JPH1053890A - Stainless steel for molten salt electrolyzing electrode excellent in corrosion resistance and electric conductivity in molten salt - Google Patents

Stainless steel for molten salt electrolyzing electrode excellent in corrosion resistance and electric conductivity in molten salt

Info

Publication number
JPH1053890A
JPH1053890A JP8210316A JP21031696A JPH1053890A JP H1053890 A JPH1053890 A JP H1053890A JP 8210316 A JP8210316 A JP 8210316A JP 21031696 A JP21031696 A JP 21031696A JP H1053890 A JPH1053890 A JP H1053890A
Authority
JP
Japan
Prior art keywords
molten salt
corrosion resistance
less
stainless steel
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8210316A
Other languages
Japanese (ja)
Inventor
Izumi Muto
泉 武藤
Hiroshi Kihira
寛 紀平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8210316A priority Critical patent/JPH1053890A/en
Publication of JPH1053890A publication Critical patent/JPH1053890A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To produce a stainless steel for an electrode excellent in corrosion resistance and electric conductivity in molten salt. SOLUTION: This stainless steel has oxide coating including metallic Ni. For forming this oxide coating by natural oxidation in molten salt, the compsn, contg., by weight, <=0.10% C, <=1.0% Si, <=1.0% Mn, <=0.10% P, <=0.010% S, 12 to 40% Cr, 5 to 85% Ni, <=0.5% Mo, <=0.5% Cu and <=0.3% N, and an which the relation between the Ni content and the Cr content satisfies 100.00-(Ni+Cr)>=-18.75 (Ni/Cr)+87.50 is regulated. In this way, the inexpensive material for an electrode capable of reconciling reduction in electric resistance of the oxide coating with the improvement of corrosion resistance and usable in molten salt can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融塩中での耐食
性に優れると共に、電気抵抗の低い酸化物皮膜を有す
る、溶融塩中での電極としての使用に適するステンレス
鋼に関する。
[0001] The present invention relates to a stainless steel having excellent corrosion resistance in a molten salt and having an oxide film having a low electric resistance and suitable for use as an electrode in a molten salt.

【0002】[0002]

【従来の技術】溶融塩とは、NaClに代表されるイオ
ン結合からなる物質を融点以上に加熱した際に形成され
るイオン性の融体のことである。これは、いわば電荷を
もったNa+ やCl- などのイオンが自由に動き廻れる
状態で存在している液体である。このイオン性融体は、
水のように酸素と水素の共有結合からなり電荷を持たな
い中性の分子が液体状態になった分子性の融体とは、全
く異なった性質を示す。
2. Description of the Related Art A molten salt is an ionic melt formed when a substance having an ionic bond represented by NaCl is heated to a temperature higher than its melting point. This is a liquid in which ions such as charged Na + and Cl exist in a state where they can move freely. This ionic melt is
It has completely different properties from a molecular melt in which neutral molecules having no charge and consisting of a covalent bond of oxygen and hydrogen, such as water, are in a liquid state.

【0003】すなわち、溶融塩は、各種物質を多量に溶
かし込むことが可能である。これは、簡単に言えば溶解
した物質が正負のイオンに解離し、それらがイオン性融
体自身を構成している正負イオンと電気的に引き合うこ
とで、エネルギー的に極めて安定な状態を作り出すため
である。また、この溶け込んだイオンは、水溶液と同じ
ように電気的に酸化還元を行うことが可能で、特定の元
素を溶融塩から電解採取することが可能である。逆に、
特開昭59−23812号公報に開示されているよう
に、溶融金属と接触した状態で溶融金属を陽極、溶融塩
を陰極として電圧を加えると、金属中の元素(不純物)
のみを溶融塩に溶解させることも可能である。
[0003] That is, the molten salt can dissolve a large amount of various substances. This is simply because the dissolved substance dissociates into positive and negative ions, which electrically attract the positive and negative ions that make up the ionic melt itself, creating an extremely stable state in terms of energy. It is. In addition, the dissolved ions can be electrically redoxed in the same manner as an aqueous solution, and a specific element can be electrolytically collected from a molten salt. vice versa,
As disclosed in JP-A-59-23812, when a voltage is applied to a molten metal as an anode and a molten salt as a cathode in contact with the molten metal, an element (impurity) in the metal is obtained.
Only the molten salt can be dissolved.

