JPH10503551A - How to process titanium parts - Google Patents

How to process titanium parts

Info

Publication number
JPH10503551A
JPH10503551A JP7527717A JP52771795A JPH10503551A JP H10503551 A JPH10503551 A JP H10503551A JP 7527717 A JP7527717 A JP 7527717A JP 52771795 A JP52771795 A JP 52771795A JP H10503551 A JPH10503551 A JP H10503551A
Authority
JP
Japan
Prior art keywords
titanium
nitrogen
atmosphere
component
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP7527717A
Other languages
Japanese (ja)
Inventor
ダグラス ダブリュー シニア フェイ
Original Assignee
スターム ラガー アンド カンパニー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スターム ラガー アンド カンパニー インコーポレイテッド filed Critical スターム ラガー アンド カンパニー インコーポレイテッド
Publication of JPH10503551A publication Critical patent/JPH10503551A/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1031Alloys containing non-metals starting from gaseous compounds or vapours of at least one of the constituents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

(57)【要約】 チタン含有部品の処理方法及び処理された部品が開示される。処理は、15〜25%の二酸化炭素、30〜50%の窒素、及び30〜50%の水素のガス雰囲気を有する炉室(12)に部品を入れる事を含む。雰囲気は、788℃(1450°F)〜1010℃(1850°F)の温度にあり、処理は、5〜60分で十分である。部品は、硬度、強度及び耐摩耗性が改善される。 (57) Abstract: A method of treating a titanium-containing component and a treated component are disclosed. The process involves placing the components in a furnace chamber (12) having a gas atmosphere of 15-25% carbon dioxide, 30-50% nitrogen, and 30-50% hydrogen. The atmosphere is at a temperature of 788 ° C. (1450 ° F.) to 1010 ° C. (1850 ° F.), and a treatment of 5 to 60 minutes is sufficient. The parts have improved hardness, strength and wear resistance.

