そして、図5で示されている様に、ノ
ズルN1,N2の流速は64m/secであり、一方チ
ャンバC1,C2,C3内の流速は断面積の比から求ま
り、0.05m/secである。
[0036] Then, as shown in FIG. 5, the flow velocity of the nozzles N1 and N2 is 64 m / sec, while the flow velocity in the chambers C1, C2 and C3 is 0.05 m / sec, which is obtained from the ratio of the sectional areas. .

【0037】この装置においても、良好な微粒化が行わ
れた。その様な微粒化が従来のキャビテーション理論に
従うものと仮定すると、前記粒子に曲げ応力或いは剪断
応力が作用する箇所は、ノズルN1,N2の箇所のみと
なる。そして、前記粒子に曲げ応力或いは剪断応力が作
用する回数Nは次式で求まる。 N=T/ΔT・・・(1)式 この(1)式において、Tは粒子がノズルを通過する時
間であり、ノズルN1,N2の長さをLN、流速をUと
すると T=LN/U となり、上述した数値を代入す
れば、 T=0.5×10-3(m)/64(m/se
c) である。一方、ΔTは粒子が受ける振動の周期で
あり、レゾナンス振動数(=150KHz)の逆数が相
当する。そして、これ等の数値を(1)式に代入すれば N=T/ΔT =(0.5×10-3/64)/(1/150×103 ) =1.2(回) となる。
Also in this apparatus, good atomization was performed. Assuming that such atomization complies with the conventional cavitation theory, the only place where bending stress or shear stress acts on the particles is at the nozzles N1 and N2. The number of times N in which bending stress or shear stress acts on the particles is obtained by the following equation. N = T / ΔT Expression (1) In this expression (1), T is the time for the particles to pass through the nozzle. If the lengths of the nozzles N1 and N2 are LN and the flow velocity is U, T = LN / U, and the above numerical values are substituted, T = 0.5 × 10 −3 (m) / 64 (m / se
c) On the other hand, ΔT is the cycle of the vibration received by the particles, and corresponds to the reciprocal of the resonance frequency (= 150 KHz). Then, if these numerical values are substituted into the expression (1), N = T / ΔT = (0.5 × 10 −3 / 64) / (1/150 × 10 3 ) = 1.2 (times) .

【0038】本発明の微粒化が従来のキャビテーション
理論に従うと仮定すれば、各材料粒子は、平均1.2回
という極めて少ない回数だけ曲げ応力或いは剪断応力が
作用することにより、十分に破壊されて微粒化されるこ
とになる。換言すれば、N=1.2回という回数が前記
粒子の微粒化に必要な回数としては極めて小さ過ぎる数
値であることを考慮すれば、本発明の微粒化は従来のキ
ャビテーション理論に従って行われてものではないと判
断せざるを得ない。
Assuming that the atomization of the present invention complies with the conventional cavitation theory, each material particle is sufficiently broken by the bending stress or the shear stress acting only a very small number of 1.2 times on average. It will be atomized. In other words, considering that the number of times N = 1.2 times is a value that is extremely small as the number required for atomizing the particles, the atomization of the present invention is performed according to the conventional cavitation theory. I have to judge that it is not a thing.

【0039】これに対して、本発明による微粒化が、チ
ャンバ部材と微小断面積を有する部分と前記流体との共
鳴により超音波振動が発生するためであると仮定した場
合における前記回数Nを求めてみる。図4の装置をその
様なモデルに当て嵌めてみると、チャンバC1とノズル
N1とから成る装置と、チャンバC2とノズルN1及び
N2とから成る装置、との組み合わせと考えられる。
On the other hand, when the atomization according to the present invention is assumed to be due to the generation of ultrasonic vibrations due to the resonance between the chamber member and the portion having a small cross-sectional area and the fluid, the number of times N is calculated. Try. When the apparatus of FIG. 4 is applied to such a model, it can be considered that a combination of an apparatus including the chamber C1 and the nozzle N1 and an apparatus including the chamber C2 and the nozzles N1 and N2.

