JPH1052629A - Molecular sieve carbon film and its manufacture - Google Patents

Molecular sieve carbon film and its manufacture

Info

Publication number
JPH1052629A
JPH1052629A JP8227397A JP22739796A JPH1052629A JP H1052629 A JPH1052629 A JP H1052629A JP 8227397 A JP8227397 A JP 8227397A JP 22739796 A JP22739796 A JP 22739796A JP H1052629 A JPH1052629 A JP H1052629A
Authority
JP
Japan
Prior art keywords
molecular sieve
carbon film
film
sieve carbon
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8227397A
Other languages
Japanese (ja)
Other versions
JP3647985B2 (en
Inventor
Kenichi Okamoto
健一 岡本
Hidetoshi Kita
英敏 喜多
Chiaki Marumo
千郷 丸茂
Masaki Yamamoto
正樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP22739796A priority Critical patent/JP3647985B2/en
Publication of JPH1052629A publication Critical patent/JPH1052629A/en
Application granted granted Critical
Publication of JP3647985B2 publication Critical patent/JP3647985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare a molecular sieve carbon film having good selective permeability, high strength, and heat resistance by making a carbon film having a carbon content of at least a given value and lots of pores adhere to the surface of a porous ceramic material of a specified shape. SOLUTION: A porous ceramic material such as alumina, silica is used, and the porosity of the material is made 30-80%. A thermosetting resin such as a phenol and a melamine resin is applied on the surface of the material to form a polymer film, and the film is heat-treated at 550-1100 deg.C in a nonoxidative atmosphere. A molecular sieve carbon film having a carbon content of not less than 80% and lots of pores at least 1nm in diameter is prepared. The film can separate and purify a component of a specified molecular size selectively from various mixed gases of different molecular sizes and is good in heat resistance, chemical resistance and has high strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種混合物の分離
に利用される分子ふるい炭素膜、およびその製造法に係
わり、さらに詳しくは、微細な細孔の分子ふるい効果に
よる透過速度の差を利用したガスの分離精製に用いられ
る分子ふるい炭素膜、およびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molecular sieve carbon membrane used for separating various mixtures and a method for producing the same, and more particularly, to the use of a difference in permeation speed due to the molecular sieve effect of fine pores. The present invention relates to a molecular sieving carbon membrane used for separating and purifying a gas, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、透過選択性の高いガス分離膜とし
ては、ポリスルホン膜、シリコン膜、ポリアミド膜、ポ
リイミド膜など種々の高分子を素材としたものが知られ
ている。これら公知の高分子ガス分離膜は種々の分野で
実用化されているが、分離対象の混合ガス中にトルエ
ン、キシレン等の有機溶剤が含まれると、使用中に膜が
変質し劣化するという欠点を有している。また、これら
の高分子膜は、耐熱性の点から高温での使用には適さな
いということも欠点である。
2. Description of the Related Art Hitherto, as a gas separation membrane having high permeation selectivity, a gas separation membrane made of various polymers such as a polysulfone membrane, a silicon membrane, a polyamide membrane, and a polyimide membrane has been known. These known polymer gas separation membranes have been put to practical use in various fields, but if the mixed gas to be separated contains an organic solvent such as toluene or xylene, the membrane is deteriorated and deteriorated during use. have. Another drawback is that these polymer films are not suitable for use at high temperatures from the viewpoint of heat resistance.

【0003】こうした欠点を改良するものとして、例え
ば、特開昭60−179102号公報、特開平1−22
1518号公報などにおいて、アクリル系の中空繊維を
高温で炭化した炭素膜およびその製造法が提案されてい
る。また、特開平4−11933号公報、特開平5−2
2036号公報などにおいては、芳香族ポリイミド中空
糸膜の炭化、あるいは部分炭化により得られる中空糸炭
素膜、およびその製造法が提案されている。しかしなが
らこれらの炭素膜においては、炭素材の微細構造の制御
が十分でないことからガスの透過速度や選択透過性が十
分とは言えず、また、強度の点でも十分とは言えないの
が現状である。
To improve such disadvantages, for example, JP-A-60-179102 and JP-A-1-22
No. 1518 proposes a carbon film obtained by carbonizing an acrylic hollow fiber at a high temperature and a method for producing the same. Also, JP-A-4-11933 and JP-A-5-2
No. 2036 proposes a hollow fiber carbon membrane obtained by carbonizing or partially carbonizing an aromatic polyimide hollow fiber membrane, and a method for producing the same. However, in these carbon films, the gas permeation rate and permselectivity are not sufficient because the microstructure of the carbon material is not sufficiently controlled, and the strength is not sufficient at present. is there.

【0004】一方、ガス分離用の炭素材料としては、例
えば特公平6−20546号公報において開示されてい
るように、1nm以下の厳密に制御された多数の細孔を有
するペレット状の分子ふるい炭素が開発され、その選択
吸着性を利用して、例えば空気中の酸素と窒素の分離に
実用化されている。
On the other hand, as a carbon material for gas separation, for example, as disclosed in Japanese Patent Publication No. 6-20546, a pellet-shaped molecular sieve carbon having a number of strictly controlled pores of 1 nm or less is used. Has been developed and has been put to practical use for separating oxygen and nitrogen in air, for example, by utilizing its selective adsorptivity.

【0005】炭素膜においても、炭素層に細孔を形成し
かつその細孔構造を厳密に制御して分子ふるい特性を賦
与することができれば、従来の膜分離においては不可能
であった分子ふるい作用を利用した膜分離が可能となる
ものと考えられる。また、分離膜の強度をより大きく
し、かつ、優れた耐熱性を賦与することも重要な課題で
ある。
[0005] In a carbon membrane as well, if pores can be formed in the carbon layer and the pore structure can be strictly controlled to impart molecular sieving characteristics, molecular sieving that was impossible with conventional membrane separation is possible. It is considered that membrane separation utilizing the action becomes possible. It is also important to increase the strength of the separation membrane and to impart excellent heat resistance.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは既存の分
離膜の上記問題点を解決するために鋭意研究し、本発明
を完成させたものであり、本発明の目的は、新規な分子
ふるい炭素膜を提供することにある。本発明のさらに他
の目的は、選択透過性に優れかつ高強度で耐熱性が良好
な分子ふるい炭素膜を提供することにある。本発明のさ
らに他の目的は、本発明の上記分子ふるい炭素膜の製造
法を提供することにある。本発明のさらに他の目的およ
び利点は、以下の説明から明らかになろう。
DISCLOSURE OF THE INVENTION The present inventors have intensively studied to solve the above-mentioned problems of the existing separation membrane and completed the present invention. It is to provide a sieving carbon film. Still another object of the present invention is to provide a molecular sieve carbon film having excellent permselectivity, high strength and good heat resistance. Yet another object of the present invention is to provide a method for producing the molecular sieve carbon film of the present invention. Still other objects and advantages of the present invention will become apparent from the following description.

【0007】[0007]

【課題を解決するための手段】本発明の上記目的および
利点は、気孔率30〜80% のセラミック多孔質体表面に密
着し、炭素含有率80% 以上で、細孔直径1nm以下の多数
の細孔が存在することを特徴とする分子ふるい炭素膜で
あり、さらには好ましくは分子ふるい炭素膜がフェノ−
ル樹脂の熱分解により得られたガラス状炭素であること
を特徴とする上記分子ふるい炭素膜を提供することによ
って達成される。また、本発明の上記分子ふるい炭素膜
は、セラミック多孔質体表面に液状熱硬化性樹脂を塗布
して高分子膜を形成した後、非酸化性雰囲気中で550 〜
1,100 ℃の温度範囲で熱処理することにより製造され、
さらに好ましくは液状熱硬化性樹脂がフェノ−ル樹脂で
あることを特徴とする方法により製造される。
SUMMARY OF THE INVENTION The above objects and advantages of the present invention are as follows: a large number of porous ceramics having a porosity of 30 to 80% and a carbon content of 80% or more and a pore diameter of 1 nm or less. It is a molecular sieve carbon film characterized by having pores, and more preferably, the molecular sieve carbon film is a pheno-carbon film.
This is achieved by providing the above molecular sieve carbon film, which is a glassy carbon obtained by pyrolysis of a resin. Further, the molecular sieve carbon film of the present invention is prepared by applying a liquid thermosetting resin to the surface of a porous ceramic body to form a polymer film, and then forming the polymer film in a non-oxidizing atmosphere at a temperature of 550 to 550.
Manufactured by heat treatment in a temperature range of 1,100 ° C,
More preferably, it is produced by a method characterized in that the liquid thermosetting resin is a phenol resin.