【0004】また、溶融塩はガス種を多量に溶解する性
質を有している。これは、「溶融塩と高温化学」(第3
3巻、25〜72ページ、1990年、電気化学協会溶
融塩委員会発行)に記載されているようにヘンリーの法
則に従う物理的な溶解だけではなく、溶融塩中でガスが
イオンに解離する化学的溶解が主に起こるためである。
したがって、溶融塩を電解質とすると、水溶液電解に比
べ、ガスの酸化還元反応速度を飛躍的に高めると共に反
応分極を格段に少なくすることが可能である。例えば、
溶融炭酸塩を用いた燃料電池は極めて高い反応効率を持
ち、次世代エネルギー源として期待されている。このよ
うに溶融塩を電解質とした電気化学反応は、極めて発展
性のある分野である。
[0004] Further, the molten salt has the property of dissolving a large amount of gaseous species. This is called “molten salt and high temperature chemistry” (No. 3
3, pages 25-72, 1990, published by the Society of Electrochemical Molten Salts), as well as physical dissolution according to Henry's Law, as well as chemistry in which gases dissociate into ions in molten salts. This is because the target dissolution mainly occurs.
Therefore, when the molten salt is used as the electrolyte, the oxidation-reduction rate of the gas can be remarkably increased and the reaction polarization can be remarkably reduced as compared with the aqueous solution electrolysis. For example,
Fuel cells using molten carbonate have extremely high reaction efficiency and are expected as a next-generation energy source. The electrochemical reaction using a molten salt as an electrolyte is an extremely promising field.

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
溶融塩電解技術の発展を制約している原因の一つに、耐
食性と電気伝導性を兼ね備えた安価な電極材料が存在し
ないことである。ステンレス鋼は、自由な電極形状の設
計が可能であり、材料コスト的に安価な耐食性材料とし
てあげられる。しかし、溶融塩に対する耐食性は、表面
に自然酸化により形成される酸化物皮膜の性質に大きく
依存しており、一般に、耐食性を高めると酸化物皮膜の
電気抵抗も高まるという関係があり、これが高い電気伝
導度と高耐食性が共に要求される電極用のステンレス鋼
の開発を制限していた。
However, one of the factors restricting the development of the molten salt electrolysis technique is that there is no inexpensive electrode material having both corrosion resistance and electric conductivity. Stainless steel can be freely designed in an electrode shape, and can be cited as an inexpensive corrosion-resistant material in terms of material cost. However, the corrosion resistance to molten salts largely depends on the nature of the oxide film formed on the surface by natural oxidation. Generally, there is a relationship that increasing the corrosion resistance increases the electrical resistance of the oxide film. This limited the development of stainless steel for electrodes where both conductivity and high corrosion resistance were required.

【0006】一般に、溶融塩中でのステンレス鋼の耐食
性を高めるにはAlを多量に添加する必要があることが
従来より言われている。しかし、Alを過度に添加する
と酸化物皮膜の電気抵抗が増大し電池起電力が低下する
ことも知られている。この点を改善するため、特開昭6
3−190143号公報においては、Alを0.1〜
0.9%に制限し耐食性を0.5%以下のY添加により
確保するという、一種の妥協策が開示されている。
In general, it has been conventionally said that it is necessary to add a large amount of Al to enhance the corrosion resistance of stainless steel in a molten salt. However, it is also known that when Al is added excessively, the electrical resistance of the oxide film increases and the battery electromotive force decreases. To improve this point, Japanese Unexamined Patent Publication No.
In Japanese Patent Application Laid-Open No. 3-190143, Al is set to 0.1 to 0.1.
A kind of compromise is disclosed that limits the corrosion resistance to 0.9% and ensures corrosion resistance by adding 0.5% or less of Y.

【0007】このように、溶融塩中での耐食性と電気伝
導性に優れた電極用ステンレス鋼を提供する技術は未だ
開発されていない。本発明は、溶融塩中での耐食性を損
なうことなく電気伝導性に優れた酸化物皮膜を有する溶
融塩電気分解電極用ステンレス鋼の提供を目的とする。
As described above, a technique for providing stainless steel for an electrode having excellent corrosion resistance and electric conductivity in a molten salt has not yet been developed. An object of the present invention is to provide a stainless steel for a molten salt electrolysis electrode having an oxide film having excellent electrical conductivity without impairing corrosion resistance in a molten salt.