【0040】上述した通り、チャンバC2の長さ(図4
の矢印L方向寸法)LCが0.02m、代表速度が音速
で1500m/secとすれば、基本振動数FはF=1
500/0.02=75KHz となる。そして、上記
2つの装置(チャンバC1とノズルN1とから成る装
置、及びチャンバC2とノズルN1及びN2とから成る
装置)の両方で共鳴を生じる振動数は2F=150KH
z(調和振動数)となる。従って、共鳴振動数150K
Hzにより、チャンバC2内で前記粒子に曲げ応力或い
は剪断応力が作用する回数Nは上式(1)により、 N=T/ΔT 粒子がチャンバC2を通過する時間T(=LC/U:
但、チャンバC2の長さがLC、流速がU)は、チャン
バC2内の流速が0.05m/sec(図5参照)であ
るため、T=20.0×10-3(m)/0.05(m/
sec) となる。一方、粒子が受ける振動の周期ΔT
は、共鳴振動数150KHzの逆数である。これ等の数
値を(1)式に代入すれば N=T/ΔT =(20.0×10-3/0.05)/(1/150×103 ) =6×104 (回) となる。この回数は、良好な微粒化を達成するには十分
な数値である。従って、この実施例から、本発明は音響
効果或いは共鳴を原理とする微粒化であることが理解さ
れるのである。
As described above, the length of the chamber C2 (FIG. 4)
(L dimension in the direction of arrow L) LC is 0.02 m and the representative speed is 1500 m / sec as the sound speed, the basic frequency F is F = 1.
500 / 0.02 = 75 KHz. The frequency at which resonance occurs in both of the two devices (the device including the chamber C1 and the nozzle N1 and the device including the chamber C2 and the nozzles N1 and N2) is 2F = 150 KH.
z (harmonic frequency). Therefore, resonance frequency 150K
Hz, the number N of times that a bending stress or a shear stress acts on the particles in the chamber C2 is expressed by the following equation (1): N = T / ΔT The time T (= LC / U:
However, when the length of the chamber C2 is LC and the flow rate is U, the flow rate in the chamber C2 is 0.05 m / sec (see FIG. 5), so that T = 20.0 × 10 −3 (m) / 0. .05 (m /
sec). On the other hand, the period ΔT of the vibration received by the particles
Is the reciprocal of the resonance frequency of 150 KHz. By substituting these numerical values into equation (1), N = T / ΔT = (20.0 × 10 −3 /0.05)/(1/150×10 3 ) = 6 × 10 4 (times) Become. This number is a numerical value sufficient to achieve good atomization. Therefore, it can be understood from this embodiment that the present invention is atomization based on acoustic effects or resonance.

【0041】また、本発明により微粒化された材料の粒
度分布が、従来技術では例を見ない程シャープとなるこ
とも、粒子に曲げ応力或いは剪断応力が作用する回数が
非常に多いという上記結論と、良く一致する。
Further, the particle size distribution of the material atomized by the present invention becomes sharper than in the prior art, and the above-mentioned conclusion that the number of times bending stress or shear stress acts on the particles is extremely large. And agree well.

【0042】[0042]

【第2実施例】図1で示す微粒化装置を用いて、オイル
(20%)と水(80%)との混合或いは乳化実験を行
った。ここで、金属製で細径の円筒形中空部材24(微
小断面積を有する部分を備えた部材)としては、長さ2
5mm、内径0.5mmの注射針を使用した。なお、注
射針の先端部分24Eは、図6で示す様に、その傾斜部
分30が下方を向く様に配置した。
Second Embodiment Using the atomizing apparatus shown in FIG. 1, an experiment of mixing or emulsifying oil (20%) and water (80%) was performed. Here, the metal-made cylindrical hollow member 24 having a small diameter (a member having a portion having a small cross-sectional area) has a length of 2 mm.
An injection needle having a diameter of 5 mm and an inner diameter of 0.5 mm was used. In addition, as shown in FIG. 6, the tip portion 24E of the injection needle was disposed such that the inclined portion 30 was directed downward.

【0043】ポンプ14(図1参照)の吐出圧を10気
圧として、3秒間の撹拌運転と3秒間の循環運転を行っ
た後、レーザ回析/散乱式粒度分布測定装置(実施例で
は、堀場製作所の商品名「LA−910」:該粒度分布
測定装置は図示せず)を用いて計測した結果が、図7に
示されている。
After setting the discharge pressure of the pump 14 (see FIG. 1) to 10 atm and performing a stirring operation for 3 seconds and a circulation operation for 3 seconds, a laser diffraction / scattering type particle size distribution measuring apparatus (Horiba in the embodiment) FIG. 7 shows the result of measurement using a product name “LA-910” manufactured by Mfg. Co., Ltd .: the particle size distribution measuring device is not shown).

