JPH1053419A - Treatment of waste gas containing uranium hexafluoride - Google Patents

Treatment of waste gas containing uranium hexafluoride

Info

Publication number
JPH1053419A
JPH1053419A JP20750296A JP20750296A JPH1053419A JP H1053419 A JPH1053419 A JP H1053419A JP 20750296 A JP20750296 A JP 20750296A JP 20750296 A JP20750296 A JP 20750296A JP H1053419 A JPH1053419 A JP H1053419A
Authority
JP
Japan
Prior art keywords
gas
reactor
powder
uranium hexafluoride
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20750296A
Other languages
Japanese (ja)
Inventor
Takeshi Onoe
毅 尾上
Satoshi Murayama
敏 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP20750296A priority Critical patent/JPH1053419A/en
Publication of JPH1053419A publication Critical patent/JPH1053419A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Treating Waste Gases (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To make uranium hexafluoride in a waste gas possible of being continuously and inexpensively recovered in a form so as to be readily re-used without generating any wasted material. SOLUTION: A waste gas containing uranium hexafluoride and steam are continuously supplied into a reactor 10 heated to 200-700 deg.C and the uranium hexafluoride is reacted with the steam to produce UO2 F2 powder and a HF gas. The resultant UO2 F2 powder and the HF gas are respectively and continuously recovered. In a case of using a fluidized-bed reactor 10 filled with UO2 F2 powder as seed powder as a reactor, a waste gas containing uranium hexafluoride is supplied into the reactor from a supply nozzle 30 of the reactor and gas containing steam as a fluidizing gas is supplied into the reactor through a dispersion plate 13 of the reactor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ウラン濃縮工場で
発生するプロセス排ガスに含まれる六フッ化ウラン(U
6)を処理して、プロセス排ガスを非管理区域に放出
できるようにする方法に関する。更に詳しくはプロセス
排ガス中のUF6を再利用の容易な形態に処理し回収す
る方法に関するものである。
[0001] The present invention relates to uranium hexafluoride (U) contained in process exhaust gas generated in a uranium enrichment plant.
F 6 ) so that process exhaust gases can be released to uncontrolled areas. More specifically, the present invention relates to a method for treating and recovering UF 6 in process exhaust gas into a form that can be easily reused.

【0002】[0002]