【0008】[0008]

【課題を解決するための手段】本発明者は、ステンレス
鋼の組成を広範囲に変化させ溶融塩中での耐食性と酸化
物皮膜の電気抵抗との関係を調査し、以下の全く新しい
事実を得た。 酸化物皮膜内に金属Niが析出すると電気抵抗が低下
する。しかし、この場合には、耐食性は低下しない。 ステンレス鋼のNiとCrの含有量をある範囲に制御
した場合に、この金属Niの析出が起こる。
The present inventors investigated the relationship between corrosion resistance in a molten salt and the electrical resistance of an oxide film by varying the composition of stainless steel over a wide range, and obtained the following completely new facts. Was. When metal Ni precipitates in the oxide film, the electric resistance decreases. However, in this case, the corrosion resistance does not decrease. When the contents of Ni and Cr in the stainless steel are controlled within a certain range, the precipitation of metallic Ni occurs.

【0009】本発明は、上記知見によってなされたもの
であって、金属Niを含む酸化物皮膜を有することを特
徴とする溶融塩中での耐食性と電気伝導性に優れた溶融
塩電気分解電極用ステンレス鋼である。そして上記ステ
ンレス鋼は、重量%で、 C :0.10%以下、 Si:1.0%以下、 Mn:1.0%以下、 P :0.10%以下、 S :0.01%以下、 Cr:12%以上40%以下、 Ni:5%以上85%以下、 Mo:0.5%以下、 Cu:0.5%以下、 N :0.3%以下、 を含み、かつNiとCrの含有量が 100.00−(Ni+Cr)≧−18.75(Ni/
Cr)+87.50 の関係を満足させることによって、表面に金属Niを有
利に析出させることができる。
The present invention has been made on the basis of the above-mentioned findings, and is characterized by having an oxide film containing metallic Ni, which is excellent in corrosion resistance and electric conductivity in a molten salt for a molten salt electrolysis electrode. Stainless steel. And the above stainless steel is, by weight%, C: 0.10% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.10% or less, S: 0.01% or less, Cr: 12% or more and 40% or less, Ni: 5% or more and 85% or less, Mo: 0.5% or less, Cu: 0.5% or less, and N: 0.3% or less. When the content is 100.00− (Ni + Cr) ≧ −18.75 (Ni /
By satisfying the relationship of (Cr) +87.50, metallic Ni can be advantageously deposited on the surface.

【0010】[0010]

【発明の実施の形態】以下に、本発明鋼を構成する酸化
物皮膜および成分範囲の限定理由について詳細に説明す
る。金属Niは、耐溶融塩腐食性に優れる金属であり、
表面酸化物皮膜内に含有させると、電極の耐食性が向上
する。また、金属Niを酸化物内に分散させることで、
通電時に、これら金属Niが電流の流れる経路として働
き、電極全体の電気抵抗を低下させる効果を発揮する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the oxide film constituting the steel of the present invention and the reasons for limiting the range of components will be described in detail. Metal Ni is a metal excellent in molten salt corrosion resistance,
When contained in the surface oxide film, the corrosion resistance of the electrode is improved. Also, by dispersing metal Ni in the oxide,
At the time of energization, these metal Nis function as a current flow path, and exhibit the effect of reducing the electric resistance of the entire electrode.

【0011】金属Niを含む酸化物皮膜の作製方法や酸
化物の組成は特に限定しないが、後述する特定の組成を
有するステンレス鋼の溶融塩中での自然酸化以外に、溶
射による皮膜形成、Niを含む合金めっき層の選択酸
化、または、Ni酸化物粉とNiよりも酸化しやすい金
属粉(Alなど)を混合し塗布した後に加熱処理により
Niを固相還元する方法などを適用してもよい。
The method of forming the oxide film containing metal Ni and the composition of the oxide are not particularly limited, but in addition to the natural oxidation of a stainless steel having a specific composition described later in a molten salt, a film formation by thermal spraying, , Or a method in which Ni oxide powder and a metal powder (such as Al) which is more easily oxidized than Ni are mixed and applied, and then a method of solid-phase reduction of Ni by heat treatment is applied. Good.