【0044】図7で示す計測結果は、微粒化された粒子
の径が3〜5μmを中心として、略々正規分布状の非常
にシャープな粒度分布となっており、微粒化が極めて良
好に行われたことを示している。
The measurement results shown in FIG. 7 show that the finely divided particles have a very sharp particle size distribution substantially in the normal distribution centering around 3 to 5 μm, and that the finely divided particles can be performed very well. It has been shown.

【0045】[0045]

【第3実施例】第2実施例の場合と同様な試料につい
て、第2実施例と同様な実験装置を用いて、第2実施例
と同様な測定を行った。但し、圧力は1気圧、分散時間
は1分間であり、注射針の内径は1.2mm、長さは3
8mmである。この測定結果を図8に示す。微粒化され
た試料の粒径が正規分布状且つ非常にシャープな2種類
のピークを持つことが分かる。
Third Example A sample similar to that of the second example was subjected to the same measurement as that of the second example using an experimental apparatus similar to that of the second example. However, the pressure is 1 atm, the dispersion time is 1 minute, the inner diameter of the injection needle is 1.2 mm, and the length is 3
8 mm. FIG. 8 shows the measurement results. It can be seen that the particle size of the atomized sample has two types of peaks which are normally distributed and very sharp.

【0046】図8で示す測定結果に対して、同一の条件
にて圧力を3気圧にした場合の結果を図9で示し、10
気圧にした場合の結果を図10で示す。図8〜10で示
す場合においては、微粒化装置へ供給される試料及び流
体の圧力が、粒径或いは粒度分布に影響を与えている。
FIG. 9 shows the results obtained when the pressure was set to 3 atm under the same conditions as the measurement results shown in FIG.
FIG. 10 shows the result when the pressure is set to the atmospheric pressure. In the cases shown in FIGS. 8 to 10, the pressure of the sample and the fluid supplied to the atomization device affects the particle size or the particle size distribution.

【0047】[0047]

【第4実施例】内径0.55mm、長さ25mmの注射
針を用いて、圧力以外のパラメータについては第2実施
例と同様にして、圧力60Kgf/cm2 の場合の計測
結果を図11に、圧力70Kgf/cm2 の場合の計測
結果を図12に、圧力90Kgf/cm2 の場合の計測
結果を図13に、それぞれ示している。
Fourth Embodiment FIG. 11 shows the measurement results when the pressure is 60 kgf / cm 2 using a syringe needle having an inner diameter of 0.55 mm and a length of 25 mm in the same manner as in the second embodiment except for the pressure. , in Figure 12 the measurement results when the pressure 70 kgf / cm 2, Figure 13 a measurement result in the case of a pressure 90 kgf / cm 2, respectively show.

【0048】この場合には、粒径或いは粒度分布につい
て、圧力はあまり影響していない。但し、いずれの場合
においても、非常にシャープな粒径分布を示しているこ
とが理解される。
In this case, the pressure has little influence on the particle size or the particle size distribution. However, it is understood that in each case, a very sharp particle size distribution is shown.

【0049】[0049]

【第5実施例】試料として酸化チタンを用いた場合につ
いて、図14に実験結果を示す。オイルの場合と同様
に、極めて良好な微粒化が達成されており、粒径分布も
非常にシャープとなっている。
Fifth Embodiment FIG. 14 shows the experimental results when titanium oxide was used as a sample. As in the case of oil, very good atomization is achieved and the particle size distribution is very sharp.

【0050】[0050]