【従来の技術】従来、商業規模で広く行われている排ガ
ス中のUF6の除去方法はNaF、MgF2、CoF2
のフッ化物からなる固体吸着剤を収容した容器を排ガス
が通過する排気ラインに設けることにより、固体吸着剤
にUF6を吸着させて除去する方法である。
2. Description of the Related Art Conventionally, a method of removing UF 6 from exhaust gas which has been widely performed on a commercial scale is an exhaust gas passing through a container containing a solid adsorbent made of fluoride such as NaF, MgF 2 , CoF 2. This is a method in which UF 6 is adsorbed and removed by a solid adsorbent by providing it in a line.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の方
法では固体吸着剤の定期的な交換が必要であり、この交
換作業は面倒であり、多くの時間と作業者を必要とし、
排ガスの処理を連続的に行うためには予備の吸着容器が
必要である問題点がある。また上記固体吸着剤は極めて
高価であり、排ガスの処理量に比例して定常的に消費さ
れ、吸着剤に吸着されたUF6を回収することは困難で
あるため、使用済み吸着剤はそのまま廃棄物となる問題
点がある。本発明の目的は、排ガス中の六フッ化ウラン
を再利用の容易な形態で連続的に安価に回収でき、廃棄
物を発生させることがない六フッ化ウランを含む排ガス
の処理方法を提供することにある。
However, the above conventional method requires periodic replacement of the solid adsorbent, which is troublesome, requires a lot of time and labor, and
There is a problem that a spare adsorption vessel is required in order to continuously process the exhaust gas. In addition, the above solid adsorbent is extremely expensive, is constantly consumed in proportion to the amount of exhaust gas treated, and it is difficult to recover UF 6 adsorbed by the adsorbent. There is a problem. An object of the present invention is to provide a method for treating uranium hexafluoride-containing exhaust gas which can continuously recover uranium hexafluoride in exhaust gas at a low cost in an easy-to-reuse form and does not generate waste. It is in.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように200〜700℃に加熱された反応装
置10内に六フッ化ウランを含む排ガスと水蒸気とを連
続的に供給して反応装置10内で六フッ化ウランと水蒸
気とを反応させることによりUO22粉末とHFガスを
生成しUO22粉末とHFガスを各別に連続的に回収す
る六フッ化ウランを含む排ガスの処理方法である。この
処理方法によれば、次の式(1)に示す反応が反応装置
10内で生じ、排ガス中の六フッ化ウランを再利用の容
易な形態であるUO22粉末として連続的に安価に回収
できる。 UF6 + 2H2O → UO22 + 4HF …… (1) 反応装置の加熱温度が200℃未満の場合、UO22
HF及びUO22とH 2Oの分離が不十分となり実用的
でない。また加熱温度が700℃を超えても反応収率は
向上せず熱エネルギの浪費となる。そのために反応装置
の加熱温度は好ましくは220〜400℃である。
The invention according to claim 1 is
As shown in FIG. 1, a reactor heated to 200 to 700 ° C.
The exhaust gas containing uranium hexafluoride and steam are
Uranium hexafluoride and water vapor are supplied in the reactor 10 continuously.
UO by reacting with qiTwoFTwoPowder and HF gas
Generate UOTwoFTwoContinuous recovery of powder and HF gas separately
This is a method for treating exhaust gas containing uranium hexafluoride. this
According to the treatment method, the reaction represented by the following formula (1)
Of uranium hexafluoride generated in exhaust gas and contained in exhaust gas
UO is an easy formTwoFTwoContinuously and inexpensively recovered as powder
it can. UF6 + 2HTwoO → UOTwoFTwo + 4HF (1) When the heating temperature of the reactor is lower than 200 ° C., UOTwoFTwoWhen
HF and UOTwoFTwoAnd H TwoPractical due to insufficient separation of O
Not. Even when the heating temperature exceeds 700 ° C., the reaction yield is
It does not improve and wastes heat energy. Reactor for that
Is preferably 220 to 400 ° C.

【0005】請求項2に係る発明は、請求項1に係る発
明であって、反応装置10がシード粉としてUO22
末が充填された流動層反応装置10であって、反応装置
10の供給ノズル30より六フッ化ウランを含む排ガス
を反応装置10内に供給し、反応装置10の分散板13
を介して水蒸気を含むガスを流動用ガスとして反応装置
10内に供給する方法である。流動層反応装置10を用
いて、高温の流動状態でUO22粉末と水蒸気が反応す
るため、生成したUO22粉末が反応装置10の内壁や
導出用配管の内壁に付着し、閉塞する恐れはなく、排ガ
スの連続的な処理が可能となる。
[0005] The invention according to claim 2 is the invention according to claim 1, wherein the reactor 10 is a fluidized bed reactor 10 filled with UO 2 F 2 powder as seed powder. An exhaust gas containing uranium hexafluoride is supplied from the supply nozzle 30 into the reactor 10, and the dispersion plate 13 of the reactor 10 is supplied.
Is a method in which a gas containing water vapor is supplied as a flowing gas into the reaction apparatus 10 through the reactor. Since the UO 2 F 2 powder reacts with steam in a high-temperature fluidized state using the fluidized bed reactor 10, the generated UO 2 F 2 powder adheres to the inner wall of the reactor 10 and the inner wall of the outlet pipe, and is clogged. There is no danger that exhaust gas can be continuously processed.