【0012】一般に、電極は平坦ではなく、電解の反応
効率を高めるため、種々の形状に加工されることが多
い。このような場合には、ステンレス鋼の化学組成を限
定し、電解処理時の自然酸化により、金属Niを含む酸
化物皮膜を形成させることが好ましい。このためのステ
ンレス鋼の成分範囲は以下の通りにすることが好適であ
る。尚、%は重量%を意味する。
In general, electrodes are not flat, and are often processed into various shapes in order to increase the efficiency of electrolytic reaction. In such a case, it is preferable to limit the chemical composition of the stainless steel and form an oxide film containing metallic Ni by natural oxidation during electrolytic treatment. It is preferable that the component range of stainless steel for this purpose is as follows. In addition,% means weight%.

【0013】Cは、過度に含有すると鋼の靭性を損なう
と共に、製造過程でCr炭化物を形成し耐食性が低下す
る。このため、0.10%以下とした。Siは、脱酸剤
として添加するが過度に添加すると加工性を害する。そ
こで、添加量の上限を1.0%とした。
If C is contained excessively, it deteriorates the toughness of the steel and forms Cr carbide in the production process to lower the corrosion resistance. Therefore, the content is set to 0.10% or less. Si is added as a deoxidizing agent, but if added excessively, it impairs processability. Therefore, the upper limit of the addition amount is set to 1.0%.

【0014】Mnは、脱酸や脱硫作用があり鋼材の熱間
加工性を改善する。しかし、多量に添加してもコスト上
昇に見合った熱間加工性改善効果を期待できないばかり
か、硬さが増し加工性を害するため、1.0%以下とし
た。Pは、多量に存在すると耐食性を阻害するため、
0.10%以下とした。Sは、熱間加工性を害するた
め、0.01%以下とした。
Mn has a deoxidizing or desulfurizing action and improves the hot workability of steel. However, even if a large amount is added, not only the hot workability improvement effect commensurate with the cost increase cannot be expected, but also the hardness increases and the workability is impaired. P inhibits corrosion resistance when present in large amounts,
0.10% or less. Since S impairs hot workability, S is set to 0.01% or less.

【0015】Crは、耐食性を確保するために必須な元
素である。耐食性を確保するには、12%以上添加する
必要がある。しかし、40%を越えて添加すると、耐食
性は極めて向上するものの靭性と加工性が損なわれる。
したがって、Crは12%以上40%以下とした。
[0015] Cr is an essential element for ensuring corrosion resistance. To ensure corrosion resistance, it is necessary to add 12% or more. However, if it is added in excess of 40%, the corrosion resistance is extremely improved, but the toughness and workability are impaired.
Therefore, Cr is set to 12% or more and 40% or less.

【0016】Niは、耐食性を確保するために必須な元
素であり、その効果を期待するには5%以上添加する必
要がある。しかし、85%を越えて添加してもコスト上
昇に見合うだけの耐食性向上効果が得られなくなり過剰
品質となる。そこで、Niは5%以上85%以下とし
た。
Ni is an essential element for ensuring corrosion resistance, and it is necessary to add 5% or more to expect its effect. However, even if it is added in excess of 85%, the effect of improving corrosion resistance that is commensurate with the cost increase cannot be obtained, resulting in excessive quality. Therefore, Ni is set to 5% or more and 85% or less.

【0017】本発明では、電気伝導性に優れるために、
上記CrとNiの間に量的関係を規定する。すなわち、
CrとNiの含有量の関係が、次式を満たす必要があ
る。すなわち、 100.00−(Ni+Cr)≧−18.75(Ni/
Cr)+87.50 この詳細な理由は不明であるが、この関係式は酸化物皮
膜形成時に金属Niが酸化物皮膜内に析出し、電気伝導
度低下に有効に作用するために必要なNi、Cr、Fe
含有量比を与えているものと思われる。Niが多いほど
金属Niの析出も起こりやすく、このため、Ni/Cr
比が大きいほどこの関係式は成り立ちやすくなってい
る。
In the present invention, in order to have excellent electric conductivity,
The quantitative relationship between Cr and Ni is defined. That is,
The relationship between the contents of Cr and Ni must satisfy the following equation. That is, 100.00− (Ni + Cr) ≧ −18.75 (Ni /
Cr) +87.50 Although the detailed reason is unknown, this relational expression indicates that Ni, which is necessary for metal Ni to precipitate in the oxide film at the time of forming the oxide film and effectively acting to lower the electric conductivity, Cr, Fe
It seems to give the content ratio. As the amount of Ni increases, the precipitation of metallic Ni also easily occurs.
The larger the ratio, the more easily this relational expression holds.