Description

【発明の詳細な説明】 チタン部品の処理方法 発明の背景 金属を、水素及び窒素雰囲気で(米国特許第3,211,590号明細書)、或 いはアンモニア及びメタン雰囲気で(米国特許第3,891,473号明細書)熱 処理する事が提案されている。ヘリウムの中性雰囲気でのチタンの熱処理につい ても、提案されている(米国特許第4,098,623号明細書)。 従来の方法は、窒素、水素及び一酸化炭素の雰囲気でのチタン部品処理法につ いて開示していない。 低炭素鋼及び鉄は、20%の一酸化炭素、40%の水素及び40%の窒素及び ガス雰囲気で処理されている。焼付け抵抗性を改善する為の、プロパン−アルゴ ン混合物又はメタン−アルゴン混合物を使用するチタン合金材料の処理が報告さ れている(Transactions of the ASM Vol.46,pp.257,267-70(1953))。発明の要旨 概ね、本発明は、大気圧下の炉中で、窒素、メタノール及び任意に天然ガス又 はプロパンの混合物を造り、この混合物を、平衡に達せしめ、次いでチタン部品 を、炉中に導入し、最後に炉温度を、5分〜600分の時間で、788℃(14 50°F)〜1010℃(1850°F)の範囲に低下させる工程を有するチタ ン含有部品を処理する方法を含む。 その様に処理されたチタンの表面は、非常に硬く、且つ焼付け抵抗性を有する 事がこの方法の特徴である。 処理中に合金表面に形成される被膜が、主に、酸素窒化物(oxynitride)及び場 合によっては幾らかの炭素窒化物(carbonitride)の領域を持つ酸化チタンからな る事が特徴である。図面の簡単な説明 図1は、本発明方法を実施するのに使用される装置の部分的に区分された立面 図である。好適な実施態様の説明 図1において、装置10は、炉11、炉室ボックス12及びブロック15で支 持されたチタン部品バスケット14を含む。室12は、3つのガス導管入口16 、17及び18を有する。導管16は、メタノールタンク21からメタノールを 、シャフトを備えた多孔分散機(sparger)22へ供給する。導管17は、ガスタ ンク23から天然ガスを供給し、導管18は、窒素タンク24から窒素を供給す る。シャフト付きファン27は、室12でのガスの混合及び循環を行い、出口煙 突29(図示せず)は、室12から出口ガスを導く。センサー37は、室12の 温度、酸素及びガス成分を測定する。工程監視装置31は、導管16、17及び 18のバルブ33、34、35を調節し、室12での混合を調節する。 室ボックス12でのガスの組合せは、供給源として、ガス状窒素、メタノール 及びプロパン又は天然ガスを使用して、望ましい部品の冶金学的層特性の達成を 変化させる、15〜25%の二酸化炭素、30〜50%の水素及び30〜50% の窒素の雰囲気から成る炭化水素不活性ガス混合物を造り出す。ガス割合は容量 である。使用される工程管理装置は、含まれてもよいが、酸素の測定及び調節を 制限するものであってはならない。 本発明を使用する処理可能な部品は、100%チタン又は、以下のチタン合金 である。 合金A 成分 チタン 90 アルミニウム 6 バナジウム 4 合金B 成分 チタン 94.5 アルミニウム 3 バナジウム 2.5 合金C 成分 チタン 90 ジルコニウム 4 錫 2 モリブデン 6 アルミニウム 6 合金の割合は重量である。本発明で処理したTi−6A1−4V合金と、未処 理のものについての試験結果は次の通りである。 1.機械的性質 処理された試料の表面硬度は、実質的に同じ特性バランスを持つ未処理試料の 硬度より著しく高かった。 2.耐摩耗性 #10グリット酸化アルミニウム媒体を使用しての摩耗試験では、処理試料は 、未処理試料より摩耗が少なかった。 条件 %摩耗 処理 .3774 未処理 .4533 実施例 合金Aで作製された火器の引金を、窒素、メタノール及び天然ガスを、 窒素 40%(ガス) メタノール 58〜60%(液体)及び プロパン 0〜2%(ガス) の割合で導入し、炉中で、次のガス雰囲気とした炉中に入れた。 成分 二酸化炭素 15〜25 水素 30〜50 窒素 30〜50 ガス雰囲気を、大気圧又はその近くとした。処理雰囲気は、 窒素 二酸化炭素 水素 酸素 メタン及び 水 の複合混合物である。 この混合物は、炉中では平衡状態になければならない。メタンは、部品表面の 浸炭化を含む部品処理を遂行する為の水素及び二酸化炭素を形成する為に解離す る。 平衡は、炉中での混合物の反応の完結によって得られる。平衡反応式は、 である。平衡の決定は、処理された材料表面に移植又は分散された炭素水準を分 析する様な間接的手段で行われる。その他の方法としては、炉雰囲気中の一酸化 炭素の成分水準を仮定するアルゴリズムで炭素ポテンシャルを指示する、炉中に 配置された酸素測定器による炭素ポテンシャルの測定が挙げられる。炭素ポテン シャルは、一定の一酸化炭素含有量を仮定する酸素含有量の関数に略等しい。若 し一酸化炭素含有量が変化すれば、同じ酸素%が、異なる炭素ポテンシャルを生 成する。再度、アルゴリズムが、全ての変数を相関関係に置く為に使用される。 成分雰囲気の維持及び次いで調節パラメーターとしての酸素%の使用による炭素 の調節が非常に重要である。 本発明方法の調節原理は、炉中へのガス流量の割合の調節にある。DETAILED DESCRIPTION OF THE INVENTION Method of Treating Titanium Parts Background of the Invention Metals may be prepared in a hydrogen and nitrogen atmosphere (US Pat. No. 3,211,590) or in an ammonia and methane atmosphere (US Pat. No. 3,891). No., 473) heat treatment has been proposed. A heat treatment of titanium in a neutral atmosphere of helium has also been proposed (US Pat. No. 4,098,623). Conventional methods do not disclose a method for treating titanium components in an atmosphere of nitrogen, hydrogen and carbon monoxide. Low carbon steel and iron have been treated in a 20% carbon monoxide, 40% hydrogen and 40% nitrogen and gas atmosphere. The treatment of titanium alloy materials using propane-argon or methane-argon mixtures to improve bake resistance has been reported (Transactions of the ASM Vol. 46, pp. 257, 267-70 (1953)). ). SUMMARY OF THE INVENTION In general, the present invention provides for the formation of a mixture of nitrogen, methanol and optionally natural gas or propane in a furnace at atmospheric pressure, allowing the mixture to reach equilibrium, and then introducing titanium components into the furnace. And finally, reducing the furnace temperature to a range of 788 ° C (1450 ° F) to 1010 ° C (1850 ° F) in a time period of 5 minutes to 600 minutes, including a method of treating a titanium-containing component. . It is a feature of this method that the surface of the titanium thus treated is very hard and has bake resistance. The coating formed on the alloy surface during processing is characterized primarily by titanium oxide with oxynitride and possibly some carbonitride regions. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially sectioned elevation view of an apparatus used to carry out the method of the present invention. Description of the Preferred Embodiment In FIG. 1, the apparatus 10 includes a furnace 11, a furnace chamber box 12, and a titanium parts basket 14 supported by a block 15. Chamber 12 has three gas conduit inlets 16, 17 and 18. Conduit 16 supplies methanol from methanol tank 21 to a sparger 22 having a shaft. The conduit 17 supplies natural gas from a gas tank 23, and the conduit 18 supplies nitrogen from a nitrogen tank 24. A shafted fan 27 mixes and circulates gas in the chamber 12, and an outlet chimney 29 (not shown) directs outlet gas from the chamber 12. The sensor 37 measures the temperature of the chamber 12, oxygen and gas components. The process monitor 31 regulates the valves 33, 34, 35 of the conduits 16, 17 and 18 to regulate mixing in the chamber 12. The combination of gases in the chamber box 12 uses gaseous nitrogen, methanol and propane or natural gas as a source to alter the achievement of the metallurgical layer properties of the desired part from 15 to 25% carbon dioxide. To produce a hydrocarbon inert gas mixture consisting of an atmosphere of 30-50% hydrogen and 30-50% nitrogen. Gas ratios are volumes. The process control equipment used may be included but should not limit oxygen measurement and regulation. Processable components using the present invention are 100% titanium or the following titanium alloys. Alloy A component % titanium 90 aluminum 6 vanadium 4 Alloy B component % titanium 94.5 aluminum 3 vanadium 2.5 Alloy C component % titanium 90 zirconium 4 tin 2 molybdenum 6 aluminum 6 alloy ratio is weight. The test results for the Ti-6A1-4V alloy treated according to the present invention and the untreated Ti-6A1-4V alloy are as follows. 1. mechanical nature The surface hardness of the treated sample was significantly higher than that of the untreated sample with substantially the same balance of properties. 2. Abrasion Resistance In a wear test using # 10 grit aluminum oxide media, the treated sample had less wear than the untreated sample. Condition % wear treatment. 3774 unprocessed. 4533 Example Fire of a firearm made of alloy A was introduced with nitrogen, methanol and natural gas at a rate of 40% nitrogen (gas), 58-60% methanol (liquid) and 0-2% propane (gas). Then, it was placed in a furnace with the following gas atmosphere. Component % carbon dioxide 15-25 hydrogen 30-50 nitrogen 30-50 The gas atmosphere was at or near atmospheric pressure. The processing atmosphere is a complex mixture of nitrogen, carbon dioxide, hydrogen, oxygen, methane, and water. This mixture must be in equilibrium in the furnace. Methane dissociates to form hydrogen and carbon dioxide to perform component processing, including carburizing of the component surface. Equilibrium is obtained by the completion of the reaction of the mixture in the furnace. The equilibrium reaction equation is It is. The determination of the equilibrium is made by indirect means such as analyzing the level of carbon implanted or dispersed on the treated material surface. Another method is to measure the carbon potential with an oximeter located in the furnace, which indicates the carbon potential with an algorithm that assumes the level of carbon monoxide in the furnace atmosphere. The carbon potential is approximately equal to a function of the oxygen content assuming a constant carbon monoxide content. If the carbon monoxide content changes, the same percentage of oxygen produces a different carbon potential. Again, an algorithm is used to correlate all variables. Controlling the carbon by maintaining the component atmosphere and then using oxygen% as a control parameter is very important. The regulation principle of the method according to the invention consists in regulating the rate of gas flow into the furnace.