【0008】[0008]

【発明の実施の形態】本発明において用いられるセラミ
ック多孔質体の材質としては例えば、アルミナ質、シリ
カ質、あるいはムライト、コ−ジェライトなどのシリ
カ、アルミナあるいはシリカ、アルミナとその他の成分
よりなる組成物などを好適に用いることができる。ま
た、ジルコニア、マグネシアなどの他の酸化物あるいは
炭化珪素、窒化珪素などの炭化物や窒化物、またはそれ
らの混合物を用いることもできる。
BEST MODE FOR CARRYING OUT THE INVENTION The material of the ceramic porous body used in the present invention is, for example, alumina, silica, silica such as mullite or cordierite, alumina or a composition comprising silica, alumina, and other components. A thing etc. can be used conveniently. Further, other oxides such as zirconia and magnesia, carbides and nitrides such as silicon carbide and silicon nitride, or a mixture thereof can also be used.

【0009】該セラミック多孔質体の気孔率は、通常30
〜80% 程度であり、好ましくは35〜70% 、最も好ましく
は40〜60% である。気孔率が小さすぎる場合には、ガス
の透過性が低下するので好ましくない。また、気孔率が
大きすぎる場合には、支持体の強度が低下して好ましく
ない。また、本発明のセラミック多孔質体の気孔径は、
通常その直径が10〜100,000nm ,好ましくは、100 〜1
0,000nm,最も好ましくは、 500〜 5,000nmである。該
セラミック多孔質体は、例えばアルミナ基質の多孔質体
の表面にシリカゾルを含浸するなどの方法により基質の
表面層近傍の細孔径を小さくした複合多孔質体でもよ
い。
[0009] The porosity of the porous ceramic body is usually 30
About 80%, preferably 35-70%, most preferably 40-60%. If the porosity is too small, the gas permeability is undesirably reduced. On the other hand, if the porosity is too large, the strength of the support decreases, which is not preferable. Further, the pore diameter of the ceramic porous body of the present invention,
Usually its diameter is 10-100,000 nm, preferably 100-1
0,000 nm, most preferably 500-5,000 nm. The ceramic porous body may be a composite porous body in which the pore diameter near the surface layer of the substrate is reduced by, for example, impregnating the surface of the porous body of the alumina substrate with silica sol.

【0010】本発明のセラミック多孔質体の厚さや形状
については特に限定するものではない。セラミック多孔
質体はその上に形成される炭素膜の支持体の役割を担う
ので、炭素膜が実用上十分な強度を発揮できる支持体と
しての強度を有していればよい。また、分子ふるい炭素
膜では、分離対象成分の透過度を大きくする必要がある
ので、セラミック多孔質体が厚過ぎると好ましくない。
更に、セラミック多孔質体の形状は、その上に形成され
る分子ふるい炭素膜の形状を決定するので極めて重要で
あるが、目的に応じて、平板状、円筒状など適宜選択す
ればよい。
[0010] The thickness and shape of the ceramic porous body of the present invention are not particularly limited. Since the ceramic porous body plays a role of a support for the carbon film formed thereon, the carbon film only needs to have a strength as a support capable of exhibiting practically sufficient strength. Further, in the case of the molecular sieve carbon membrane, it is necessary to increase the permeability of the component to be separated, so that it is not preferable that the ceramic porous body is too thick.
Further, the shape of the ceramic porous body is extremely important because it determines the shape of the molecular sieve carbon film formed thereon, but may be appropriately selected such as a flat plate shape or a cylindrical shape depending on the purpose.

【0011】本発明の分子ふるい炭素膜は、気孔率30〜
80% のセラミック多孔質体表面に密着し、炭素含有率80
% 以上で、細孔直径1nm以下の細孔が多数存在すること
を特徴とする分子ふるい炭素膜である。炭素含有率80%
以下では、疎水的で耐熱性、耐薬品性、耐溶剤性が高い
などの炭素の優れた特徴を生かすことができない。炭素
含有率は、好ましくは85%以上、最も好ましくは90%以
上である。
The molecular sieve carbon film of the present invention has a porosity of 30 to
Closely adheres to 80% ceramic porous body surface, carbon content 80%
% Or more, a molecular sieve carbon film characterized by having a large number of pores having a pore diameter of 1 nm or less. 80% carbon content
In the following, excellent characteristics of carbon such as hydrophobicity and high heat resistance, chemical resistance and solvent resistance cannot be utilized. The carbon content is preferably at least 85%, most preferably at least 90%.

【0012】本発明の分子ふるい炭素膜は、嵩密度が好
ましくは0.7 〜1.5 g/ccであり、より好ましくは0.8 〜
1.3g/cc である。本発明の分子ふるい炭素膜では、その
大部分の細孔は直径1nm以下の領域に分布し、従ってこ
の領域に細孔径分布の極大値を有する。本発明では細孔
は厳密に制御されたシャ−プな分布をすることが好まし
く、細孔直径0.3 〜0.7nm 程度の範囲に分布しているこ
とが特に好ましい。ナノメ−タオ−ダ−の細孔の測定に
は通常、窒素吸着法が用いられ、t-プロットを用いた解
析が行われているが、その場合に解析可能な細孔直径
は、0.6nm 以上である。さらに細かい細孔の解析には通
常、モレキュラ−プロ−ブ法が用いられる。即ち、例え
ば、酸素(分子径0.28nm) ,エタン( 分子径0.40nm) ,
イソブタン(分子径0.50nm) 等の分子径既知の分子の吸
着量より、所定の細孔径範囲の細孔容積を算出する方法
である。本発明の分子ふるい炭素膜は、酸素分子吸着に
より得られる細孔容積は、0.070 〜0.30cc/g、好ましく
は、0.090 〜0.25cc/g、最も好ましくは、0.10〜0.20cc
/gである。
The molecular sieve carbon membrane of the present invention preferably has a bulk density of 0.7 to 1.5 g / cc, more preferably 0.8 to 1.5 g / cc.
1.3g / cc. In the molecular sieve carbon film of the present invention, most of the pores are distributed in a region having a diameter of 1 nm or less, and therefore, have a maximum value of the pore diameter distribution in this region. In the present invention, it is preferable that the pores have a strictly controlled sharp distribution, and it is particularly preferable that the pores are distributed in a range of about 0.3 to 0.7 nm in diameter. In the measurement of the pores of the nanometer order, the nitrogen adsorption method is usually used, and analysis using a t-plot is performed. In this case, the pore diameter that can be analyzed is 0.6 nm or more. It is. For the analysis of finer pores, a molecular probe method is usually used. That is, for example, oxygen (molecular diameter 0.28 nm), ethane (molecular diameter 0.40 nm),
In this method, the pore volume in a predetermined pore diameter range is calculated from the amount of adsorption of a molecule having a known molecular diameter such as isobutane (molecular diameter: 0.50 nm). The molecular sieve carbon film of the present invention has a pore volume obtained by oxygen molecule adsorption of 0.070 to 0.30 cc / g, preferably 0.090 to 0.25 cc / g, and most preferably 0.10 to 0.20 cc.
/ g.

【0013】本分子ふるい炭素膜における酸素分子の吸
着は、細孔直径0.28nmから1.5nm 程度の範囲でおこるも
のと考えられるが、本分子ふるい炭素膜におけるイソブ
タン吸着量は比較的少ないことや、窒素吸着のt-プロッ
ト解析の結果などより、大部分の細孔は、1nm 以下の範
囲にあるものと考えられる。
The adsorption of oxygen molecules on the molecular sieve carbon membrane is considered to occur in the pore diameter range of about 0.28 nm to 1.5 nm. However, the adsorption amount of isobutane on the molecular sieve carbon membrane is relatively small. According to the results of t-plot analysis of nitrogen adsorption, most of the pores are considered to be in the range of 1 nm or less.