【発明の効果】本発明の作用効果を以下に列挙する。 (1) 粒径分布が非常にシャープで良好な微粒化が達
成される。 (2) 従来の様にキャビテーションの発生のみに着目
するのでは無く、音響効果或いは共鳴効果をも考慮した
全く新規な原理に基づいた微粒化方法及び装置が提供さ
れる。 (3) 粒径設計が可能となる。 (4) 洗浄性或いは洗浄効率が向上する。 (5) 微粒化された材料と接触する部材の面積(接触
表面積)を極めて小さくして、洗浄に必要な労力を低減
出来る。 (6) 装置全体のコンパクト化が極めて容易に促進さ
れる。 (7) 超高圧機械や、ダイヤモンド等の高価な材質を
用いる必要が無いため、製造コストを極めて安価に抑え
ることが出来る。 (8) 形状、寸法、その他の各種パラメータを適宜設
定すれば、圧電素子や高周波の交流電流を必要とするこ
と無く、極めて容易に超音波振動を得ることが出来る。 (9) 分散、乳化、混合、撹拌、破砕その他の広い分
野で使用可能であり、汎用性が極めて良好である。
The effects of the present invention are listed below. (1) The particle size distribution is very sharp and good atomization is achieved. (2) An atomization method and apparatus based on a completely new principle that takes into account not only the occurrence of cavitation as in the related art but also an acoustic effect or a resonance effect are provided. (3) The particle size can be designed. (4) The cleaning property or cleaning efficiency is improved. (5) The area (contact surface area) of the member in contact with the atomized material can be made extremely small, and the labor required for cleaning can be reduced. (6) The downsizing of the entire device is promoted very easily. (7) Since there is no need to use an ultra-high pressure machine or expensive materials such as diamond, the manufacturing cost can be extremely low. (8) By appropriately setting the shape, dimensions, and other various parameters, ultrasonic vibration can be obtained extremely easily without requiring a piezoelectric element or a high-frequency alternating current. (9) It can be used in a wide range of fields such as dispersion, emulsification, mixing, stirring, crushing, etc., and has extremely good versatility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施形態を示すブロック図。FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】微小断面積を有する部分を備えた部材の図1と
は異なる形態を示す斜視図。
FIG. 2 is a perspective view showing a member having a portion having a small cross-sectional area, which is different from FIG.

【図3】微小断面積を有する部分を備えた部材の図1及
び図2とは異なる形態を示す斜視図。
FIG. 3 is a perspective view of a member provided with a portion having a small cross-sectional area, which is different from FIGS. 1 and 2;

【図4】本発明の第1実施例の装置をモデル化して示す
ブロック図。
FIG. 4 is a block diagram showing a model of the apparatus according to the first embodiment of the present invention.

【図5】図4の装置に形成された各種流路に関する数値
を表にして示す図。
FIG. 5 is a table showing numerical values relating to various flow paths formed in the apparatus of FIG. 4;

【図6】本発明の第2実施例で用いられた微小断面積を
有する部分を備えた部材(注射針)を説明する側面図。
FIG. 6 is a side view illustrating a member (injection needle) having a portion having a small cross-sectional area used in a second embodiment of the present invention.

【図7】本発明の第2実施例の計測結果を粒径分布とし
て示す図。
FIG. 7 is a diagram showing a measurement result of a second embodiment of the present invention as a particle size distribution.

【図8】本発明の第3実施例の1態様の計測結果を粒径
分布として示す図。
FIG. 8 is a diagram showing a measurement result of one embodiment of the third embodiment of the present invention as a particle size distribution.

【図9】本発明の第3実施例の別の態様の計測結果を粒
径分布として示す図。
FIG. 9 is a diagram showing a measurement result according to another aspect of the third embodiment of the present invention as a particle size distribution.

【図10】本発明の第3実施例の更に別の態様の計測結
果を粒径分布として示す図。
FIG. 10 is a diagram showing a measurement result of still another mode of the third embodiment of the present invention as a particle size distribution.

【図11】本発明の第4実施例の1態様の計測結果を粒
径分布として示す図。
FIG. 11 is a diagram showing a measurement result of one embodiment of the fourth embodiment of the present invention as a particle size distribution.

【図12】本発明の第4実施例の別の態様の計測結果を
粒径分布として示す図。
FIG. 12 is a diagram showing a measurement result of another aspect of the fourth embodiment of the present invention as a particle size distribution.

【図13】本発明の第4実施例の更に別の態様の計測結
果を粒径分布として示す図。
FIG. 13 is a view showing a measurement result of still another mode of the fourth embodiment of the present invention as a particle size distribution.

【図14】本発明の第5実施例の計測結果を粒径分布と
して示す図。
FIG. 14 is a diagram showing a measurement result of a fifth embodiment of the present invention as a particle size distribution.