Claims (1)

【特許請求の範囲】 1.チタン含有部品の処理方法であって、 1)a)30〜50%の窒素、 b)30〜50%の水素、及び c)15〜25%の二酸化炭素 を含む成分ガスの混合物を、炉ボックス中に導入する工程、 2)空気を有する炉ボックス中に、チタン部品を導入する工程、 3)ボックスを、外側雰囲気から密閉する工程、 4)788℃(1450°F)〜1010℃(1850°F)で、前記ボック スの温度を監視し、調節する工程、 を含む方法。 2.成分ガスの導入を調節して、炉雰囲気が、容量で、 i)30〜50%の窒素、 ii)30〜50%の水素、及び iii)15〜25%の二酸化炭素 を含む様にする、請求項1記載の方法。 3.請求項1記載の方法で処理されたチタン含有部品。[Claims] 1. A method for treating a titanium-containing component, comprising:   1) a) 30-50% nitrogen,       b) 30-50% hydrogen, and       c) 15-25% carbon dioxide       Introducing a mixture of component gases containing   2) introducing titanium components into a furnace box having air;   3) sealing the box from the outside atmosphere;   4) At 788 ° C. (1450 ° F.) to 1010 ° C. (1850 ° F.), Monitoring and adjusting the temperature of the   A method that includes 2. By adjusting the introduction of component gases, the furnace atmosphere is         i) 30-50% nitrogen;         ii) 30-50% hydrogen, and        iii) 15-25% carbon dioxide   The method of claim 1, wherein the method comprises: 3. A titanium-containing component treated by the method of claim 1.
JP7527717A 1994-04-25 1995-04-18 How to process titanium parts Ceased JPH10503551A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23289094A 1994-04-25 1994-04-25
US232,890 1994-04-25
PCT/US1995/004763 WO1995029270A1 (en) 1994-04-25 1995-04-18 Method of treating titanium parts