【0018】MoとCuは、それぞれ0.5%以上含有
すると耐食性を阻害するため、0.5%以下とした。N
は、過度に添加すると鋼の靭性を低下させる。そこで、
0.3%以下とした。
Mo and Cu each contain 0.5% or more, which impairs corrosion resistance. N
Excessively decreases the toughness of the steel. Therefore,
0.3% or less.

【0019】[0019]

【実施例】以下に、本発明を実施例に基づいて具体的に
説明する。表1に示す化学組成の鋼を真空溶解し、熱間
圧延により厚さ4mmの鋼板とし、1150℃×30min
の熱処理を施した後、試験片を採取した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. A steel having a chemical composition shown in Table 1 was vacuum-melted, and hot-rolled to form a 4 mm-thick steel plate at 1150 ° C for 30 min.
After the heat treatment, a test piece was collected.

【0020】[0020]

【表1】 [Table 1]

【0021】溶融塩中での耐食性と酸化物皮膜の電気抵
抗は、試料極、参照極、対極からなる3電極法による定
電位分極試験と同じく、3電極法による定電位分極下の
電極インピーダンスおよび高調波電流成分の解析により
評価した。
The corrosion resistance in the molten salt and the electrical resistance of the oxide film were measured in the same manner as in the potentiostatic polarization test using a three-electrode method consisting of a sample electrode, a reference electrode, and a counter electrode. It was evaluated by analyzing the harmonic current component.

【0022】試験片は、厚さ2mmで幅10mm×長さ10
mmの一端に直径0.5mmのAu線をスポット溶接し、A
u線を内径4mmのアルミナ管に挿入しスポット溶接部分
とアルミナ管の端部をジルコニヤセメントで被覆した。
ジルコニヤセメントは常温で7日間以上乾燥固化させ試
料極とした。参照極には、内径4mmのアルミナに直径1
mmのAu線を挿入し、アルミナ管内に66.6vol%
酸素−33.4vol%炭酸ガスの混合ガスを流しガス
電極(O2 /CO2 ,Au)を使用した。対極には、厚
さ0.5mmで幅50mm×長さ50mmのAu板を使用し
た。
The test piece was 2 mm thick, 10 mm wide and 10 mm long.
A 0.5mm diameter Au wire is spot-welded to one end of
The u wire was inserted into an alumina tube having an inner diameter of 4 mm, and the spot welded portion and the end of the alumina tube were covered with zirconia cement.
The zirconia cement was dried and solidified at room temperature for 7 days or more to obtain a sample electrode. The reference electrode has a diameter of 1 mm
mm Au wire is inserted into the alumina tube at 66.6 vol%.
A gas mixture (O 2 / CO 2 , Au) was used by flowing a mixed gas of oxygen-33.4 vol% carbon dioxide. An Au plate having a thickness of 0.5 mm, a width of 50 mm and a length of 50 mm was used as a counter electrode.

【0023】この3電極を70vol%酸素−30vo
l%炭酸ガスの混合ガスをカバーガスとして650℃に
加熱した62mol%炭酸リチウム−38mol%炭酸
カリウムの混合溶融塩に浸漬し、−0.1V(vs O2
/CO2 ,Au)にポテンショスタットにより160時
間定電位分極した。分極開始後160時間後に流れてい
た電流密度を溶解速度の大小を現すものとして耐食性の
指標とした。また、−0.1Vに対して±10mVの1
00kHzから1mHzの正弦波交流を重畳し、その際
のインピーダンス(交流抵抗)を計測した。高調波解析
を用いて、インピーダンスのどの周波数範囲が皮膜の電
気抵抗に対応する部分かを判定した。
The three electrodes were connected to 70 vol% oxygen-30 vol.
Using a mixed gas of 1% carbon dioxide as a cover gas, the mixture was immersed in a mixed molten salt of 62 mol% lithium carbonate-38 mol% potassium carbonate heated to 650 ° C., and −0.1 V (vs O 2
/ CO 2 , Au) with a potentiostat for 160 hours. The current density flowing 160 hours after the start of the polarization was used as an index of corrosion resistance as an indicator of the magnitude of the dissolution rate. In addition, 1 of ± 10 mV with respect to -0.1 V
A sine wave alternating current of 00 kHz to 1 mHz was superimposed, and the impedance (AC resistance) at that time was measured. Using harmonic analysis, it was determined which frequency range of the impedance corresponded to the electrical resistance of the coating.