【0014】本発明の分子ふるい炭素膜の厚さは、通常
1 μm 〜5mm、好ましくは、2 μm 〜1mm 、最も好ま
しくは、5 〜500 μm である。
The thickness of the molecular sieve carbon film of the present invention is usually
It is 1 μm to 5 mm, preferably 2 μm to 1 mm, most preferably 5 to 500 μm.

【0015】本発明の分子ふるい炭素膜がフェノ−ル樹
脂の熱分解により得られたものである場合には、炭素膜
の強度が高く、微細孔の分布の均一性が良好で、選択透
過性に優れており、特に好ましい。
When the molecular sieve carbon film of the present invention is obtained by thermal decomposition of a phenol resin, the carbon film has a high strength, a uniform distribution of fine pores, and a selective permeability. And particularly preferred.

【0016】本発明の分子ふるい炭素膜は、セラミック
多孔質体表面に液状熱硬化性樹脂を塗布して高分子膜を
形成した後、非酸化性雰囲気中で550 〜1100℃の温度範
囲で熱処理することにより製造できる。
The molecular sieve carbon film of the present invention is prepared by applying a liquid thermosetting resin to the surface of a porous ceramic material to form a polymer film, and then heat-treating the film in a non-oxidizing atmosphere at a temperature of 550 to 1100 ° C. Can be manufactured.

【0017】本発明においては、前述の材質よりなるセ
ラミック多孔質体を必要に応じてシリカゾル、アルミナ
ゾルなどの溶液に浸漬後乾燥するなどの前処理により、
支持体の細孔を調整した後、液状熱硬化性樹脂を塗布し
てもよい。シリカゾル、アルミナゾルの溶媒は、特に限
定するものではないが、イソプルパノ−ル、エチレング
リコ−ル、水などを好適に用いることができる。また、
シリカやアルミナなどのセラミック粒子の含有量は、通
常、10〜40%,好ましくは、20〜35% である。
In the present invention, a pretreatment such as immersing the ceramic porous body made of the above-mentioned material in a solution of silica sol, alumina sol or the like and then drying it, if necessary,
After adjusting the pores of the support, a liquid thermosetting resin may be applied. The solvent for the silica sol and the alumina sol is not particularly limited, but isopranol, ethylene glycol, water and the like can be suitably used. Also,
The content of ceramic particles such as silica and alumina is usually 10 to 40%, preferably 20 to 35%.

【0018】本発明においてセラミック多孔質体表面に
液状熱硬化性樹脂を塗布するには、例えば、熱硬化性樹
脂を有機溶媒に溶かした溶液あるいは熱硬化性樹脂の水
溶液に該セラミック多孔質体を浸漬するとよい。また、
熱硬化性樹脂の溶液をスプレ−ガン等により薄く均一に
塗布することによっても樹脂膜を形成することができ
る。液状樹脂の濃度は、採用する塗布法、目的の膜圧等
に応じて適宜選択すれば良い。
In the present invention, the liquid thermosetting resin is applied to the surface of the ceramic porous body by, for example, applying the ceramic porous body to a solution in which the thermosetting resin is dissolved in an organic solvent or an aqueous solution of the thermosetting resin. It is good to soak. Also,
The resin film can also be formed by applying a thermosetting resin solution thinly and uniformly with a spray gun or the like. The concentration of the liquid resin may be appropriately selected according to the coating method to be used, the target film pressure, and the like.

【0019】本発明に用いる熱硬化性樹脂としては、フ
ェノ−ル樹脂、メラミン樹脂、ユリア樹脂、フラン樹脂
などが上げられる。フェノ−ル樹脂は大別するとレゾ−
ル樹脂とノボラック樹脂およびその他の特殊フェノ−ル
樹脂や変成品等に分けられる。メラミン樹脂は、メラミ
ンにアルデヒド、通常はホルムアルデヒドを塩基性触媒
の存在下で反応させることにより得られる無色透明の水
溶性樹脂で、熱硬化性を示す。ユリア樹脂は、ユリアと
ホルムアルデヒドを酸触媒または塩基性触媒の存在下で
反応させることにより得られる無色透明の水溶性樹脂で
ある。フラン樹脂は、フルフリルアルコ−ルの初期縮合
物、フルフラ−ル樹脂、あるいはそれらの変成樹脂等で
あり、フルフリルアルコ−ルの初期縮合物は、低粘度の
ものはアルコ−ルに可溶であり、高粘度のものでも酢酸
エチル、アセトン等の溶媒に可溶である。
Examples of the thermosetting resin used in the present invention include phenol resin, melamine resin, urea resin, and furan resin. Phenol resins can be roughly classified into
And novolak resins and other special phenolic resins and modified products. A melamine resin is a colorless and transparent water-soluble resin obtained by reacting melamine with an aldehyde, usually formaldehyde, in the presence of a basic catalyst, and shows thermosetting properties. The urea resin is a colorless and transparent water-soluble resin obtained by reacting urea with formaldehyde in the presence of an acid catalyst or a basic catalyst. The furan resin is an initial condensate of furfuryl alcohol, a furfural resin or a modified resin thereof, and the initial condensate of furfuryl alcohol is soluble in alcohol if it has a low viscosity. And even those having a high viscosity are soluble in solvents such as ethyl acetate and acetone.

【0020】本発明に用いる熱硬化性樹脂としては、先
にも述べたように、製造時の取り扱いが容易であるこ
と、炭化収率が高く細孔制御がし易いこと、また、炭素
膜の強度が大きいこと等の点でフェノ−ル樹脂が好まし
く、特に、下記の粒状フェノ−ル樹脂が最も好ましい。
As described above, the thermosetting resin used in the present invention is easy to handle at the time of production, has a high carbonization yield, easily controls pores, and has a carbon film. Phenol resins are preferred in terms of high strength and the like, and the following granular phenol resins are particularly preferred.

【0021】本発明に適用される粒状フェノ−ル樹脂
は、特公昭62−30211号公報あるいは特公昭62
−30213号公報等に開示されており、フェノ−ル類
とアルデヒドとの縮合物を主成分とする反応性を有する
粒状樹脂であって、(A) 粒径 0.1〜150 μmの球状
一次粒子およびその二次凝集物を含有し、そして(B)
少なくとも全体の50重量%が 100タイラーメッシュの
篩を通過しうる大きさであり、(C) メタノール溶解
度が50重量%以上のものであって、しかも(D) 液体
クロマトグラフィーによる測定値として、遊離フェノー
ル含有量が500ppm以下である。ことを特徴とする。
The granular phenolic resin applied to the present invention is disclosed in JP-B-62-3021 or JP-B-62-30211.
No. 30213, which discloses a reactive granular resin containing a condensate of a phenol and an aldehyde as a main component, and (A) spherical primary particles having a particle size of 0.1 to 150 μm; Containing the secondary aggregates and (B)
At least 50% by weight of the whole is a size that can pass through a 100-Tyler mesh sieve, and (C) methanol solubility is 50% by weight or more, and (D) a value determined by liquid chromatography as free The phenol content is 500 ppm or less. It is characterized by the following.

【0022】粒状フェノール樹脂は、その殆どが粒径
0.1〜150 μmの一次粒子またはその二次凝集物からな
り、少なくとも全体の50重量%、好ましくは90重量%が
100タイラーメッシュの篩を通過しうる大きさである
が、 1〜50μmの間にピークを有するように分布してい
る。
Most of the granular phenolic resin has a particle size.
0.1 to 150 μm primary particles or secondary aggregates thereof, at least 50% by weight, preferably 90% by weight of the whole
It is large enough to pass through a 100 Tyler mesh sieve, but distributed to have a peak between 1 and 50 μm.