【符号の説明】[Explanation of symbols]

10,100・・・微粒化装置 12・・・貯溜部 14・・・ポンプ 16・・・材料供給源 18・・・水供給源 20,20A・・・微粒化部材 L1,L2,L3・・・配管(供給配管系) 22・・・チャンバ部材 24,24A,24B・・・微小断面積を有する部分を
備えた部材 D・・・微粒化された材料と水との混合物を利用する各
種処理機構 26・・・ベルト部材 28・・・貫通孔 I・・・流入側 J・・・継手部分 C1,C2,C3・・・チャンバ N1,N2・・・ノズル OL・・・流出口 O・・・流出側
10, 100 ... atomization device 12 ... storage part 14 ... pump 16 ... material supply source 18 ... water supply source 20, 20A ... atomization member L1, L2, L3 ...・ Piping (supply piping system) 22 ・ ・ ・ Chamber member 24, 24A, 24B ・ ・ ・ Member with a portion having a small cross-sectional area D ・ ・ ・ Various treatments using a mixture of atomized material and water Mechanism 26 ... Belt member 28 ... Through hole I ... Inflow side J ... Joint part C1, C2, C3 ... Chamber N1, N2 ... Nozzle OL ... Outlet O ...・ Outflow side

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 微粒化するべき材料を流体と混合して微
粒化する微粒化方法において、前記微粒化するべき材料
及び流体を比較的大きな断面積を有するチャンバ部材を
介して微小断面積を有する部分を備えた部材に流過させ
る工程を有し、該工程に際して、前記チャンバ部材と微
小断面積を有する部分と前記流体との共鳴により超音波
振動を発生し、微粒化するべき材料に対して応力を繰り
返し作用せしめることを特徴とする微粒化方法。
1. A method for atomizing a material to be atomized by mixing the material to be atomized with a fluid, wherein the material and the fluid to be atomized have a small cross-sectional area via a chamber member having a relatively large cross-sectional area. Having a step of flowing through a member having a portion, and in this step, ultrasonic vibration is generated by resonance between the chamber member and a portion having a small cross-sectional area and the fluid, and the material to be atomized is An atomizing method characterized by repeatedly applying stress.
【請求項2】 微小断面積を有する部分を備えた前記部
材は、円筒形の中空部材である請求項1の微粒化方法。
2. The atomization method according to claim 1, wherein said member having a portion having a minute cross-sectional area is a cylindrical hollow member.
【請求項3】 微小断面積を有する部分を備えた前記部
材は、複数の直線流路を有している請求項1、2のいず
れかの微粒化方法。
3. The atomization method according to claim 1, wherein the member having a portion having a minute cross-sectional area has a plurality of straight flow paths.
【請求項4】 微粒化するべき材料を流体と混合して微
粒化する微粒化装置において、比較的大きな断面積を有
するチャンバ部材と、微小断面積を有する部分を備えた
部材と、前記微粒化するべき材料及び流体を前記チャン
バ部材及び微小断面積を有する部分を備えた部材に供給
する供給配管系とを有し、前記チャンバ部材及び微小断
面積を有する部分を備えた前記部材は、微粒化するべき
材料に対して応力を繰り返し作用させるため、前記チャ
ンバ部材及び微小断面積を有する部分と前記流体との共
鳴により超音波振動を発生させる様に構成されているこ
とを特徴とする微粒化装置。
4. An atomization apparatus for atomizing a material to be atomized by mixing with a fluid, wherein a chamber member having a relatively large cross-sectional area, a member having a portion having a small cross-sectional area, and said atomizing means. A supply piping system for supplying a material and a fluid to be supplied to the chamber member and a member having a portion having a small cross-sectional area, wherein the member having the chamber member and the portion having a small cross-sectional area is atomized. An atomizing apparatus characterized in that ultrasonic vibration is generated by resonance between the chamber member and a portion having a small cross-sectional area and the fluid in order to repeatedly apply a stress to a material to be formed. .
【請求項5】 微小断面積を有する部分を備えた前記部
材は、円筒形の中空部材である請求項4の微粒化装置。
5. The atomization apparatus according to claim 4, wherein said member having a portion having a minute cross-sectional area is a cylindrical hollow member.
【請求項6】 微小断面積を有する部分を備えた前記部
材は、複数の直線流路を有している請求項4、5のいず
れかの微粒化装置。
6. The atomizing apparatus according to claim 4, wherein said member having a portion having a minute cross-sectional area has a plurality of straight flow paths.
【請求項7】 比較的大きな断面積を有するチャンバ部
材と、微小断面積を有する部分を備えた部材と、前記チ
ャンバ部材及び微小断面積を有する部分を備えた部材に
流体を供給する供給配管系とを有し、前記チャンバ部材
及び微小断面積を有する部分を備えた部材は、前記チャ
ンバ部材及び微小断面積を有する部分と前記流体との共
鳴により超音波振動を発生させる様に構成されているこ
とを特徴とする超音波振動発生装置。
7. A chamber member having a relatively large cross-sectional area, a member having a portion having a small cross-sectional area, and a supply piping system for supplying a fluid to the chamber member and a member having a portion having a small cross-sectional area. Wherein the member having the chamber member and the portion having a small cross-sectional area is configured to generate ultrasonic vibration by resonance of the fluid with the chamber member and the portion having a small cross-sectional area. An ultrasonic vibration generator, comprising:
JP8167297A 1996-06-27 1996-06-27 Atomizing method and device therefor Pending JPH105561A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8167297A JPH105561A (en) 1996-06-27 1996-06-27 Atomizing method and device therefor
KR1019970024268A KR19990001064A (en) 1996-06-27 1997-06-02 Atomization Method and Apparatus
TW086108958A TW368434B (en) 1996-06-27 1997-06-26 Method of atomization and apparatus therefor, and ultrasonic vibration device with the same
EP97304673A EP0815930A1 (en) 1996-06-27 1997-06-27 Method and apparatus for particulation
CN97114036A CN1174752A (en) 1996-06-27 1997-06-27 Method and equipment for atomizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8167297A JPH105561A (en) 1996-06-27 1996-06-27 Atomizing method and device therefor