【0024】この高調波解析の際には、−0.1Vに対
して±50mVの100kHzから1mHzの正弦波交
流を重畳し、2次および3次の非線形成分の現れにくい
部分を皮膜抵抗とした。すなわち、電気化学的な電流−
電位の関係(傾きが抵抗に相当)は非線形なバトラー−
フォルマーの関係に従い2次3次の高調波成分が現れる
のに対して、電流−電位の関係が線形なオームの法則に
従う部分では高調波成分が現れにくい。表1の全ての試
験片に対して、高調波解析を行ったところ、100mH
z以下の周波数域で高調波電流が観測されなかったた
め、この周波数領域でのインピーダンスが皮膜の抵抗成
分に対応するとして皮膜抵抗を評価した。表1には、こ
のようにして評価した電流密度と酸化物皮膜の皮膜抵抗
値を示した。表1より、本発明例のNo.7〜9は、溶
融塩中での耐食性と電気伝導性に優れることが分かる。
At the time of this harmonic analysis, a sine wave alternating current of 100 kHz to 1 mHz of ± 50 mV is superimposed on -0.1 V, and a portion where second- and third-order nonlinear components hardly appear is regarded as a film resistance. . That is, the electrochemical current-
The relationship between potentials (slope corresponds to resistance) is a non-linear Butler-
While the second and third harmonic components appear according to the Former's relationship, the harmonic components are less likely to appear in a portion where the current-potential relationship follows the linear Ohm's law. When harmonic analysis was performed on all the test pieces in Table 1, 100 mH
Since no harmonic current was observed in the frequency range below z, the film resistance was evaluated assuming that the impedance in this frequency range corresponds to the resistance component of the film. Table 1 shows the current density and the film resistance of the oxide film evaluated in this manner. From Table 1, it can be seen that No. 1 of the present invention example. 7 to 9 are excellent in corrosion resistance and electric conductivity in the molten salt.

【0025】図1は、表1の皮膜抵抗と電流密度との関
係を整理したものである。皮膜抵抗と電流密度との間に
相関関係が見られるグループA(No.1〜6)と電流
密度が10μA・cm−2前後で皮膜抵抗が500Ω・
cm2 付近のグループB(No.7〜9)に分けること
ができる。グループAは、耐食性が高いほど皮膜抵抗が
高くなるという従来から知られた関係が成り立つもので
ある。これに対して、グループBは、従来の関係を示さ
ず、今までに知られていない特異な性能を示す鋼種群で
ある。
FIG. 1 summarizes the relationship between the film resistance and the current density in Table 1. Group A (Nos. 1 to 6), which shows a correlation between the film resistance and the current density, has a current density of around 10 μA · cm−2 and a film resistance of 500Ω ·
cm 2 can be divided into groups B (Nos. 7 to 9). Group A has a conventionally known relationship that the higher the corrosion resistance, the higher the film resistance. On the other hand, Group B is a group of steel grades that do not show a conventional relationship and exhibit unique performances that have not been known so far.

【0026】そこで、これらステンレス鋼のNi、Cr
量と酸化物皮膜の皮膜抵抗との関係を調べた結果、図2
に示すように、グループAとグループBを分ける境界
は、 100−(Ni+Cr)=−18.75(Ni/Cr)
+87.50 の関係式で与えられることが分かった。
Therefore, Ni, Cr of these stainless steels are used.
As a result of examining the relationship between the amount and the film resistance of the oxide film, FIG.
, The boundary separating group A and group B is: 100− (Ni + Cr) = − 18.75 (Ni / Cr)
+87.50 was obtained.