【0023】本発明に適用される粒状フェノール樹脂
は、液体クロマトグラフィーによる測定値としては遊離
フェノール含有量が500ppm以下、実質的には100ppm以下
のものである。また、G.P.C (ゲルパーミエーションク
ロマトグラフィー)による測定値として、ポリスチレン
換算重量平均分子量が1000以上の高分子量物でありなが
ら、 100℃の温度に5分間保持した場合に実質的に溶融
または融着するものである。
The particulate phenol resin applied to the present invention has a free phenol content of 500 ppm or less, substantially 100 ppm or less, as measured by liquid chromatography. In addition, as measured by GPC (gel permeation chromatography), it is a polymer having a weight average molecular weight in terms of polystyrene of 1000 or more, but substantially melts or fuses when held at a temperature of 100 ° C. for 5 minutes. Things.

【0024】本発明に適用される粒状フェノール樹脂
は、実質的に無水のメタノール中で加熱還流した場合
に、下記数式1で表されるメタノール溶解度が50重量%
以上、好ましくは70重量%以上、最も好ましくは90重量
%以上である。該メタノール溶解度が50重量%未満で
は、有機溶媒を用いてフェノ−ル樹脂溶液を作製するこ
とが困難であり、従って、セラミック支持体に樹脂皮膜
を形成することが出来ない。
The particulate phenolic resin applied to the present invention has a methanol solubility represented by the following formula 1 of 50% by weight when heated and refluxed in substantially anhydrous methanol.
Or more, preferably 70% by weight or more, most preferably 90% by weight or more. When the methanol solubility is less than 50% by weight, it is difficult to prepare a phenol resin solution using an organic solvent, and therefore, it is impossible to form a resin film on a ceramic support.

【0025】[0025]

【数1】S={(W0 −W1 )/W0 }×100 W0 :使用した該樹脂の重量(g) W1 :加熱還流後に残存した該樹脂の重量(g) S :該樹脂のメタノール溶解度(重量%)S = {(W 0 −W 1 ) / W 0 } × 100 W 0 : weight of the resin used (g) W 1 : weight of the resin remaining after heating and refluxing (g) S: the weight of the resin Resin methanol solubility (wt%)

【0026】本発明においては、熱硬化性樹脂を溶解す
る溶媒としては、メタノ−ル、アセトン、テトラヒドロ
フランなど熱硬化性樹脂樹脂が均一に溶解するものであ
れば良く、特に限定するものではない。また、一部の熱
硬化性樹脂においては、分子量を調整することにより水
溶性となるものもあり、その場合には、水溶液を用いる
こともできる。
In the present invention, the solvent for dissolving the thermosetting resin is not particularly limited as long as the thermosetting resin resin such as methanol, acetone and tetrahydrofuran can be uniformly dissolved. Some thermosetting resins become water-soluble by adjusting the molecular weight. In such a case, an aqueous solution can be used.

【0027】本発明においてはセラミック支持体を熱硬
化性樹脂溶液に浸漬後適切な条件で乾燥し、溶媒を除去
するとともに樹脂を硬化させることにより、熱硬化性樹
脂膜を形成させる。
In the present invention, a thermosetting resin film is formed by immersing the ceramic support in a thermosetting resin solution and then drying it under appropriate conditions, removing the solvent and curing the resin.

【0028】こうして得られたセラミック支持体上の熱
硬化性樹脂膜を 550〜1,100 ℃で、非酸化性雰囲気下で
炭化することにより、本発明の分子ふるい炭素膜が得ら
れる。炭化温度は好ましくは 600〜 950℃、最も好まし
くは 700〜 900℃である。炭化温度が1,100 ℃より高い
場合には、分子ふるい炭素膜の細孔が熱収縮して減少す
るため透過度が低下し好ましくない。また 550℃より低
い場合には炭化が十分ではなく、選択的過能性能が低
く、また、耐熱性、耐薬品性等も低いので好ましくな
い。
The thus obtained thermosetting resin film on the ceramic support is carbonized at 550 to 1,100 ° C. in a non-oxidizing atmosphere to obtain the molecular sieve carbon film of the present invention. The carbonization temperature is preferably between 600 and 950 ° C, most preferably between 700 and 900 ° C. If the carbonization temperature is higher than 1,100 ° C., the pores of the molecular sieve carbon film shrink due to heat shrinkage, and the transmittance is undesirably reduced. If the temperature is lower than 550 ° C., carbonization is not sufficient, the selective overactivity is low, and the heat resistance, chemical resistance and the like are not preferable.

【0029】また、この場合の非酸化性雰囲気とは、例
えば、窒素、アルゴン、ヘリウム等の雰囲気であり、二
酸化炭素、水蒸気等の弱酸化性ガスを少量含む場合も本
発明の範囲に含まれる。
The non-oxidizing atmosphere in this case is, for example, an atmosphere of nitrogen, argon, helium or the like, and a case containing a small amount of a weakly oxidizing gas such as carbon dioxide or water vapor is also included in the scope of the present invention. .

【0030】炭化工程での最高処理温度に到達するまで
の昇温速度は特に制限するものではないが、好ましくは
5〜300 ℃/H、最も好ましくは30〜180 ℃/Hである。炭
化時の雰囲気、昇温速度、最高温度、最高温度での保持
時間等は、セラミック支持体の種類や細孔構造、熱硬化
性樹脂の種類や特性、目的とする炭素膜の細孔構造など
を考慮して最適条件を選定する。通常、より細かい細孔
を形成させるには、比較的高温まで昇温することが好ま
しいが、最高温度が高過ぎると、細孔が細かくなり過
ぎ、また、細孔容積も減少するのでガス透過性が低下し
て好ましくない。
The rate of temperature increase until reaching the maximum treatment temperature in the carbonization step is not particularly limited, but is preferably
The temperature is 5 to 300 ° C / H, most preferably 30 to 180 ° C / H. The atmosphere at the time of carbonization, the temperature rise rate, the maximum temperature, the holding time at the maximum temperature, etc. depend on the type and pore structure of the ceramic support, the type and properties of the thermosetting resin, the pore structure of the target carbon film, etc. The optimal conditions are selected in consideration of the above. In general, it is preferable to raise the temperature to a relatively high temperature in order to form finer pores.However, if the maximum temperature is too high, the pores become too fine, and the pore volume also decreases, so that gas permeability is low. Is undesirably reduced.

【0031】本発明により得られる分子ふるい炭素膜
は、通常平膜状、あるいは円筒状等の形状であり、気孔
率30〜80% のセラミック多孔質体表面に密着し、炭素含
有率80% 以上で、細孔直径1nm以下の多数の細孔が存在
する。
The molecular sieve carbon film obtained by the present invention is usually in the form of a flat film or a cylinder, and adheres to the surface of a ceramic porous body having a porosity of 30 to 80%, and has a carbon content of 80% or more. Thus, there are many pores having a pore diameter of 1 nm or less.

【0032】[0032]

【発明の効果】本発明の分子ふるい炭素膜は、気孔率30
〜80% のセラミック多孔質体表面に密着し、炭素含有率
80% 以上で、細孔直径1nm以下の細孔が多数存在すこと
から、分子直径の異なる各種混合ガスから、特定の分子
径の成分のみを効率的に分離・精製する分離材として用
いることができる。しかも、耐熱性、耐薬品性に優れ高
強度であり、各種炭化水素や腐食性ガスの分離等に有効
に利用できる。具体的には、例えば、窒素と酸素の混合
ガス、メタンと水素の混合ガス、キシレン異性体、ブタ
ン異性体、ブテン異性体等の炭化水素異性体混合物、プ
ロパンとプロピレンの混合物、ベンゼンとシクロヘキサ
ンの混合物、水素と一酸化炭素の混合ガス、窒素と二酸
化炭素の混合ガス、アルゴンと酸素の混合ガス等の分離
に使用でき、実用状極めて有用である。
The molecular sieve carbon film of the present invention has a porosity of 30.
~ 80% of ceramic porous body surface, carbon content
Since there are many pores of 80% or more and pore diameter of 1 nm or less, it can be used as a separation material to efficiently separate and purify only components with a specific molecular diameter from various mixed gases with different molecular diameters. it can. Moreover, it has excellent heat resistance and chemical resistance and high strength, and can be effectively used for separating various hydrocarbons and corrosive gases. Specifically, for example, a mixed gas of nitrogen and oxygen, a mixed gas of methane and hydrogen, a mixture of hydrocarbon isomers such as xylene isomers, butane isomers, and butene isomers, a mixture of propane and propylene, and a mixture of benzene and cyclohexane It can be used for the separation of a mixture, a mixed gas of hydrogen and carbon monoxide, a mixed gas of nitrogen and carbon dioxide, a mixed gas of argon and oxygen, and is extremely useful in practical use.