Publications (1)

Publication Number Publication Date
JPH10503551A true JPH10503551A (en) 1998-03-31

Family

ID=22875015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7527717A Ceased JPH10503551A (en) 1994-04-25 1995-04-18 How to process titanium parts

Country Status (5)

Country Link
EP (1) EP0763143A4 (en)
JP (1) JPH10503551A (en)
KR (1) KR970702386A (en)
CN (1) CN1151192A (en)
WO (1) WO1995029270A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997014820A1 (en) * 1995-10-18 1997-04-24 Sturm, Ruger & Company, Inc. Method of treating titanium parts
WO2003074752A1 (en) * 2002-02-28 2003-09-12 Swagelok Company Case hardening of titanium
CN103589987B (en) * 2013-12-06 2016-01-20 龙工(上海)精工液压有限公司 A kind of thermal treatment process of ram pump transmission shaft
CN107779812A (en) * 2017-10-19 2018-03-09 宝鸡市金海源钛标准件制品有限公司 A kind of method of modifying on medical titanium alloy surface

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2446322A2 (en) * 1979-01-15 1980-08-08 Air Liquide METHOD FOR HEAT TREATMENT OF STEEL AND CONTROL OF SAID TREATMENT
JPS5662961A (en) * 1979-10-26 1981-05-29 Mitsubishi Metal Corp Surface coated sintered hard alloy member for cutting tool
FR2649123B1 (en) * 1989-06-30 1991-09-13 Air Liquide METHOD FOR HEAT TREATING METALS
US5039357A (en) * 1990-06-15 1991-08-13 Dynamic Metal Treating, Inc. Method for nitriding and nitrocarburizing rifle barrels in a fluidized bed furnace
US5298090A (en) * 1992-12-22 1994-03-29 Air Products And Chemicals, Inc. Atmospheres for heat treating non-ferrous metals and alloys

Also Published As

Publication number Publication date
EP0763143A1 (en) 1997-03-19
EP0763143A4 (en) 1997-06-11
CN1151192A (en) 1997-06-04
WO1995029270A1 (en) 1995-11-02
KR970702386A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
US4547228A (en) Surface treatment of metals
JP4977437B2 (en) Modified low temperature surface hardening method
JP2789258B2 (en) Thermochemical treatment method for steel workpieces
US4671496A (en) Fluidized bed apparatus for treating metals
WO2008083031A1 (en) Method of optimizing an oxygen free heat treating process
JP2017534760A (en) Method for heat treating long steel pipes
JPH06172960A (en) Vacuum carburization method
JPS641527B2 (en)
JPH10503551A (en) How to process titanium parts
JPH064906B2 (en) Carburizing of metal work
US20080149225A1 (en) Method for oxygen free carburization in atmospheric pressure furnaces
JP6503122B1 (en) Surface hardening treatment apparatus and surface hardening treatment method
KR100512187B1 (en) Control method of and Apparatus for atmosphere in heat treatment furnace
US9540721B2 (en) Method of carburizing
US3539165A (en) Apparatus for treating metallic and nonmetallic materials
US20080149227A1 (en) Method for oxygen free carburization in atmospheric pressure furnaces
WO1997014820A1 (en) Method of treating titanium parts
JPH11315362A (en) Vacuum carburizing method
CN1174241A (en) Method and apparatus for heat treatment including H2/H2O furnace region control
GB2044804A (en) Heat treatment method
JPH04107256A (en) Carburizing furnace
EP0024106B1 (en) Method of heat treating ferrous workpieces
GB2092183A (en) Method of controlling furnace atmospheres
GB2153855A (en) Stainless steel case hardening process
EP1966396A2 (en) Method for oxygen free carburization in atmospheric pressure furnaces

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A313 Final decision of rejection without a dissenting response from the applicant

Free format text: JAPANESE INTERMEDIATE CODE: A313

Effective date: 20041018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060207