Publications (1)

Publication Number Publication Date
JPH105561A true JPH105561A (en) 1998-01-13

Family

ID=15847149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8167297A Pending JPH105561A (en) 1996-06-27 1996-06-27 Atomizing method and device therefor

Country Status (1)

Country Link
JP (1) JPH105561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776910A (en) * 1986-06-17 1988-10-11 Bicc Public Limited Company Optical cable manufacture
JP2011061119A (en) * 2009-09-14 2011-03-24 Alps Electric Co Ltd METHOD OF MANUFACTURING MAGNETIC MEMBER CONTAINING Fe-GROUP SOFT MAGNETIC ALLOY POWDER
WO2014192896A1 (en) * 2013-05-29 2014-12-04 株式会社アースリンク Micronanobubble generation method, micronanobubble generator, and micronanobubble generation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776910A (en) * 1986-06-17 1988-10-11 Bicc Public Limited Company Optical cable manufacture
JP2011061119A (en) * 2009-09-14 2011-03-24 Alps Electric Co Ltd METHOD OF MANUFACTURING MAGNETIC MEMBER CONTAINING Fe-GROUP SOFT MAGNETIC ALLOY POWDER
WO2014192896A1 (en) * 2013-05-29 2014-12-04 株式会社アースリンク Micronanobubble generation method, micronanobubble generator, and micronanobubble generation device
JP2014231046A (en) * 2013-05-29 2014-12-11 株式会社アースリンク Generation method of micro-nanobubble, generator of micro-nanobubble and generation device of micro-nanobubble

Similar Documents

Publication Publication Date Title
US3373752A (en) Method for the ultrasonic cleaning of surfaces
US6053424A (en) Apparatus and method for ultrasonically producing a spray of liquid
US3490584A (en) Method and apparatus for high frequency screening of materials
US6395186B1 (en) Pressure liquid filtration with ultrasonic bridging prevention
KR100916871B1 (en) Apparatus for focussing untrasonic acoustical energy within a liquid stream
JPS6252628B2 (en)
US7712680B2 (en) Ultrasonic atomizing nozzle and method
US5749727A (en) Transducer activated subgingival tool tip
Omer et al. Spray nozzles
Brenn et al. Monodisperse sprays for various purposes—their production and characteristics
US5540384A (en) Ultrasonic spray coating system
RU2376193C1 (en) Method of hydrodynamic underwater cleaning of surfaces and related device
JPH105561A (en) Atomizing method and device therefor
Khmelev et al. Longitudinally oscillating ultrasonic emitter for influencing gas-dispersed systems
Neppiras Macrosonics in industry 1. Introduction
JPH02145296A (en) Nozzle for water jet
KR19990001064A (en) Atomization Method and Apparatus
KR101514034B1 (en) Apparatus and method for dispersing nano powders
Gallego-Juarez New technologies in high-power ultrasonic industrial applications
JPH0459032A (en) Ultrasonic emulsifier
US3645504A (en) Sonic dispersing apparatus
RU2177824C1 (en) Method of treatment of nonuniform fluid medium and device for its embodiment
GB2397541A (en) Vibrating atomising nozzle
RU2446894C1 (en) Ultrasound oscillating system for spraying fluids
RU2782024C1 (en) Method for dispersing liquids and ultrasonic disperser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050922