【0033】[0033]

【実施例】分離膜のガス透過性については、通常、下記
数式2,3で定義される透過係数Pあるいは、透過速度
Rが指標として用いられる。透過係数あるいは透過速度
の大小により、当該分離膜の各種ガスの透過性を表すこ
とがでる。本発明では、混合ガスの分離性能の指標とし
て分離係数R1 / R2 を定義した。
EXAMPLES As to the gas permeability of a separation membrane, a permeability coefficient P or a permeation speed R defined by the following formulas 2 and 3 is usually used as an index. The permeability of various gases of the separation membrane can be represented by the magnitude of the permeability coefficient or the permeability speed. In the present invention, it was defined separation factor R 1 / R 2 as an indicator of the separation performance of the gas mixture.

【0034】[0034]

【数2】透過係数 P=QL/(p1 −p2 )At## EQU2 ## Permeability coefficient P = QL / (p 1 -p 2 ) At

【数3】 透過速度 R=P/L=Q/(p1 −p2 )At Q: ガス透過量[cm3](0℃,1気圧) p1:高圧側ガス圧 [cmHg] p2:低圧側ガス圧 [cmHg] A: 膜面積[cm2] L: 膜厚[cm] t: 時間[sec]Equation 3] permeation rate R = P / L = Q / (p 1 -p 2) At Q: Gas permeation amount [cm 3] (0 ℃, 1 atm) p 1: the high-pressure side gas pressure [cmHg] p 2 : Low pressure side gas pressure [cmHg] A: Film area [cm 2 ] L: Film thickness [cm] t: Time [sec]

【0035】なお、本発明の諸物性値は下記のようにし
て測定した。
The physical properties of the present invention were measured as follows.

【0036】1.細孔容積、細孔径分布、気孔率の測定 本発明の分子ふるい炭素膜およびセラミック支持体の細
孔容積、細孔径分布は、細孔直径200 Å〜200 μm の範
囲はポロシメ−タ−による水銀圧入法(島津製、ポサイ
ザ−9810)により測定した。また、細孔直径100 Å
以下は、窒素吸吸着法(日本ベル製、ベルソ−プ28)
により測定した。測定結果の解析には、細孔直径2.0 〜
20nmの範囲ではDolimore-Heal 法を、2.0nm の以下範囲
ではMicropore Analysis法を適用した。なお、細孔直径
1nm以下の炭素膜単位重量当たりの細孔容積の算出に当
たっては、あらかじめセラミック支持体の細孔容積を測
定し、本発明に用いたセラミック支持体の1nm 以下の細
孔容積が実質的に0であることを確認した。このことよ
り、測定された細孔直径1nm以下の細孔容積は、セラミ
ック支持体上の分子ふるい炭素膜の細孔容積に帰せられ
るものとした。また、窒素ガス吸着測定終了後の試料を
大気中で700 ℃で焼成して炭素膜除去し、そのときの重
量変化より炭素膜の重量を算出し、その値を用いて単位
重量当たりの炭素膜の細孔容積を求めた。さらにまた、
酸素 (細孔直径0.28nm),エタン(0.40nm), イソブタン
(0.5nm)の25℃における吸着量の測定により、それらの
ガス吸着が可能な細孔容積を求めた。また、本発明のセ
ラミック支持体の気孔率は、水銀圧入法により求めた。
1. Measurement of pore volume, pore diameter distribution and porosity The pore volume and pore diameter distribution of the molecular sieve carbon membrane and the ceramic support of the present invention are as follows. It was measured by a press-fitting method (Poseiza 9810, manufactured by Shimadzu). Also, the pore diameter is 100 mm
The following is the nitrogen adsorption and adsorption method (manufactured by Nippon Bell, Bellsop 28)
Was measured by Analysis of measurement results requires a pore diameter of 2.0
The Dolimore-Heal method was applied in the range of 20 nm, and the Micropore Analysis method was applied in the range below 2.0 nm. In calculating the pore volume per unit weight of the carbon membrane having a pore diameter of 1 nm or less, the pore volume of the ceramic support was measured in advance, and the pore volume of the ceramic support used in the present invention was 1 nm or less. It was confirmed that it was substantially 0. From this, the measured pore volume with a pore diameter of 1 nm or less was attributed to the pore volume of the molecular sieve carbon membrane on the ceramic support. After the nitrogen gas adsorption measurement was completed, the sample was calcined at 700 ° C in air to remove the carbon film. Was determined. Furthermore,
By measuring the adsorption amounts of oxygen (pore diameter 0.28 nm), ethane (0.40 nm), and isobutane (0.5 nm) at 25 ° C., the pore volume at which these gases can be adsorbed was determined. The porosity of the ceramic support of the present invention was determined by a mercury porosimetry.

【0037】2.炭素含有量の測定 柳本製作所製の元素分析計(CHN CORDER, TM-3型) で測
定した。
2. Measurement of carbon content The carbon content was measured with an element analyzer (CHN CORDER, TM-3 type) manufactured by Yanagimoto Seisakusho.

【0038】3.ガス透過速度の測定 分子ふるい炭素膜のガス透過速度の測定は、図1に示す
ガス透過能測定装置により測定した。すなわち、長さ10
0mm,外径10mmの管状膜とした試料6を恒温槽7内透過セ
ル5に設置し、純粋ガスあるいは混合ガスをガスボンベ
1より供給した。その時ガス圧力は、上流側で2 〜6at
m, 下流側で1atmとし、ガス流速は流量計18で計測し
た。また、恒温槽7内設定温度は、35℃に保持した。上
流側出口配管8および下流側出口配管9から流出する分
離されたガスの定量を、それぞれ行った。以下、実施例
を挙げて具体的に説明する。
3. Measurement of gas permeation rate The gas permeation rate of the molecular sieve carbon membrane was measured by a gas permeability measuring apparatus shown in FIG. That is, length 10
A sample 6 in the form of a tubular membrane having a diameter of 0 mm and an outer diameter of 10 mm was set in a permeation cell 5 in a thermostat 7, and a pure gas or a mixed gas was supplied from a gas cylinder 1. At that time, the gas pressure is 2 to 6 at
m, 1 atm on the downstream side, and the gas flow rate was measured by the flow meter 18. The temperature set in the thermostat 7 was kept at 35 ° C. Quantification of the separated gas flowing out of the upstream outlet pipe 8 and the downstream outlet pipe 9 was performed, respectively. Hereinafter, specific examples will be described.

【0039】(実施例1)平均粒子径20μm の粒状フェ
ノ−ル樹脂(鐘紡製:ベルパ−ルS-895 )をメタノ−ル
に溶解し、20重量% のメタノ−ル溶液を作製した。この
溶液に外径10mm、厚さ1mm 、長さ100mm ,平均孔径 1μ
m 、気孔率35% の円筒状多孔質アルミナ管(三井研削砥
石製:マルチポアロン )を糸でつり下げ、200mm/min
の一定速度でフェノ−ル樹脂溶液中に浸漬し、再び同一
速度で引き上げた。該試料を80℃で5時間乾燥した後、
上記操作を繰り返し、フェノ−ル樹脂皮膜を 4回塗布し
た。同様の操作を繰り返して試料を 5本作製(試料1,
2,3,4,5)した。
Example 1 A particulate phenol resin having an average particle diameter of 20 μm (manufactured by Kanebo: Bellpar S-895) was dissolved in methanol to prepare a 20% by weight methanol solution. This solution has an outer diameter of 10 mm, a thickness of 1 mm, a length of 100 mm, and an average pore diameter of 1 μm.
m, 35% porosity cylindrical porous alumina tube (Mitsui grinding wheel: Multi-Polaron) suspended by thread, 200mm / min
The resin was immersed in the phenol resin solution at a constant speed, and pulled up again at the same speed. After drying the sample at 80 ° C. for 5 hours,
The above operation was repeated, and the phenol resin film was applied four times. The same operation was repeated to produce five samples (Sample 1,
2, 3, 4, 5).