【0006】請求項3に係る発明は、請求項2に係る発
明であって、流動用ガスは水蒸気と窒素ガスを含む方法
である。流動用ガスに窒素ガスを含ませることにより、
流動用ガス量を一定にして水蒸気量を調整することが可
能になる。
The invention according to claim 3 is the invention according to claim 2, wherein the flowing gas contains water vapor and nitrogen gas. By including nitrogen gas in the flowing gas,
It is possible to adjust the amount of water vapor while keeping the amount of flowing gas constant.

【0007】請求項4に係る発明は、請求項3に係る発
明であって、流動層反応装置10から排出される窒素ガ
スを流動用ガスとして再利用する方法である。窒素ガス
を再利用することにより、キャリアガスのコストを低減
し得る。
A fourth aspect of the present invention is the method according to the third aspect, wherein the nitrogen gas discharged from the fluidized bed reactor 10 is reused as a flowing gas. By reusing the nitrogen gas, the cost of the carrier gas can be reduced.

【0008】請求項5に係る発明は、請求項2ないし4
いずれかに係る発明であって、流動層反応装置10より
回収されるHFガスを液化してフッ酸を生成し、このフ
ッ酸の濃度に応じて流動用ガスとしての水蒸気量を制御
する方法である。この制御により流動層反応装置10内
の反応効率がより一層向上し、UO22粉末製品の収率
が高まる。
The invention according to claim 5 is the invention according to claims 2 to 4
The invention according to any of the above, wherein the HF gas recovered from the fluidized bed reactor 10 is liquefied to generate hydrofluoric acid, and the amount of water vapor as a fluidizing gas is controlled in accordance with the concentration of the hydrofluoric acid. is there. By this control, the reaction efficiency in the fluidized bed reactor 10 is further improved, and the yield of the UO 2 F 2 powder product is increased.

【0009】[0009]

【発明の実施の形態】以下、本発明の方法を実施するの
に使用する流動層反応装置を図面に基づいて説明する。
図1に示すように、流動層を内部に収容する流動層反応
装置10の側面にはシード粉となるUO22粉末を供給
するシード粉供給管11が斜め上向きに、また反応生成
物であるUO22粉末を抜出す上部抜出し管12が斜め
下向きにそれぞれ設けられる。流動層反応装置10の内
底部近傍には分散板13が反応装置10の内部を区画す
るように設けられる。この分散板13より上の反応装置
内部にはシード粉のUO22粉末から構成される流動層
14が形成される。分散板13は多孔質のメッシュに形
成され、流動用ガスは透過するが、シード粉は抜け落ち
ないようになっている。また分散板13より下の反応装
置内部には流動層14へ水蒸気と窒素ガスを均一に送り
込むウィンドボックス16が形成される。反応装置10
の底部側壁にはウィンドボックス16内に向けて水蒸気
と窒素ガスを供給するガス供給管17が設けられ、流動
層14はガス供給管17及びウィンドボックス16を通
って分散板13を透過する水蒸気と窒素ガスにより流動
状態になる。ガス供給管17に供給される水蒸気は水を
ヒータ40で加熱することにより発生する。この水蒸気
は混合調整弁41に送られ、ここで窒素タンク42から
送られてきた窒素ガスと混合された後、ガス供給管17
に送られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A fluidized bed reactor used for carrying out the method of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a seed powder supply pipe 11 for supplying UO 2 F 2 powder serving as seed powder is directed obliquely upward on a side surface of a fluidized bed reactor 10 containing a fluidized bed therein. Upper extraction tubes 12 for extracting a certain UO 2 F 2 powder are provided diagonally downward. A dispersion plate 13 is provided near the inner bottom of the fluidized bed reactor 10 so as to partition the inside of the reactor 10. A fluidized bed 14 composed of UO 2 F 2 powder of seed powder is formed inside the reactor above the dispersion plate 13. The dispersing plate 13 is formed in a porous mesh so that the fluidizing gas is permeable but the seed powder does not fall off. Further, a wind box 16 for uniformly feeding steam and nitrogen gas to the fluidized bed 14 is formed inside the reactor below the dispersion plate 13. Reaction device 10
A gas supply pipe 17 for supplying steam and nitrogen gas toward the inside of the wind box 16 is provided on the bottom side wall of the fluidized bed 14. It becomes a fluidized state by nitrogen gas. Water vapor supplied to the gas supply pipe 17 is generated by heating water with a heater 40. This water vapor is sent to a mixing control valve 41, where it is mixed with nitrogen gas sent from a nitrogen tank 42, and then mixed with a gas supply pipe 17.
Sent to