【0027】グループBの本発明例が良好な電気伝導性
を示す要因を把握するために、図3(a)にNo.7、
図3(b)にNo.1の試験片の160時間の定電位試
験後の酸化物皮膜を観察した結果を示す。No.7では
地鉄1表面に形成された酸化物皮膜2内に小さな白い粒
子3が観察された。この粒子は、EPMA分析の結果、
金属Niであることが分かった。グループBの鋼種には
同様に金属Niの析出を観察することができた。このよ
うに、酸化物皮膜中の金属Niは、電極の耐溶融塩腐食
性を向上させると共に、電極全体の電気抵抗を低下させ
る効果を発揮することが分かる。
FIG. 3 (a) shows the results of No. 2 of the present invention in Group B showing good electrical conductivity. 7,
FIG. The result of observing the oxide film of the test piece No. 1 after the constant potential test for 160 hours is shown. No. In No. 7, small white particles 3 were observed in the oxide film 2 formed on the surface of the base iron 1. These particles are the result of EPMA analysis
It was found to be metallic Ni. Similarly, precipitation of metallic Ni could be observed in the steel type of Group B. Thus, it can be seen that the metal Ni in the oxide film has the effect of improving the molten salt corrosion resistance of the electrode and lowering the electrical resistance of the entire electrode.

【0028】[0028]

【発明の効果】本発明によれば、今まで不可能と考えら
れていた皮膜の電気抵抗低減と耐食性向上とを両立する
ことが可能であり、溶融塩中で使用される安価な電極用
に使用可能であり、溶融塩電解技術の発展に寄与でき
る。
According to the present invention, it is possible to achieve both the reduction of the electric resistance of the film and the improvement of the corrosion resistance, which have been considered to be impossible so far. It can be used and can contribute to the development of molten salt electrolysis technology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸化物皮膜の皮膜抵抗と電流密度との関係を示
した図。
FIG. 1 is a view showing a relationship between a film resistance of an oxide film and a current density.

【図2】Ni、Cr量と皮膜抵抗との関係を示した図。FIG. 2 is a diagram showing a relationship between Ni and Cr contents and film resistance.

【図3】(a)本発明鋼の160時間定電位試験後の酸
化物皮膜の拡大断面模式図。 (b)比較鋼の160時間定電位試験後の酸化物皮膜の
拡大断面模式図。
FIG. 3 (a) is an enlarged schematic sectional view of an oxide film after a 160-hour constant potential test of the steel of the present invention. (B) An enlarged schematic cross-sectional view of an oxide film after a 160-hour constant potential test of a comparative steel.

【符号の説明】[Explanation of symbols]

1:地鉄 2:酸化物皮膜 3:Ni粒子 1: ground iron 2: oxide film 3: Ni particles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C25D 3/66 C25D 3/66 17/10 101 17/10 101 17/12 17/12 B H01M 8/14 H01M 8/14 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C25D 3/66 C25D 3/66 17/10 101 17/10 101 17/12 17/12 B H01M 8 / 14 H01M 8/14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属Niを含む酸化物皮膜を有すること
を特徴とする溶融塩中での耐食性と電気伝導性に優れた
溶融塩電気分解電極用ステンレス鋼。
1. A stainless steel for a molten salt electrolysis electrode having an excellent corrosion resistance and electrical conductivity in a molten salt, characterized by having an oxide film containing metallic Ni.
【請求項2】 重量%で、 C :0.10%以下、 Si:1.0%以下、 Mn:1.0%以下、 P :0.10%以下、 S :0.01%以下、 Cr:12%以上40%以下、 Ni:5%以上85%以下、 Mo:0.5%以下、 Cu:0.5%以下、 N :0.3%以下 を含み、かつNiとCrの含有量が 100.00−(Ni+Cr)≧−18.75(Ni/
Cr)+87.50 の関係を満足し、残部がFeおよび不可避不純物とから
なることを特徴とする請求項1記載の溶融塩中での耐食
性と電気伝導性に優れた溶融塩電気分解電極用ステンレ
ス鋼。
2. In% by weight, C: 0.10% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.10% or less, S: 0.01% or less, Cr : 12% or more and 40% or less, Ni: 5% or more and 85% or less, Mo: 0.5% or less, Cu: 0.5% or less, N: 0.3% or less, and the content of Ni and Cr Is 100.00− (Ni + Cr) ≧ −18.75 (Ni /
2. The stainless steel for a molten salt electrolysis electrode according to claim 1, which satisfies the relationship of (Cr) +87.50, with the balance being Fe and unavoidable impurities. steel.
JP8210316A 1996-08-08 1996-08-08 Stainless steel for molten salt electrolyzing electrode excellent in corrosion resistance and electric conductivity in molten salt Pending JPH1053890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8210316A JPH1053890A (en) 1996-08-08 1996-08-08 Stainless steel for molten salt electrolyzing electrode excellent in corrosion resistance and electric conductivity in molten salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8210316A JPH1053890A (en) 1996-08-08 1996-08-08 Stainless steel for molten salt electrolyzing electrode excellent in corrosion resistance and electric conductivity in molten salt

Publications (1)

Publication Number Publication Date
JPH1053890A true JPH1053890A (en) 1998-02-24

Family

ID=16587412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8210316A Pending JPH1053890A (en) 1996-08-08 1996-08-08 Stainless steel for molten salt electrolyzing electrode excellent in corrosion resistance and electric conductivity in molten salt

Country Status (1)

Country Link
JP (1) JPH1053890A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533296A (en) * 2005-03-09 2008-08-21 エクストラータ クイーンズランド リミテッド Stainless steel electrolytic plate
JP2010229454A (en) * 2009-03-26 2010-10-14 Fuji Electric Holdings Co Ltd Wet plating method and wet plating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533296A (en) * 2005-03-09 2008-08-21 エクストラータ クイーンズランド リミテッド Stainless steel electrolytic plate
JP2010229454A (en) * 2009-03-26 2010-10-14 Fuji Electric Holdings Co Ltd Wet plating method and wet plating apparatus

Similar Documents

Publication Publication Date Title
TWI472088B (en) Stainless steel for fuel cell with excellent corrosion resistance and a method for manufacturing the same
JP5218612B2 (en) Stainless steel for fuel cell separator
JPWO2018198685A1 (en) Stainless steel plate for fuel cell separator and method of manufacturing the same
EP1369941A2 (en) Low-contact-resistance interface structure between separator and carbon material for fuel cell, separator and carbon material used therein, and production method
Hou et al. Localized corrosion of binary Mg–Ca alloy in 0.9 wt% sodium chloride solution
CN107740143A (en) A kind of iron-based inert anode with ferrous acid lithium diaphragm and preparation method thereof, application
Ivanov et al. Electroextraction of zinc from sulphate electrolytes containing antimony ions and hydroxyethylated-butyne-2-diol-1, 4: Part 3. The influence of manganese ions and a divided cell
JPH1053890A (en) Stainless steel for molten salt electrolyzing electrode excellent in corrosion resistance and electric conductivity in molten salt
JP3565661B2 (en) Stainless steel for molten salt electrolysis electrode with excellent corrosion resistance and electrical conductivity
Nakisa et al. Study of corrosion behavior of virgin and recycled Pb anodes used in zinc electrowinning industry
Hartmann Casing materials for sodium/sulfur cells
Danzig et al. Characteristics of taetalided and hafnided samples in highly corrosive electrolyte solutions
Rybalka et al. Electrochemical behavior of stainless steel in aerated NaCl solutions by electrochemical impedance and rotating disk electrode methods
Gorhe et al. Development of an electrochemical reactivation test procedure for detecting microstructural heterogeneity in Ni-Cr-Mo-W alloy welds
Hara et al. The corrosion of nickel under cathodic polarization in molten NaNO3
JP2003297379A (en) Manufacturing method of separator for low temperature fuel cell
JP2932211B2 (en) Corrosion resistant stainless steel for molten carbonate fuel cells
CN110380045A (en) A kind of magnesium-alloy anode material and its preparation method and application, magnesium air battery
Randall et al. Determination of the free energy of ferrous hydroxide from measurements of electromotive force
JP2011122216A (en) Stainless steel sheet for fuel cell separator having excellent electric conductivity
JP2009093940A (en) Material for separator of solid polymer fuel cell
Paramguru et al. Direct electrowinning of lead from galena concentrate anodes
FI71027C (en) FOERFARANDE FOER REGLERING AV EN ELEKTROLYTUTFAELLNINGSPROCESSFOER METALLER
JPS60101870A (en) Thin battery
Safizadeh et al. Manganese removal from zinc sulfate electrolyte by electro-oxidation using Pb-Ag anode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040401

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524