【0040】浸漬、乾燥の済んだ各試料を電気炉に入
れ、窒素ガス雰囲気中で60℃/hの昇温速度で所定の温度
まで昇温し、該温度で1時間保持した後冷却して、炭素
膜を作製した。
Each of the immersed and dried samples is placed in an electric furnace, heated to a predetermined temperature in a nitrogen gas atmosphere at a heating rate of 60 ° C./h, kept at the temperature for 1 hour, and then cooled. Then, a carbon film was produced.

【0041】上記のごとくして作製した試料を用いて、
種々のガスの透過速度を測定した。その結果を表1に示
す。表1の実験結果より気体の分離係数を算出した結果
を表2に示す。表1、表2より、520 ℃炭化試料 1で
は、ガス透過速度は大きいが分離性能は殆どないことが
わかる。また、試料 2,3,4では、炭化温度の上昇ととも
にガス透過速度は減少していくが透過速度比は増大して
いくことがわかる。1,200 ℃炭化試料 5ではガス透過速
度が小さくなりすぎ、分離膜として適さないことがわか
る。
Using the sample prepared as described above,
The permeation rates of various gases were measured. Table 1 shows the results. Table 2 shows the results of calculating the gas separation coefficient from the experimental results in Table 1. From Tables 1 and 2, it can be seen that the sample 1 carbonized at 520 ° C. has a high gas permeation rate but little separation performance. In samples 2, 3, and 4, it can be seen that the gas permeation rate decreases as the carbonization temperature increases, but the permeation rate ratio increases. It can be seen that the gas permeation rate of 1,200 ° C carbonized sample 5 was too small and was not suitable as a separation membrane.

【0042】(実施例2)外径10mm、厚さ1m、長さ100m
m ,平均孔径 1μm 、気孔率35% の円筒状多孔質アルミ
ナ管(三井研削砥石製:マルチポアロン)をシリカゾル
溶液(日産化学工業製:スノ−テックス EG-ST) に30分
間浸漬した後、引き上げて大気中で乾燥した。次に、平
均粒子径20μmの粒状フェノ−ル樹脂(鐘紡製:ベルパ
−ルS-895)をメタノ−ルに溶解し、20重量% のメタノ
−ル溶液を作製した。この溶液にシリカコ−トしたセラ
ミック支持体、あるいはシリカコ−トなしのセラミック
支持体を実験1と同様にしてフェノ−ル樹脂溶液中に浸
漬し、再び同一速度で引き上げた。該試料を80℃で 5時
間乾燥した後、上記操作を繰り返し、フェノ−ル樹脂皮
膜を所定の回数塗布した。同様の操作を繰り返して試料
を 4本作製(試料8,9,10,11)した。
(Example 2) Outer diameter 10 mm, thickness 1 m, length 100 m
m, average pore diameter 1μm, porosity 35% cylindrical porous alumina tube (manufactured by Mitsui Grinding Stone: Multipore) is immersed in a silica sol solution (Nissan Chemical Industries: Sno-Tex EG-ST) for 30 minutes, and then pulled up Dried in air. Next, a particulate phenol resin having an average particle diameter of 20 μm (manufactured by Kanebo: Bellpar S-895) was dissolved in methanol to prepare a 20% by weight methanol solution. In this solution, a silica-coated ceramic support or a silica-coated ceramic support was immersed in a phenol resin solution in the same manner as in Experiment 1, and pulled up again at the same speed. After the sample was dried at 80 ° C. for 5 hours, the above operation was repeated, and a phenol resin film was applied a predetermined number of times. The same operation was repeated to produce four samples (samples 8, 9, 10, and 11).

【0043】浸漬、乾燥の済んだ各試料を電気炉に入
れ、窒素ガス雰囲気中で60℃/hの昇温速度で600 ℃まで
昇温し、該温度で1時間保持した後冷却して、炭素膜を
作製した。炭素膜の炭素含有率は、いずれの試料も88.0
〜89.0% の範囲であった。
Each of the immersed and dried samples was placed in an electric furnace, heated to 600 ° C. at a rate of 60 ° C./h in a nitrogen gas atmosphere, kept at that temperature for 1 hour, and then cooled. A carbon film was produced. The carbon content of the carbon film was 88.0 for all samples.
It was in the range of ~ 89.0%.

【0044】上記のごとくして作製した試料を用いて、
種々のガスの透過速度を測定した結果を表3に、また、
表3の結果より算出した分離係数R1 /R2 の値を表4
に示す。製膜回数1回の試料は気体透過速度が大きく分
離性能も殆どない。製膜回数が増えると気体透過度が減
少し分離性能が向上した。特に分子径の大きい気体の透
過速度が大幅に低下した。試料10では、 O2/ N2, CO2/
N2の分離係数が5.7 と19となった。また、試料11では、
C3H6/ C3H8 の分離係数は134 と非常に大きくなった。
Using the sample prepared as described above,
Table 3 shows the results of measuring the permeation rates of various gases,
Table 4 shows the value of the separation coefficient R 1 / R 2 calculated from the results in Table 3.
Shown in A sample with one film formation has a high gas permeation rate and has almost no separation performance. As the number of film formations increased, the gas permeability decreased and the separation performance improved. In particular, the permeation rate of a gas having a large molecular diameter was greatly reduced. In sample 10, O 2 / N 2 , CO 2 /
The separation factor for N 2 was 5.7 and 19. In sample 11,
The separation coefficient of C 3 H 6 / C 3 H 8 was as large as 134.

【0045】(実施例3)実施例2の試料10を用い CO2
19.1mol%, N2 80.91mol% の混合ガスの透過実験を行っ
た結果を表5に示す。ガス供給側の圧力は、表5に示す
ように 2,4,6気圧の3条件とし、透過側のガス圧力は、
1 気圧の一定値とした。
Example 3 Using the sample 10 of Example 2, CO 2
Table 5 shows the results of a permeation test of a mixed gas of 19.1 mol% and 80.91 mol% of N 2 . As shown in Table 5, the pressure on the gas supply side was set to three conditions of 2, 4, and 6 atmospheres.
It was a constant value of 1 atm.

【0046】表5より、試料10では、実験した圧力範囲
で窒素と二酸化炭素の分離係数が良好な値を示してお
り、分離が可能であることが明らかになった。
Table 5 shows that Sample 10 showed good values for the separation coefficients of nitrogen and carbon dioxide within the range of the pressures tested, indicating that separation was possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ガス透過能測定装置FIG. 1 Gas permeability measuring device

【符号の説明】[Explanation of symbols]

1.ガスボンベ 2.調圧弁 3.圧力計 4.二方コック1 5.透過セル 6.試料 7.恒温槽 8.上流側出口配管 9.下流側出口配管 10.三方コック1 11.三方コック2 12.三方コック3 13.三方コック4 14.二方コック2 15.二方コック3 16.調圧弁2 17.真空ポンプ 18.ガスクロマトグラフ 1. Gas cylinder 2. Pressure regulating valve 3. Pressure gauge 4. Two-way cock 1 5. 5. Transmission cell Sample 7. Constant temperature bath 8. 8. Upstream outlet piping Downstream outlet piping 10. Three-way cock 1 11. Three-way cock 2 12. Three-way cock 3 13. Three-way cock 4 14. Two-way cock 2 15. Two-way cock 3 16. Pressure regulating valve 2 17. Vacuum pump 18. Gas chromatograph