【0010】流動層14の深部にあるUO22粉末を反
応装置10の外部に抜き出す下部抜出し管18が分散板
13及び反応装置10の底部を貫通して設けられる。反
応装置10の上部には流動層反応により生成して上昇す
る固体のUO22粉末をHFガスと未反応の水蒸気と窒
素ガスとを含むガス体から分離する固気分離フィルタ1
9が設けられる。フィルタ19の上部にはオフガス管2
3が反応装置10を貫通して設けられる。固気分離フィ
ルタ19の上端には逆洗用の不活性ガスを吹込む逆洗管
24が接続される。反応装置10の側壁には供給ノズル
30がこの側壁を貫通して設けられる。供給ノズル30
にはウラン濃縮工場で発生した六フッ化ウランと窒素ガ
スを含む排ガスが圧送され、この排ガスが供給ノズル3
0により流動層14に噴霧されるように構成される。
A lower extraction pipe 18 for extracting UO 2 F 2 powder at a deep portion of the fluidized bed 14 to the outside of the reactor 10 is provided through the dispersion plate 13 and the bottom of the reactor 10. A solid-gas separation filter 1 for separating solid UO 2 F 2 powder generated by a fluidized bed reaction and rising from a gas body containing HF gas, unreacted steam and nitrogen gas is provided at an upper portion of the reactor 10.
9 are provided. An off-gas pipe 2 is provided above the filter 19.
3 is provided through the reactor 10. A backwash pipe 24 for blowing backwashing inert gas is connected to the upper end of the solid-gas separation filter 19. A supply nozzle 30 is provided on a side wall of the reactor 10 so as to penetrate the side wall. Supply nozzle 30
The exhaust gas containing uranium hexafluoride and nitrogen gas generated in the uranium enrichment plant is pumped to the supply nozzle 3
0 is sprayed on the fluidized bed 14.

【0011】オフガス管23から排出したHFガスと窒
素ガスと未反応の水蒸気は定期的に三方切換弁31を切
換えて凝縮器32へ送られ、ここでガス体と凝縮液に分
離される。分離した凝縮液はフッ酸としてサンプリング
用容器33に収容される。凝縮器32から排出されるガ
ス体は窒素ガスと微量のHFガスを含んでおり、これら
は三方切換弁34を介して洗浄塔36へ送られ、ここで
フッ酸と窒素ガスに分離される。オフガス管23から排
出したHFガスと窒素ガスと未反応の水蒸気は通常操業
時には凝縮器32へ送らずに三方切換弁31及び34を
切換えて直接に洗浄塔36へ送り、ここでフッ酸と窒素
ガスに分離される。洗浄塔36から取り出されたフッ酸
は貯留タンク37に貯留される。一方、洗浄塔36から
取り出された窒素ガスはブロア38で加圧されて窒素タ
ンク42へ送られ、流動用窒素ガスの一部として再利用
される。
The unreacted water vapor with the HF gas and nitrogen gas discharged from the off-gas pipe 23 is periodically sent to a condenser 32 by switching a three-way switching valve 31, where it is separated into a gas body and a condensed liquid. The separated condensate is stored in the sampling container 33 as hydrofluoric acid. The gas discharged from the condenser 32 contains nitrogen gas and a small amount of HF gas, which is sent to a washing tower 36 via a three-way switching valve 34, where it is separated into hydrofluoric acid and nitrogen gas. During normal operation, the HF gas, the nitrogen gas and the unreacted steam discharged from the off-gas pipe 23 are not sent to the condenser 32 but are sent directly to the washing tower 36 by switching the three-way switching valves 31 and 34, where the hydrofluoric acid and the nitrogen Separated into gas. The hydrofluoric acid taken out from the washing tower 36 is stored in a storage tank 37. On the other hand, the nitrogen gas taken out of the washing tower 36 is pressurized by the blower 38 and sent to the nitrogen tank 42 to be reused as a part of the flowing nitrogen gas.

【0012】容器33に収容されたフッ酸の一部はサン
プリングのために採取されてフッ酸の濃度が測定され
る。測定の結果、例えばフッ酸の濃度が薄過ぎる場合に
は、混合調整弁41を調整することにより窒素ガスに対
する水蒸気の割合を少なくし、逆にフッ酸の濃度が濃過
ぎる場合には水蒸気の割合を多くしてフッ酸を所望の濃
度に調整する。
A part of the hydrofluoric acid contained in the container 33 is collected for sampling, and the concentration of hydrofluoric acid is measured. As a result of the measurement, for example, when the concentration of hydrofluoric acid is too low, the ratio of water vapor to nitrogen gas is reduced by adjusting the mixing control valve 41. On the contrary, when the concentration of hydrofluoric acid is too high, the ratio of water vapor is reduced. To increase the concentration of hydrofluoric acid to a desired concentration.

【0013】このように構成された装置において、シー
ド粉供給管11によりシード粉のUO22粉末を反応装
置10内に一定量だけ供給し、次いでガス供給管17よ
り水蒸気と窒素ガスを反応装置10内に供給すると、流
動層14が流動状態になる。図示しない加熱装置により
流動層を加熱し、反応温度まで昇温する。流動層の温度
が所定の温度に到達すると、供給ノズル30から六フッ
化ウランと窒素ガスを流動層14に噴霧する。その結
果、噴霧された六フッ化ウランを含むガスと流動層14
を構成するガスは流動層14内で激しく撹拌され、六フ
ッ化ウランは水蒸気と反応して、UO22とHFを生成
する。生成したUO22はシード粉のUO22粉上に析
出して球形状のUO22粉を形成する。この反応により
反応装置10内のUO22粉末の量が増加する。シード
粉となる以外の余分なUO22粉末は反応生成物として
上部抜出し管12から定期的に抜き出される。
In the apparatus configured as described above, a predetermined amount of UO 2 F 2 powder of the seed powder is supplied into the reactor 10 through the seed powder supply pipe 11, and then steam and nitrogen gas are reacted through the gas supply pipe 17. When supplied into the apparatus 10, the fluidized bed 14 is in a fluidized state. The fluidized bed is heated by a heating device (not shown) and heated to the reaction temperature. When the temperature of the fluidized bed reaches a predetermined temperature, uranium hexafluoride and nitrogen gas are sprayed onto the fluidized bed 14 from the supply nozzle 30. As a result, the sprayed gas containing uranium hexafluoride and the fluidized bed 14
Is vigorously stirred in the fluidized bed 14 and uranium hexafluoride reacts with water vapor to produce UO 2 F 2 and HF. The resulting UO 2 F 2 to form a spherical UO 2 F 2 powder was deposited on the UO 2 F 2 powder seed powder. This reaction increases the amount of UO 2 F 2 powder in the reactor 10. Excess UO 2 F 2 powder other than the seed powder is periodically extracted from the upper extraction pipe 12 as a reaction product.

【0014】[0014]

【実施例】次に本発明の具体的態様を示すために、本発
明の実施例を上記流動層反応装置を使用して説明する。 <実施例1>図1に示す流動層反応装置を以下の条件で
操作して、排ガスに含まれる六フッ化ウランと流動層に
含まれる水蒸気を反応させ、UO22とHFを生成し
た。即ち、UO22粉の15kgをシード粉として装置
内に供給した。流動層14の面積は100mm×100
mm、高さは1mである。この流動層を300℃に加熱
した。流動用ガスとして窒素ガスを20L/分、水蒸気
を5L/分の割合で混合した混合ガスをガス供給管17
から装置内に供給した。ウラン濃縮工場のプロセス排ガ
スの模擬排ガスとして窒素ガスを10L/分、UF6
スを1L/分の割合で混合した混合ガスを供給ノズル3
0から流動層14に3時間噴霧した。オフガス管23か
ら排出したHFガスを含む排ガスは凝縮器32へ送ら
れ、冷却水で冷却されてフッ酸を生成し、回収された。
EXAMPLES Next, in order to show specific embodiments of the present invention, examples of the present invention will be described using the above fluidized bed reactor. <Example 1> UO 2 F 2 and HF were produced by operating the fluidized bed reactor shown in FIG. 1 under the following conditions to react uranium hexafluoride contained in exhaust gas with steam contained in the fluidized bed. . That is, 15 kg of UO 2 F 2 powder was supplied as seed powder into the apparatus. The area of the fluidized bed 14 is 100 mm × 100
mm and the height is 1 m. The fluidized bed was heated to 300C. A mixed gas obtained by mixing nitrogen gas at a rate of 20 L / min and steam at a rate of 5 L / min as a flowing gas is supplied to a gas supply pipe 17.
And supplied into the apparatus. Supply nozzle 3 which is a mixed gas obtained by mixing nitrogen gas at a rate of 10 L / min and UF 6 gas at a rate of 1 L / min as a simulated exhaust gas of a process exhaust gas of a uranium enrichment plant
Sprayed from 0 to the fluidized bed 14 for 3 hours. Exhaust gas containing HF gas discharged from the off-gas pipe 23 was sent to the condenser 32, cooled with cooling water to generate hydrofluoric acid, and collected.

【0015】試験の終了後、UO22粉の全量を回収し
秤量した。その結果、UO22粉は2.4kg増加した
ことが確認された。容器33から採取したフッ酸中のウ
ランを分析した結果、検出感度以下であることが確認さ
れた。反応装置を解体してUO22粉の装置内壁への付
着状況を調べた結果、閉塞にいたるような付着は確認さ
れなかった。
After completion of the test, the entire amount of UO 2 F 2 powder was recovered and weighed. As a result, it was confirmed that the UO 2 F 2 powder increased by 2.4 kg. As a result of analyzing uranium in hydrofluoric acid collected from the container 33, it was confirmed that the sensitivity was lower than the detection sensitivity. As a result of examining the state of adhesion of the UO 2 F 2 powder to the inner wall of the apparatus by disassembling the reactor, no adhesion that could lead to blockage was confirmed.

【0016】[0016]

【発明の効果】以上述べたように、本発明によれば、2
00〜700℃に加熱された反応装置内に六フッ化ウラ
ンを含む排ガスと水蒸気とを連続的に供給して反応装置
内で六フッ化ウランと水蒸気とを反応させることにより
UO22粉末とHFガスを生成しUO22粉末とHFガ
スを各別に連続的に回収するようにしたので、排ガス中
の六フッ化ウランを再利用の容易な形態で連続的に安価
に回収でき、廃棄物を発生させることがない。
As described above, according to the present invention, 2
UO 2 F 2 powder is obtained by continuously supplying exhaust gas containing uranium hexafluoride and steam to the reactor heated to 00 to 700 ° C. and reacting uranium hexafluoride with steam in the reactor. And HF gas are generated, and the UO 2 F 2 powder and the HF gas are continuously collected separately, so that uranium hexafluoride in the exhaust gas can be collected continuously and inexpensively in an easy-to-reuse form. No waste is generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するのに使用する流動層反
応装置の構成図。
FIG. 1 is a block diagram of a fluidized bed reactor used to carry out the method of the present invention.

【符号の説明】[Explanation of symbols]

10 流動層反応装置 13 分散板 30 供給ノズル Reference Signs List 10 Fluidized bed reactor 13 Dispersion plate 30 Supply nozzle

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 200〜700℃に加熱された反応装置
(10)内に六フッ化ウランを含む排ガスと水蒸気とを連続
的に供給して前記装置(10)内で前記六フッ化ウランと前
記水蒸気とを反応させることによりUO22粉末とHF
ガスを生成し前記UO22粉末と前記HFガスを各別に
連続的に回収する六フッ化ウランを含む排ガスの処理方
法。
1. A reactor heated to 200 to 700 ° C.
An exhaust gas containing uranium hexafluoride and water vapor are continuously supplied into (10), and the uranium hexafluoride and the water vapor are reacted in the apparatus (10) to thereby produce UO 2 F 2 powder and HF.
A method for treating an exhaust gas containing uranium hexafluoride, which generates a gas and continuously recovers the UO 2 F 2 powder and the HF gas separately from each other.
【請求項2】 反応装置(10)がシード粉としてUO22
粉末が充填された流動層反応装置(10)であって、前記装
置(10)の供給ノズル(30)より六フッ化ウランを含む排ガ
スを前記装置(10)内に供給し、前記装置(10)の分散板(1
3)を介して水蒸気を含むガスを流動用ガスとして前記装
置(10)内に供給する請求項1記載の処理方法。
2. The method according to claim 1, wherein the reactor (10) is UO 2 F 2 as a seed powder.
A fluidized bed reactor (10) filled with powder, wherein an exhaust gas containing uranium hexafluoride is supplied into the device (10) from a supply nozzle (30) of the device (10), and the device (10) ) Dispersion plate (1
The processing method according to claim 1, wherein a gas containing water vapor is supplied as a fluidizing gas into the apparatus (10) through (3).
【請求項3】 流動用ガスは水蒸気と窒素ガスを含む請
求項2記載の処理方法。
3. The processing method according to claim 2, wherein the flowing gas contains water vapor and nitrogen gas.
【請求項4】 流動層反応装置(10)から排出される窒素
ガスを流動用ガスとして再利用する請求項3記載の処理
方法。
4. The process according to claim 3, wherein the nitrogen gas discharged from the fluidized bed reactor (10) is reused as a fluidizing gas.
【請求項5】 流動層反応装置(10)より回収されるHF
ガスを液化してフッ酸を生成し、前記フッ酸の濃度に応
じて流動用ガスとしての水蒸気量を制御する請求項2な
いし4いずれか記載の処理方法。
5. HF recovered from a fluidized bed reactor (10)
5. The processing method according to claim 2, wherein the gas is liquefied to generate hydrofluoric acid, and the amount of water vapor as a flowing gas is controlled in accordance with the concentration of the hydrofluoric acid.
JP20750296A 1996-08-07 1996-08-07 Treatment of waste gas containing uranium hexafluoride Pending JPH1053419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20750296A JPH1053419A (en) 1996-08-07 1996-08-07 Treatment of waste gas containing uranium hexafluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20750296A JPH1053419A (en) 1996-08-07 1996-08-07 Treatment of waste gas containing uranium hexafluoride

Publications (1)

Publication Number Publication Date
JPH1053419A true JPH1053419A (en) 1998-02-24

Family

ID=16540786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20750296A Pending JPH1053419A (en) 1996-08-07 1996-08-07 Treatment of waste gas containing uranium hexafluoride

Country Status (1)

Country Link
JP (1) JPH1053419A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880055A (en) * 2014-03-15 2014-06-25 宜章弘源化工有限责任公司 Fluidized bed tail gas treatment device in dry-method aluminum fluoride production
WO2018008790A3 (en) * 2016-07-08 2018-03-08 한전원자력연료 주식회사 System and method for detecting uranium hexafluoride (uf6) leak
WO2018221811A1 (en) * 2017-06-01 2018-12-06 한전원자력연료 주식회사 Treatment method and treatment apparatus for uranium hexafluoride residue within cylinder, using gas phase reaction
WO2020004707A1 (en) * 2018-06-26 2020-01-02 한전원자력연료 주식회사 System for sensing uf6 gas leak in nuclear fuel manufacturing process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880055A (en) * 2014-03-15 2014-06-25 宜章弘源化工有限责任公司 Fluidized bed tail gas treatment device in dry-method aluminum fluoride production
CN103880055B (en) * 2014-03-15 2015-05-20 宜章弘源化工有限责任公司 Fluidized bed tail gas treatment device in dry-method aluminum fluoride production
WO2018008790A3 (en) * 2016-07-08 2018-03-08 한전원자력연료 주식회사 System and method for detecting uranium hexafluoride (uf6) leak
WO2018221811A1 (en) * 2017-06-01 2018-12-06 한전원자력연료 주식회사 Treatment method and treatment apparatus for uranium hexafluoride residue within cylinder, using gas phase reaction
EP3633684A4 (en) * 2017-06-01 2021-03-03 Kepco Nuclear Fuel Co., Ltd Treatment method and treatment apparatus for uranium hexafluoride residue within cylinder, using gas phase reaction
WO2020004707A1 (en) * 2018-06-26 2020-01-02 한전원자력연료 주식회사 System for sensing uf6 gas leak in nuclear fuel manufacturing process
US11721446B2 (en) 2018-06-26 2023-08-08 Kepco Nuclear Fuel Co., Ltd. System for sensing UF6 gas leak in nuclear fuel manufacturing process

Similar Documents

Publication Publication Date Title
US3503184A (en) Treatment of gases evolved in the production of aluminum
CN101279735A (en) Production method and apparatus for trichlorosilane
JPS602247B2 (en) Method for recovering alumina-cryolite waste materials in aluminum production
JPS5843717B2 (en) Device for removing tritium from light and heavy water
JPS5833007B2 (en) High Gas Oshiyori Suruhouhou Oyobi Souchi
US4066739A (en) Process for recovering hydrogen and elemental sulfur from hydrogen sulfide and/or mercaptans-containing gases
JP4852787B2 (en) Carbon production equipment
JPH1053419A (en) Treatment of waste gas containing uranium hexafluoride
US4539016A (en) Method of and apparatus for adjusting and maintaining constant the temperature during methanizing of a charge gas
US3719451A (en) Production of copper oxides and zinc oxide
CN110240135B (en) Method and system for pre-dearsenifying of high-arsenic phosphorite
JP2746495B2 (en) Method and apparatus for converting carbon dioxide
CN105060297A (en) Method and apparatus for producing trichlorosilane
GB1580814A (en) Method and apparatus for producing or recovering an alkanolamine from a mixture containing an oxazolidone
JP2012101998A (en) Apparatus for producing fine powder of high purity silicon
US6099817A (en) Process for preparing sodium carbonate
JP4085520B2 (en) Deteriorated UF6 treatment facility and treatment method
JPH1076137A (en) Treatment of waste gas containing uranium hexafluoride and oxidizing gas
JP2671980B2 (en) Waste treatment
CN101351408A (en) Method for recycling zirconium tetrafluoride to form zirconia
US3495945A (en) Apparatus for the regeneration of hydrochloric acid from spent pickle liquor and like solutions
US2581518A (en) Oxidation of nitrogen oxide fumes
CN114643025A (en) Novel uranium dioxide hydrofluorination two-stage full-countercurrent series fluidized bed system
EP3950593B1 (en) Method for preparing ammonia by using ammonium salt and silicate
JP4085441B2 (en) Uranyl fluoride powder production equipment