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年12月4日[Submission date] December 4, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項7[Correction target item name] Claim 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】気孔率30〜80% のセラミック多孔質体表面
に密着し、炭素含有率80% 以上で、細孔直径1nm以下の
多数の細孔が存在することを特徴とする分子ふるい炭素
膜。
1. A molecular sieve carbon which is in close contact with the surface of a ceramic porous body having a porosity of 30 to 80% and has a large number of pores having a carbon content of 80% or more and a pore diameter of 1 nm or less. film.
【請求項2】分子ふるい炭素膜がフェノ−ル樹脂の熱分
解により得られたガラス状炭素よりなることを特徴とす
る請求項1記載の分子ふるい炭素膜。
2. The molecular sieve carbon film according to claim 1, wherein the molecular sieve carbon film is made of glassy carbon obtained by thermal decomposition of a phenol resin.
【請求項3】セラミック多孔質体表面にシリカゾル、ア
ルミナゾルなどのコ−ティング層を形成し、その表面に
密着した分子ふるい炭素膜が存在することを特徴とする
請求項1記載の分子ふるい炭素膜
3. The molecular sieve carbon film according to claim 1, wherein a coating layer of silica sol, alumina sol or the like is formed on the surface of the ceramic porous body, and a molecular sieve carbon film adheres to the surface.
【請求項4】セラミック多孔質体表面にシリカゾル、ア
ルミナゾルなどのコ−ティング層を形成し、その表面に
密着した分子ふるい炭素膜が存在することを特徴とする
請求項2記載の分子ふるい炭素膜
4. A molecular sieve carbon film according to claim 2, wherein a coating layer of silica sol, alumina sol or the like is formed on the surface of the ceramic porous body, and a molecular sieve carbon film adhered to the surface.
【請求項5】セラミック多孔質体表面に液状熱硬化性樹
脂を塗布して高分子膜を形成した後、非酸化性雰囲気下
で550 〜1,100 ℃の温度範囲で熱処理することを特徴と
する分子ふるい炭素膜の製造法。
5. A molecule characterized in that a liquid thermosetting resin is applied to the surface of a ceramic porous body to form a polymer film, and then heat-treated in a non-oxidizing atmosphere at a temperature range of 550 to 1,100 ° C. Manufacturing method of sieved carbon film.
【請求項6】液状熱硬化性樹脂がフェノ−ル樹脂である
ことを特徴とする特徴とする請求項5記載の分子ふるい
炭素膜の製造法。
6. The method according to claim 5, wherein the liquid thermosetting resin is a phenol resin.
【請求項7】セラミック多孔質体表面にシリカゾル、ア
ルミナゾルなどのコ−ティング層を形成した後、その表
面にフェノ−ル樹脂を塗布することを特徴とする特許請
求項5に記載の分子ふるい炭素膜の製造法。
7. The molecular sieve carbon according to claim 5, wherein a coating layer of silica sol, alumina sol or the like is formed on the surface of the ceramic porous body, and then a phenol resin is applied to the surface. Manufacturing method of membrane.
【請求項8】セラミック多孔質体表面にシリカゾル、ア
ルミナゾルなどのコ−ティング層を形成した後、その表
面にフェノ−ル樹脂を塗布することを特徴とする特許請
求項6に記載の分子ふるい炭素膜の製造法。
8. The molecular sieve carbon according to claim 6, wherein a coating layer of silica sol, alumina sol or the like is formed on the surface of the ceramic porous body, and then a phenol resin is applied to the surface. Manufacturing method of membrane.
JP22739796A 1996-08-09 1996-08-09 Molecular sieving carbon membrane and its manufacturing method Expired - Fee Related JP3647985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22739796A JP3647985B2 (en) 1996-08-09 1996-08-09 Molecular sieving carbon membrane and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22739796A JP3647985B2 (en) 1996-08-09 1996-08-09 Molecular sieving carbon membrane and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH1052629A true JPH1052629A (en) 1998-02-24
JP3647985B2 JP3647985B2 (en) 2005-05-18

Family

ID=16860192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22739796A Expired - Fee Related JP3647985B2 (en) 1996-08-09 1996-08-09 Molecular sieving carbon membrane and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3647985B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237562A (en) * 1999-02-23 2000-09-05 Kanebo Ltd Molecular sieve carbon membrane and its production, and pervaporation separation method
JP2001232156A (en) * 2000-02-23 2001-08-28 Kanebo Ltd Pervaporation separation method or vapor separation method using molecular sieve type carbon film
JP2001333639A (en) * 2000-05-25 2001-12-04 Natl Inst Of Advanced Industrial Science & Technology Meti Carbon dioxide fertilizing to plant using highly selectable separation membrane of carbon dioxide
WO2002074421A1 (en) * 2001-03-16 2002-09-26 The Robert Gordon University Apparatus and method for separating gases
JP2005041769A (en) * 2003-07-07 2005-02-17 Toyo Tanso Kk Carbonized material and method of manufacturing the same
JP2007503995A (en) * 2003-09-04 2007-03-01 コリア リサーチ インスティテュートオフ゛ ケミカル テクノロシ゛ー Titania composite membrane for water / alcohol separation and method for producing the same
US7621979B2 (en) 2004-03-12 2009-11-24 Ngk Insulators, Ltd. Carbon film laminate and method for production thereof, and VOC removing device
JP2009544382A (en) * 2006-07-26 2009-12-17 クラウス シュミット Retention by membrane separation of noble gases in exhaled breath of patients wearing ventilators
WO2009150903A1 (en) * 2008-06-10 2009-12-17 日本碍子株式会社 Carbon film and method for producing the same
WO2012041999A1 (en) * 2010-10-01 2012-04-05 Basf Se Method for producing carbon membranes
JP2013063415A (en) * 2011-09-20 2013-04-11 Toyobo Co Ltd Hollow fiber carbon membrane, separation membrane module, and method of manufacturing hollow fiber carbon membrane
JP2013063409A (en) * 2011-09-20 2013-04-11 Toyobo Co Ltd Hollow fiber carbon membrane and method for producing the same
CN103228342A (en) * 2010-10-01 2013-07-31 巴斯夫欧洲公司 Method for producing carbon membranes
WO2013145863A1 (en) * 2012-03-30 2013-10-03 日本碍子株式会社 Carbon film, method for manufacturing carbon film, and carbon film filter
US8608828B2 (en) 2010-10-01 2013-12-17 Basf Se Process for producing carbon membranes
JP2016117726A (en) * 2014-12-17 2016-06-30 ミュウ スクリーンテック フィルター− ウント プレツィジオンステヒニク アウス メタル ゲーエムベーハー Method of carrying out chemical equilibrium reaction using permselective membrane
KR20170036682A (en) 2014-07-24 2017-04-03 도레이 카부시키가이샤 Carbon film for fluid separation, fluid separation film module, and method for producing carbon film for fluid separation
WO2017126504A1 (en) 2016-01-22 2017-07-27 東レ株式会社 Carbon membrane for fluid separation and carbon membrane module for fluid separation
CN107082641A (en) * 2017-05-24 2017-08-22 广西碧清源环保科技有限公司 A kind of ceramic membrane materials component
JP2018522713A (en) * 2015-06-01 2018-08-16 ジョージア・テック・リサーチ・コーポレーション Superselective carbon molecular sieve membrane and manufacturing method
JP2018165509A (en) * 2017-03-28 2018-10-25 京セラ株式会社 Fuel tank with separation membrane
CN115052675A (en) * 2019-12-11 2022-09-13 基金技术研究与创新公司 Carbon molecular sieve membranes and their use in separation processes
CN116328720A (en) * 2022-12-08 2023-06-27 大连理工大学 Carbon adsorbent with propane difficult-to-desorb property, preparation method thereof, dynamic pore channel optimization technology and application

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101351263B (en) 2006-07-20 2012-09-05 日本碍子株式会社 Ceramic filter
CA2668708C (en) 2006-11-06 2013-09-17 Ngk Insulators, Ltd. Separation membrane-porous material composite and method for manufacturing the same
EP2089140B1 (en) 2006-11-29 2013-01-02 NGK Insulators, Ltd. Carbon membrane laminated body
JPWO2009001970A1 (en) 2007-06-27 2010-08-26 日本碍子株式会社 Separation membrane complex and method for producing separation membrane complex
WO2011118469A1 (en) 2010-03-26 2011-09-29 日本碍子株式会社 Carbon film and method for pervaporation separation
JP5467909B2 (en) * 2010-03-26 2014-04-09 日本碍子株式会社 Carbon film manufacturing method
CN103813981B (en) 2011-09-22 2016-03-30 日本碍子株式会社 The manufacture method of carbon film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262902A (en) * 1988-03-17 1989-10-19 Ceramiques Technique:Soc Filter membrane and its production
JPH04326960A (en) * 1991-04-24 1992-11-16 Gengen Kagaku Kogyo Kk Reduced pressure painting apparatus
JPH08299769A (en) * 1995-05-10 1996-11-19 Nok Corp Porous ceramic composite hollow fiber membrane and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262902A (en) * 1988-03-17 1989-10-19 Ceramiques Technique:Soc Filter membrane and its production
JPH04326960A (en) * 1991-04-24 1992-11-16 Gengen Kagaku Kogyo Kk Reduced pressure painting apparatus
JPH08299769A (en) * 1995-05-10 1996-11-19 Nok Corp Porous ceramic composite hollow fiber membrane and its production

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237562A (en) * 1999-02-23 2000-09-05 Kanebo Ltd Molecular sieve carbon membrane and its production, and pervaporation separation method
JP2001232156A (en) * 2000-02-23 2001-08-28 Kanebo Ltd Pervaporation separation method or vapor separation method using molecular sieve type carbon film
JP2001333639A (en) * 2000-05-25 2001-12-04 Natl Inst Of Advanced Industrial Science & Technology Meti Carbon dioxide fertilizing to plant using highly selectable separation membrane of carbon dioxide
WO2002074421A1 (en) * 2001-03-16 2002-09-26 The Robert Gordon University Apparatus and method for separating gases
US7048778B2 (en) 2001-03-16 2006-05-23 The Robert Gordon University Apparatus and method for separating gases
US7297184B2 (en) 2001-03-16 2007-11-20 Robert Gordon University Apparatus and method for separating gases
JP2005041769A (en) * 2003-07-07 2005-02-17 Toyo Tanso Kk Carbonized material and method of manufacturing the same
JP2007503995A (en) * 2003-09-04 2007-03-01 コリア リサーチ インスティテュートオフ゛ ケミカル テクノロシ゛ー Titania composite membrane for water / alcohol separation and method for producing the same
US7621979B2 (en) 2004-03-12 2009-11-24 Ngk Insulators, Ltd. Carbon film laminate and method for production thereof, and VOC removing device
JP2009544382A (en) * 2006-07-26 2009-12-17 クラウス シュミット Retention by membrane separation of noble gases in exhaled breath of patients wearing ventilators
WO2009150903A1 (en) * 2008-06-10 2009-12-17 日本碍子株式会社 Carbon film and method for producing the same
US8257468B2 (en) 2008-06-10 2012-09-04 Ngk Insulators, Ltd. Carbon membrane and method of manufacturing the same
EP2298437B1 (en) * 2008-06-10 2020-04-08 NGK Insulators, Ltd. Carbon film and method for producing the same
JP5595044B2 (en) * 2008-06-10 2014-09-24 日本碍子株式会社 Carbon film manufacturing method
WO2012041999A1 (en) * 2010-10-01 2012-04-05 Basf Se Method for producing carbon membranes
CN103228342A (en) * 2010-10-01 2013-07-31 巴斯夫欧洲公司 Method for producing carbon membranes
JP2013541413A (en) * 2010-10-01 2013-11-14 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing a carbon film
US8608828B2 (en) 2010-10-01 2013-12-17 Basf Se Process for producing carbon membranes
CN103228342B (en) * 2010-10-01 2016-06-29 巴斯夫欧洲公司 The method producing carbon film
JP2013063415A (en) * 2011-09-20 2013-04-11 Toyobo Co Ltd Hollow fiber carbon membrane, separation membrane module, and method of manufacturing hollow fiber carbon membrane
JP2013063409A (en) * 2011-09-20 2013-04-11 Toyobo Co Ltd Hollow fiber carbon membrane and method for producing the same
WO2013145863A1 (en) * 2012-03-30 2013-10-03 日本碍子株式会社 Carbon film, method for manufacturing carbon film, and carbon film filter
KR20170036682A (en) 2014-07-24 2017-04-03 도레이 카부시키가이샤 Carbon film for fluid separation, fluid separation film module, and method for producing carbon film for fluid separation
US10159943B2 (en) 2014-07-24 2018-12-25 Toray Industries, Inc. Carbon membrane for fluid separation, fluid separation membrane module, and method for producing carbon membrane for fluid separation
JP2016117726A (en) * 2014-12-17 2016-06-30 ミュウ スクリーンテック フィルター− ウント プレツィジオンステヒニク アウス メタル ゲーエムベーハー Method of carrying out chemical equilibrium reaction using permselective membrane
JP2018522713A (en) * 2015-06-01 2018-08-16 ジョージア・テック・リサーチ・コーポレーション Superselective carbon molecular sieve membrane and manufacturing method
KR20180102099A (en) 2016-01-22 2018-09-14 도레이 카부시키가이샤 Carbon film for fluid separation and carbon film module for fluid separation
WO2017126504A1 (en) 2016-01-22 2017-07-27 東レ株式会社 Carbon membrane for fluid separation and carbon membrane module for fluid separation
US10994243B2 (en) 2016-01-22 2021-05-04 Toray Industries, Inc. Carbon membrane for fluid separation and carbon membrane module for fluid separation
JP2018165509A (en) * 2017-03-28 2018-10-25 京セラ株式会社 Fuel tank with separation membrane
CN107082641A (en) * 2017-05-24 2017-08-22 广西碧清源环保科技有限公司 A kind of ceramic membrane materials component
CN107082641B (en) * 2017-05-24 2023-04-25 广西碧清源环保科技有限公司 Ceramic membrane material assembly
CN115052675A (en) * 2019-12-11 2022-09-13 基金技术研究与创新公司 Carbon molecular sieve membranes and their use in separation processes
CN116328720A (en) * 2022-12-08 2023-06-27 大连理工大学 Carbon adsorbent with propane difficult-to-desorb property, preparation method thereof, dynamic pore channel optimization technology and application
CN116328720B (en) * 2022-12-08 2024-06-07 大连理工大学 Carbon adsorbent with propane difficult-to-desorb property, preparation method thereof, dynamic pore channel optimization technology and application

Also Published As

Publication number Publication date
JP3647985B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
JP3647985B2 (en) Molecular sieving carbon membrane and its manufacturing method
Suda et al. Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide
Tanco et al. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies
Centeno et al. Supported carbon molecular sieve membranes based on a phenolic resin
Rao et al. Nanoporous carbon membrane for gas separation
Rodrigues et al. Preparation and characterization of carbon molecular sieve membranes based on resorcinol–formaldehyde resin
Tanco et al. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part II: Effect of the carbonization temperature on the gas permeation properties
US5104425A (en) Gas separation by adsorbent membranes
Teixeira et al. Boehmite-phenolic resin carbon molecular sieve membranes—Permeation and adsorption studies
Abd Jalil et al. Vacuum-assisted tailoring of pore structures of phenolic resin derived carbon membranes
CN103228342B (en) The method producing carbon film
US7255725B2 (en) Porous inorganic membrane containing carbon; a process for its preparation; and use thereof
Kanezashi et al. Experimental and theoretical study on small gas permeation properties through amorphous silica membranes fabricated at different temperatures
Zhou et al. Preparation and gas permeation properties of carbon molecular sieve membranes based on sulfonated phenolic resin
JP5523560B2 (en) Carbon membrane composite, method for producing the same, and separation membrane module
JP2004231512A5 (en)
CN101801509B (en) Carbon film and manufacture method thereof
Afsari et al. Synthesis and characterization of supported Phenolic resin/Carbon nanotubes Carbon membranes for gas separation
WO2001093993A1 (en) Improved silica membranes and process of production thereof
JP6030060B2 (en) Method for producing a carbon film
JP2001232156A (en) Pervaporation separation method or vapor separation method using molecular sieve type carbon film
JP4599557B2 (en) Gas separation membrane and method for producing the same
Wu et al. Fabrication and gas permeation of CMS/C composite membranes based on polyimide and phenolic resin
Damle et al. Carbon membranes for gas separation: Developmental studies
Lee et al. Influence of adsorption on the gas permeation performances in the mesoporous alumina ceramic membrane

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees