JPH1048094A - Bending loss evaluation method and device for optical fiber for amplification - Google Patents

Bending loss evaluation method and device for optical fiber for amplification

Info

Publication number
JPH1048094A
JPH1048094A JP20817596A JP20817596A JPH1048094A JP H1048094 A JPH1048094 A JP H1048094A JP 20817596 A JP20817596 A JP 20817596A JP 20817596 A JP20817596 A JP 20817596A JP H1048094 A JPH1048094 A JP H1048094A
Authority
JP
Japan
Prior art keywords
light
optical fiber
bending loss
wavelength
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20817596A
Other languages
Japanese (ja)
Other versions
JP3351688B2 (en
Inventor
実 ▲吉▼田
Minoru Yoshida
Fumihiro Oonami
史博 大浪
Takahide Sudo
恭秀 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP20817596A priority Critical patent/JP3351688B2/en
Publication of JPH1048094A publication Critical patent/JPH1048094A/en
Application granted granted Critical
Publication of JP3351688B2 publication Critical patent/JP3351688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily evaluate the bending loss, by selecting a prescribed number of light of wavelengths before and after the signal light, simultaneously emitting the light to an optical fiber for amplification, and evaluating the extent of loss on the basis of the power difference of the light after passing through the optical fiber. SOLUTION: In the evaluation of the extent of the bending loss, the light sources L1 , L2 are simultaneously lighted, the light from the light source L1 is chopped by a light chopper Cp1 , to be guided to a wave synthesizer WDM. The light from the light source L2 is attenuated by an optical attenuator ATT to the light-intensity almost agreed with that from the light source L1 , and chopped by a light chopper CP2 , to be guided to the wave synthesizer WDM. The light of which the wavelengths are synthetized by the wave synthesizer WDM, is simultaneously entered into an optical fiber for amplification DF, and the light of both wavelengths having passed through the optical fiber, is entered into a power meter PM. The power meter PM measures the power of the light of each wavelength, to determine the difference therebetween. The power difference is almost zero, when the bending loss is not generated, but the power difference is increased, when the loss is generated. Accordingly the extent of the bending loss can be evaluated on the basis of the power difference.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘導放出効果を利
用して信号光を直接に増幅する増幅用光ファイバにおけ
る曲げ損失の評価方法、およびその装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a method and apparatus for evaluating a bending loss in an amplifying optical fiber for directly amplifying a signal light using a stimulated emission effect.

【0002】[0002]

【従来の技術】一般に、光増幅器には、その増幅素子と
して誘導放出効果を利用して信号光を直接に増幅する増
幅用光ファイバを使用したものがある。
2. Description of the Related Art In general, some optical amplifiers use an amplifying optical fiber for directly amplifying signal light by utilizing the stimulated emission effect as an amplifying element.

【0003】すなわち、この増幅用光ファイバは、たと
えばEr,Nd等の希土類元素をコア中にドープしたもの
で、増幅用光ファイバが励起光によってポンピングされ
て反転分布状態にあるところに信号光が入射されると、
これが増幅用光ファイバ中を伝搬する間に誘導放出効果
によって直接に増幅される。
That is, this amplification optical fiber is one in which a core is doped with a rare earth element such as Er, Nd, etc., and the signal light is pumped by the pumping light so that the signal light is in an inverted distribution state. When it is incident,
This is directly amplified by the stimulated emission effect while propagating through the amplification optical fiber.

【0004】ところで、このような増幅用光ファイバを
用いて光増幅器を構成する場合、所要の利得を得るため
には、増幅用光ファイバとしてある程度の条長(数m〜数
十m)が必要となる。しかも、その場合に装置を徒に大型
化しないためには、増幅用光ファイバをリールなどに巻
き付けてケース内にコンパクトに収納する等の必要性が
生じる。
When an optical amplifier is constructed using such an amplification optical fiber, a certain length (several meters to several tens of meters) is required for the amplification optical fiber in order to obtain a required gain. Becomes Moreover, in this case, in order to prevent the apparatus from being enlarged unnecessarily, it is necessary to wind the amplification optical fiber around a reel or the like and store it compactly in a case.

【0005】ここで、増幅用光ファイバをリールに巻き
付ける際に、光ファイバが重なり合ったりして不均一な
側圧が加わった場合には、いわゆるマイクロベンディン
グ等に起因した損失が発生して所望の増幅特性が得られ
ないおそれがある。したがって、製品出荷前には、増幅
用光ファイバをリールに巻き付けた状態で過剰な損失が
生じていないかを事前に評価することが必要となる。
[0005] Here, when the amplification optical fibers are wound around a reel, if the optical fibers are overlapped or uneven side pressure is applied, a loss due to so-called microbending or the like occurs, and the desired amplification occurs. Characteristics may not be obtained. Therefore, before shipping the product, it is necessary to evaluate in advance whether an excessive loss has occurred while the amplification optical fiber is wound on the reel.

【0006】増幅用光ファイバの損失の評価方法とし
て、従来技術では、いわゆるカットバック法が適用され
ている。
As a method for evaluating the loss of an amplification optical fiber, a so-called cutback method is applied in the prior art.

【0007】このカットバック法は、図3(a)に示すよ
うに、まず、リール巻等された増幅用光ファイバDFの
一端に結合用光ファイバCF0を融着等によって接続す
るとともに、それらの光ファイバDF,CFの前後に光
源L0とパワーメータPM0とをそれぞれ配置する。そし
て、光源L0からの光を結合用光ファイバCFを介して
増幅用光ファイバDF内に入射させ、その出射端からの
光のパワーP1をパワーメータPM0で測定する。
[0007] The cut-back method, as shown in FIG. 3 (a), first, the coupling optical fiber CF 0 at one end of the amplification optical fiber DF which is the reel winding like connected by fusion or the like, they optical fiber DF, a light source L 0 and a power meter PM 0 before and after the CF is arranged. Then, the light from the light source L 0 through the coupling optical fibers CF is incident on the amplifying optical fiber DF, measuring the power P 1 of the light from the exit end with a power meter PM 0.

【0008】次に、同図(b)に示すように、増幅用光フ
ァイバDFの結合用光ファイバCFとの接続側の一端を
切断して増幅用光ファイバDFを取り除くとともに、そ
の切断端面に対向するようにパワーメータPM0を配置
する。そして、光源L0からの光を結合用光ファイバC
Fを介してパワーメータPM0に入射して、そのパワー
2を測定する。
Next, as shown in FIG. 1B, one end of the connection side of the amplification optical fiber DF with the coupling optical fiber CF is cut to remove the amplification optical fiber DF, and the cut end face is cut. placing the power meter PM 0 to face. The light coupling optical fiber C from a light source L 0
The light enters the power meter PM 0 via F, and its power P 2 is measured.

【0009】こうして得られた両パワーP1,P2の差Δ
P(=P2−P1)から増幅用光ファイバDFの損失を求め
る。カットバック法を用いる理由は被測定ファイバの光
入射端の光源との結合損失が明らかでないためである。
The difference Δ between the two powers P 1 and P 2 thus obtained is
The loss of the amplification optical fiber DF is determined from P (= P 2 −P 1 ). The reason for using the cutback method is that the coupling loss between the light incident end of the measured fiber and the light source is not clear.

【0010】[0010]

【発明が解決しようとする課題】しかし、上記のような
従来のカットバック法を用いた損失の評価方法にあって
は、損失を評価するためのパワー差ΔPを求める上で、
増幅用光ファイバDFを一旦切断してから、その切断端
面を研磨するなどして作り直すとともに、その光出射端
とパワーメータPM0との光軸が一致するように位置合
わせを行う等の作業が必要となり、合計2回の損失評価
のための測定ならびにその前工程に手間がかかってい
る。また、ファイバの分光評価を行おうとする場合、分
光器の波長掃引時間が2倍必要となる。
However, in the loss evaluation method using the conventional cutback method as described above, in determining the power difference ΔP for evaluating the loss,
The amplifying optical fiber DF after once cut, together with the reshaping such as by polishing the cut end surface, the work such as alignment is performed so that the optical axis coincides with the light emitting end and a power meter PM 0 This necessitates a total of two measurements for the loss evaluation and a troublesome pre-process. Further, when spectral evaluation of the fiber is to be performed, the wavelength sweeping time of the spectroscope needs to be doubled.

【0011】本発明は、上記の問題点を解決するために
なされたもので、増幅用光ファイバのマイクロベンディ
ング等に起因する曲げ損失の程度を従来よりも容易に評
価できるようにすることを課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to make it possible to more easily evaluate the degree of bending loss caused by microbending or the like of an amplification optical fiber as compared with the related art. And

【0012】[0012]

【課題を解決するための手段】増幅用光ファイバに曲げ
を加えて曲げ損失を与えた場合には、長波長側の光が損
失増加を顕著に示すことが知られている(たとえば、D.
Marcuse,"Curvature Loss Formula for Optical Fiber
s", J.Opt.Soc.Am., 66,p.216など参照)。しかも、増幅
用光ファイバは、ドープされている元素に関して、吸収
の大きい波長域が離散的に存在し、その間では吸収が少
ない波長域が存在することも知られている(たとえば、
吉田他「希土類元素ドープファイバとその応用」、電子
情報通信学会技術研究報告OQE87-12(1987)参照)。
It is known that, when a bending loss is given to an amplification optical fiber by bending the optical fiber, light on the long wavelength side shows a remarkable increase in loss (for example, D.A.
Marcuse, "Curvature Loss Formula for Optical Fiber
s ", J. Opt. Soc. Am., 66, p. 216) In addition, the amplifying optical fiber has a wavelength region where absorption is large for a doped element in a discrete manner. It is also known that there are wavelength bands with low absorption (for example,
Yoshida et al., "Rare-earth element doped fibers and their applications", IEICE Technical Report OQE87-12 (1987)).

【0013】本発明は、このような事実に着目してなさ
れたもので、上記の課題を解決するため、請求項1記載
の発明に係る増幅用光ファイバの曲げ損失評価方法で
は、誘導放出効果を利用して信号光を直接に増幅する増
幅用光ファイバについて、信号光の波長を挟むように、
その前後の光吸収の少ない波長域に含まれる光を2つ選
定し、選定したこれらの各光を増幅用光ファイバ内に同
時に入射して、増幅用光ファイバを通過した各光のパワ
ーをそれぞれ測定し、両パワーの差から曲げ損失の程度
を評価するようにしている。
The present invention has been made in view of such a fact. In order to solve the above-mentioned problems, a method for evaluating a bending loss of an amplification optical fiber according to the first aspect of the present invention uses a stimulated emission effect. For the amplification optical fiber that directly amplifies the signal light by using, so as to sandwich the wavelength of the signal light,
Two lights included in the wavelength region where the light absorption before and after the light is small are selected, each of the selected lights is simultaneously input into the amplification optical fiber, and the power of each light passing through the amplification optical fiber is respectively determined. Measurement is made and the degree of bending loss is evaluated from the difference between the two powers.

【0014】また、請求項2記載の発明に係る増幅用光
ファイバの曲げ損失評価装置は、信号光の波長を挟むよ
うに、その前後の光吸収の少ない波長域に含まれる光を
発生する2つの光源と、これらの各光源からの光を前記
増幅用光ファイバに同時に入射するための入射手段と、
増幅用光ファイバを通過した各光のパワーをそれぞれ測
定して、両パワーの差から曲げ損失の程度を求める測光
手段とを備えている。
Further, the apparatus for evaluating bending loss of an optical fiber for amplification according to the second aspect of the present invention generates light included in a wavelength range where light absorption is small before and after the signal light so as to sandwich the wavelength of the signal light. Two light sources, and an incident unit for simultaneously inputting light from each of these light sources to the amplification optical fiber,
Photometric means is provided for measuring the power of each light passing through the amplification optical fiber and obtaining the degree of bending loss from the difference between the two powers.

【0015】[0015]

【発明の実施の形態】この実施形態では、Er(エルビウ
ム)をコア中にドープした石英系の増幅用光ファイバの
損失を評価する場合について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In this embodiment, a case will be described in which the loss of a silica-based amplification optical fiber doped with Er (erbium) in a core is evaluated.

【0016】まず、本発明方法の原理について解説す
る。
First, the principle of the method of the present invention will be described.

【0017】図1は、本例のErをドープした増幅用光
ファイバについて、分光損失特性を調べた結果である。
FIG. 1 shows the results of investigation of the spectral loss characteristics of the Er-doped amplification optical fiber of the present embodiment.

【0018】すなわち、白色光を分光して波長走査を行
い、各波長の単色光を増幅用光ファイバに入射した場合
の損失を調べた結果が図1であるが、図1から分かるよ
うに、0.98μmと1.55μmの各波長を中心として、
Er固有の吸収が大きい箇所が存在する。そして、増幅
用光ファイバにより増幅されるべき信号光としては、通
常、石英系の最低損失が得られる1.55μm帯の光が使
用されるので、吸収の大きな波長帯と重なっている。ま
た、吸収の大きな波長域の間には、吸収が少ない波長域
が存在する。すなわち、信号光の波長である1.55μm
を中心としてみると、その短波長側では1.07〜1.2
1μm、長波長側では1.72μm以上である。特に、短
波長側では、1.19μm付近で吸収が極めて少なくなっ
ている。
That is, FIG. 1 shows the result of examining the loss when white light is spectrally scanned and wavelength scanning is performed, and monochromatic light of each wavelength is incident on the amplification optical fiber. As can be seen from FIG. Centering around each wavelength of 0.98 μm and 1.55 μm
There are places where the absorption specific to Er is large. As the signal light to be amplified by the amplifying optical fiber, light in the 1.55 μm band where a silica-based minimum loss is obtained is usually used, and thus overlaps with a wavelength band having a large absorption. In addition, there is a wavelength region where absorption is small between wavelength regions where absorption is large. That is, 1.55 μm which is the wavelength of the signal light
Focusing on the wavelength, 1.07 to 1.2 on the short wavelength side.
1 μm, and 1.72 μm or more on the long wavelength side. In particular, on the short wavelength side, absorption is extremely low around 1.19 μm.

【0019】一方、図1に示すような分光損失特性を有
する増幅用光ファイバについて、意図的に曲げを加えて
損失を発生させると、短波長側よりも長波長側の光が損
失増加を顕著に示す。
On the other hand, in an amplification optical fiber having a spectral loss characteristic as shown in FIG. 1, if a loss is generated by intentionally bending the light, light on the long wavelength side rather than on the short wavelength side causes a remarkable increase in loss. Shown in

【0020】よって、増幅用光ファイバへ入射する光と
して、信号光の波長λ0=1.55μmよりも短波長側で
は吸収の少ない1.07〜1.21μm(好ましくは1.1
9μm)、長波長側では1.72μm以上(好ましくは、光
源や光検出器の感度等を考慮して1.75μm)の各波長
λ1,λ2の光を選定し、選定したこれらの各波長λ1
λ2の光を増幅用光ファイバ内に同時に入射して、増幅
用光ファイバを通過した各波長λ1,λ2の光のパワーP
1,P2をそれぞれ測定して、両パワーP1,P2の差ΔP
(=P1−P2)を求めれば、マイクロベンディング等に起
因する損失増加があれば、ΔPも同時に大きくなってい
るので、これから曲げ損失の程度を評価することができ
る。
Therefore, as light incident on the amplifying optical fiber, 1.07 to 1.21 μm (preferably 1.1) having less absorption on the shorter wavelength side than the signal light wavelength λ 0 = 1.55 μm.
9 .mu.m), or 1.72μm on the long wavelength side (preferably, the wavelength lambda 1 of 1.75 [mu] m) in consideration of the sensitivity or the like of the light source or the detector, selects the lambda 2 light, each of these were selected Wavelength λ 1 ,
λ 2 light is simultaneously incident on the amplification optical fiber, and the power P of the light of each wavelength λ 1 and λ 2 that has passed through the amplification optical fiber.
1 and P 2 are measured, and the difference ΔP between the two powers P 1 and P 2 is measured.
When (= P 1 −P 2 ) is obtained, if there is an increase in loss due to microbending or the like, ΔP also increases at the same time, and the degree of bending loss can be evaluated from this.

【0021】図2は本発明方法を実施するための曲げ損
失評価装置を示す構成図である。
FIG. 2 is a block diagram showing a bending loss evaluation apparatus for carrying out the method of the present invention.

【0022】同図において、DFはErをコア中にドー
プした石英系の増幅用光ファイバ、L1は信号光の波長
λ0(=1.55μm)よりも短波長側にある波長λ1(=1.
19μm)の光を発生する第1光源、L2は信号光の波長
λ0よりも長波長側にある波長λ2(=1.75μm)の光を
発生する第2光源で、両光源L1,L2としては、たとえ
ばインコヒーレントな安定した光を発生するSLD(ス
ーパールミネッセントフォトダイオード)が適用され
る。
[0022] In the figure, DF wavelength lambda 1 in the amplification optical fiber of a silica-based doped with Er in the core, L 1 is than the wavelength lambda 0 of the signal light (= 1.55 .mu.m) to the short wavelength side ( = 1.
A first light source L 2 for generating light of 19 μm) is a second light source for generating light of wavelength λ 2 (= 1.75 μm) which is longer than the wavelength λ 0 of the signal light, and both light sources L 1 as the L 2, SLD (super luminescent photodiode) is applied to generate e.g. incoherent steady light.

【0023】ATTは両光源L1,L2からの光の増幅用
光ファイバDFへの入射強度が等しくなるように調整す
るための光減衰器で、このような光減衰器ATTを設け
れば測定が一層容易になるが、これを省略することもで
きる。
The ATT is an optical attenuator for adjusting the light from the two light sources L 1 and L 2 so as to make the incident intensity on the amplifying optical fiber DF equal. If such an optical attenuator ATT is provided. The measurement is easier, but can be omitted.

【0024】CP1,CP2は各光源L1,L2からの光を
互いに異なる周波数でもってチョッピングするための光
チョッパで、本例では、第1光源L1からの光に対する
チョッピング周波数f1は520Hz、第2光源L2からの
光に対するチョッピング周波数f2は270Hzにそれぞ
れ設定されている。チョッピングは発光素子そのものを
直接変調する方法でも構わない。また、チョッピング周
波数は、この周波数に限らなくてもよい。
[0024] CP 1, CP 2 in the optical chopper for chopping with at different frequencies of light from the light sources L 1, L 2, in this embodiment, the chopping frequency f 1 with respect to the light from the first light source L 1 is 520Hz, the chopping frequency f 2 with respect to light from the second light source L 2 are respectively set to 270 Hz. Chopping may be a method of directly modulating the light emitting element itself. Further, the chopping frequency is not limited to this frequency.

【0025】WDMは各光源L1,L2からの光を増幅用
光ファイバDFに同時に入射するための入射手段として
の合波器、CFは合波器WDMからの光を増幅用光ファ
イバDFに導くための結合用光ファイバである。
WDM is a multiplexer as an incidence means for simultaneously inputting the light from each of the light sources L 1 and L 2 to the amplification optical fiber DF, and CF is the light from the multiplexer WDM. Optical fiber for coupling.

【0026】また、PMは増幅用光ファイバDFを通過
した各光源L1,L2からの光のパワーを測定する測光手
段としてのパワーメータであり、このパワーメータPM
は、フォトマルチプライヤやフォトダイオード等の受光
素子、ロックイン増幅器、レコーダ等(いずれも図示せ
ず)を備えて構成されている。
Reference numeral PM denotes a power meter as photometric means for measuring the power of light from each of the light sources L 1 and L 2 having passed through the amplification optical fiber DF.
Is configured to include a light receiving element such as a photomultiplier or a photodiode, a lock-in amplifier, a recorder, and the like (all not shown).

【0027】この構成において、増幅用光ファイバDF
の曲げ損失の程度を評価するに際しては、各光源L1
2を同時に点灯する。そして、第1光源L1からの波長
λ1(=1.19μm)の光は、光チョッパCP1によってチ
ョッピング周波数f1=520Hzにチョッピングし、こ
れを合波器WDMに導く。一方、第2光源L2からの波
長λ2(=1.75μm)の光は、光減衰器ATTで第1光
源L1からの光強度に略一致するように減衰し、さら
に、光チョッパCP2によってチョッピング周波数f2=
70Hzにチョッピングし、これを合波器WDMに導
く。よって、合波器WDMで合波された両波長λ1,λ2
の光は、結合用光ファイバCFを介して増幅用光ファイ
バDFに同時に入射される。
In this configuration, the amplification optical fiber DF
When evaluating the degree of bending loss of each light source L 1 ,
At the same time to light the L 2. The light of the wavelength λ 1 (= 1.19 μm) from the first light source L 1 is chopped by the optical chopper CP 1 to a chopping frequency f 1 = 520 Hz, and is guided to the multiplexer WDM. On the other hand, the light of the wavelength λ 2 (= 1.75 μm) from the second light source L 2 is attenuated by the optical attenuator ATT so as to substantially match the light intensity from the first light source L 1 , and furthermore, the light chopper CP 2 by chopping frequency f 2 = 2
It is chopped to 70 Hz and guided to the multiplexer WDM. Therefore, both wavelengths λ 1 and λ 2 multiplexed by the multiplexer WDM
Are simultaneously incident on the amplification optical fiber DF via the coupling optical fiber CF.

【0028】増幅用光ファイバDFを通過した各波長λ
1,λ2の光はパワーメータPMに入射されるので、パワ
ーメータPMで各波長λ1,λ2の光のパワーP1,P2
それぞれ測定する。そして、両パワーの差ΔP(=P1
2)を求める。
Each wavelength λ that has passed through the amplification optical fiber DF
Since the lights 1 and λ 2 are incident on the power meter PM, the powers P 1 and P 2 of the lights having the wavelengths λ 1 and λ 2 are measured by the power meter PM. Then, the difference ΔP (= P 1 −) between the two powers
P 2 ) is obtained.

【0029】ここで、増幅用光ファイバDFにマイクロ
ベンディング等による曲げ損失が殆ど生じていない場合
には、図1に示した分光損失特性から分かるように、両
パワーの差ΔPは略零である。これに対して、曲げ損失
が生じている場合には、短波長側の波長λ1の光の損失
は殆ど増加しないのに対して、長波長側の波長λ2の光
の損失が増加するためにそのパワーP2が減少し、その
結果、ΔPが大きくなる。よって、ΔPから曲げ損失の
程度を評価することができる。曲げ損失の生じていない
状態におけるΔPを予め評価しておけば、より正確かつ
感度良く曲げ損失の発生を検出できる。
Here, when bending loss due to microbending or the like hardly occurs in the amplification optical fiber DF, the difference ΔP between the two powers is substantially zero, as can be seen from the spectral loss characteristics shown in FIG. . On the other hand, when bending loss occurs, the loss of light of wavelength λ 1 on the short wavelength side increases little while the loss of light of wavelength λ 2 on the long wavelength side increases. its power P 2 is reduced, resulting, [Delta] P becomes large. Therefore, the degree of bending loss can be evaluated from ΔP. By pre-evaluating ΔP in a state where no bending loss occurs, it is possible to detect the occurrence of the bending loss more accurately and with high sensitivity.

【0030】なお、上記の実施形態では、Erをコア中
にドープした石英系の増幅用光ファイバDFの損失を評
価する場合について説明したが、これに限定されるもの
ではなく、Nd,Yb等を単独または共にドープした増幅
用光ファイバについても本発明は適用可能である。
In the above embodiment, the case of evaluating the loss of the silica-based amplification optical fiber DF doped with Er in the core has been described. However, the present invention is not limited to this, and Nd, Yb, etc. The present invention can also be applied to an amplification optical fiber doped with or alone.

【0031】また、上記の実施形態のように、信号光の
波長λ0を挟む前後の光吸収の少ない波長域の光(波長:
λ1,λ2)を用いて曲げ損失の程度を評価するのが測定
系のドリフトの影響等を除けて精度良い結果が得られる
ので好ましいが、曲げ損失は主に長波長側で起こるので
あるから、信号光の波長λ0よりも長波長側の光(波長:
λ2)のみのパワーをパワーメータで測定することで、損
失の程度を評価することも可能である。
Further, as in the above embodiment, the low wavelength region of light absorption before and after sandwiching the wavelength lambda 0 of the signal light (wavelength:
It is preferable to evaluate the degree of bending loss using λ 1 , λ 2 ) because accurate results can be obtained except for the influence of drift of the measurement system, etc., but bending loss mainly occurs on the long wavelength side From the light on the longer wavelength side than the wavelength λ 0 of the signal light (wavelength:
By measuring only the power of λ 2 ) with a power meter, the degree of loss can be evaluated.

【0032】さらに、この実施形態では、パワーメータ
PM側で同時に2波長λ1,λ2の光のパワーを同時に調
べることができるように、光チョッパCP1,CP2を設
けたが、この光チョッパCP1,CP2の代わりに光シャ
ッタを設けるなどして、時分割で各波長λ1,λ2の光の
パワーを測定することもできる。
Furthermore, in this embodiment, the optical choppers CP 1 and CP 2 are provided so that the power of two wavelengths λ 1 and λ 2 can be simultaneously checked on the power meter PM side. By providing an optical shutter instead of the choppers CP 1 and CP 2 , the power of the light of each wavelength λ 1 and λ 2 can be measured in a time-division manner.

【0033】[0033]

【発明の効果】本発明によれば、従来のカットバック法
のように、増幅用光ファイバの損失を測定するために、
増幅用光ファイバを一旦切断してから再度測定を行うこ
とが不要となるため、測定の手間が大幅に軽減される。
したがって、増幅用光ファイバのマイクロベンディング
等に起因する曲げ損失の程度を従来よりも容易に評価で
きるようになる。
According to the present invention, in order to measure the loss of the amplification optical fiber as in the conventional cutback method,
Since it is not necessary to cut the amplification optical fiber once and then perform the measurement again, the labor of the measurement is greatly reduced.
Therefore, the degree of bending loss due to micro-bending of the amplification optical fiber can be more easily evaluated than before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Erをドープした増幅用光ファイバの分光損失
特性を示す図である。
FIG. 1 is a diagram showing a spectral loss characteristic of an amplification optical fiber doped with Er.

【図2】本発明の実施形態に係る増幅用光ファイバの曲
げ損失評価装置の構成図である。
FIG. 2 is a configuration diagram of an apparatus for evaluating bending loss of an amplification optical fiber according to an embodiment of the present invention.

【図3】従来のカットバック法による増幅用光ファイバ
の損失を測定手順を説明するための図である。
FIG. 3 is a diagram for explaining a procedure for measuring a loss of an amplification optical fiber by a conventional cutback method.

【符号の説明】[Explanation of symbols]

DF…増幅用光ファイバ、L1,L2…光源、ATT…光
減衰器、CP1,CP2…光チョッパ、WDM…合波器
(入射手段)、PM…パワーメータ(測光手段)。
DF ... amplification optical fiber, L 1, L 2 ... light source, ATT ... optical attenuator, CP 1, CP 2 ... optical chopper, WDM ... multiplexer
(Incident means), PM ... power meter (photometric means).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 誘導放出効果を利用して信号光を直接に
増幅する増幅用光ファイバについて、前記信号光の波長
を挟むように、その前後の光吸収の少ない波長域に含ま
れる光を2つ選定し、選定したこれらの各光を増幅用光
ファイバ内に同時に入射して、増幅用光ファイバを通過
した各光のパワーをそれぞれ測定し、両パワーの差から
曲げ損失の程度を評価することを特徴とする増幅用光フ
ァイバの曲げ損失評価方法。
1. An amplifying optical fiber for directly amplifying a signal light by utilizing the stimulated emission effect, wherein light included in a wavelength range where light absorption before and after the signal light is small is sandwiched so as to sandwich the wavelength of the signal light. One of these is selected, and each of these lights is simultaneously incident on the amplification optical fiber, and the power of each light passing through the amplification optical fiber is measured, and the degree of bending loss is evaluated from the difference between the two powers. A method for evaluating bending loss of an amplification optical fiber, characterized in that:
【請求項2】 誘導放出効果を利用して信号光を直接に
増幅する増幅用光ファイバの曲げ損失を評価するための
装置であって、 前記信号光の波長を挟むように、その前後の光吸収の少
ない波長域に含まれる光を発生する2つの光源と、 これらの各光源からの光を前記増幅用光ファイバに同時
に入射するための入射手段と、 増幅用光ファイバを通過した各光のパワーをそれぞれ測
定して、両パワーの差から曲げ損失の程度を求める測光
手段と、 を備えることを特徴とする増幅用光ファイバの曲げ損失
評価装置。
2. An apparatus for evaluating bending loss of an amplifying optical fiber for directly amplifying a signal light by using a stimulated emission effect, wherein the light before and after the signal light is interposed so as to sandwich the wavelength of the signal light. Two light sources that generate light contained in a wavelength region with little absorption; an incident means for simultaneously inputting light from each of these light sources to the amplification optical fiber; and a light source for each light that has passed through the amplification optical fiber. An optical fiber bending loss evaluation device, comprising: photometric means for measuring powers and obtaining a degree of bending loss from a difference between the two powers.
JP20817596A 1996-08-07 1996-08-07 Method and apparatus for evaluating bending loss of optical fiber for amplification Expired - Fee Related JP3351688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20817596A JP3351688B2 (en) 1996-08-07 1996-08-07 Method and apparatus for evaluating bending loss of optical fiber for amplification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20817596A JP3351688B2 (en) 1996-08-07 1996-08-07 Method and apparatus for evaluating bending loss of optical fiber for amplification

Publications (2)

Publication Number Publication Date
JPH1048094A true JPH1048094A (en) 1998-02-20
JP3351688B2 JP3351688B2 (en) 2002-12-03

Family

ID=16551910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20817596A Expired - Fee Related JP3351688B2 (en) 1996-08-07 1996-08-07 Method and apparatus for evaluating bending loss of optical fiber for amplification

Country Status (1)

Country Link
JP (1) JP3351688B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838190A1 (en) * 2002-04-08 2003-10-10 Cit Alcatel DEVICE FOR DYNAMIC MEASUREMENT AND / OR CONTROL OF POWER LOSS IN AN OPTICAL TRANSMISSION LINE WITH SUPERVISORY CHANNEL, AND ASSOCIATED PROCESS
WO2013145032A1 (en) * 2012-03-30 2013-10-03 ソフトバンクテレコム株式会社 Measurement device, measurement method and computer-readable medium
CN104535299A (en) * 2014-12-16 2015-04-22 深圳市共进电子股份有限公司 Line loss detecting method and device
CN104913906A (en) * 2015-05-29 2015-09-16 成都亨通光通信有限公司 Optical fiber bending loss determination system
CN105222993A (en) * 2015-09-24 2016-01-06 哈尔滨工业大学 A kind of assay method of large core fiber Transmission loss
CN115266044A (en) * 2022-09-23 2022-11-01 国网湖北省电力有限公司 Photoelectric test fixture and early warning method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838190A1 (en) * 2002-04-08 2003-10-10 Cit Alcatel DEVICE FOR DYNAMIC MEASUREMENT AND / OR CONTROL OF POWER LOSS IN AN OPTICAL TRANSMISSION LINE WITH SUPERVISORY CHANNEL, AND ASSOCIATED PROCESS
US6891607B2 (en) 2002-04-08 2005-05-10 Alcatel Device for measuring and dynamically compensating variations in power loss in an optical transmission line with a supervisory channel, and an associated method
CN100421317C (en) * 2002-04-08 2008-09-24 阿尔卡特公司 Device for measuring and dynamically compensating variations in power loss in an optical transmission line with a supervisory channel, and an associated method
WO2013145032A1 (en) * 2012-03-30 2013-10-03 ソフトバンクテレコム株式会社 Measurement device, measurement method and computer-readable medium
CN104535299A (en) * 2014-12-16 2015-04-22 深圳市共进电子股份有限公司 Line loss detecting method and device
CN104913906A (en) * 2015-05-29 2015-09-16 成都亨通光通信有限公司 Optical fiber bending loss determination system
CN105222993A (en) * 2015-09-24 2016-01-06 哈尔滨工业大学 A kind of assay method of large core fiber Transmission loss
CN115266044A (en) * 2022-09-23 2022-11-01 国网湖北省电力有限公司 Photoelectric test fixture and early warning method thereof
CN115266044B (en) * 2022-09-23 2022-12-23 国网湖北省电力有限公司 Photoelectric test fixture and early warning method thereof

Also Published As

Publication number Publication date
JP3351688B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
US6618152B2 (en) Optical coherence tomography apparatus using optical-waveguide structure which reduces pulse width of low-coherence light
US7599047B2 (en) Method and system for simultaneous measurement of strain and temperature
US6525308B1 (en) Apparatus and method for wavelength detection with fiber bragg grating sensors
US4758087A (en) Fiber optic transducer
KR20000008448A (en) Optical amplifier having active controlled wave profit and optical fiber source having changable output spectrum
EP0586103B1 (en) Measurement of a parameter of an optical amplifier
EP2110651A1 (en) Method and system for simultaneous measurement of strain and temperature
ES2207417B1 (en) ANALYZING DEVICE FOR OPTICAL SPECTRUM BY BRILLOUIN DIFFUSION AND ASSOCIATED MEASUREMENT PROCEDURE.
JP3351688B2 (en) Method and apparatus for evaluating bending loss of optical fiber for amplification
US7206259B2 (en) Ultrasound sensor and ultrasound measurement device
US9270080B1 (en) Methods and apparatus pertaining to the use and generation of broadband light
US6819473B2 (en) Optical fiber chromatic dispersion distribution measuring apparatus and measuring method
JP3340849B2 (en) Optical time series reflection measurement method and apparatus
US6587607B2 (en) Optical fiber chromatic dispersion distribution measuring apparatus and measuring method
JP4485236B2 (en) FBG temperature or strain measurement device using ASE light source and Raman amplification
Tanaka et al. Scanless Brillouin gain spectrum measurement based on multi-heterodyne detection
JP2002509612A (en) Wavelength measurement system
CA2629446C (en) Method and system for simultaneous measurement of strain and temperature
JPH08334436A (en) Wavelength dispersion measuring method for optical fiber
JP2713672B2 (en) Optical amplifier noise figure measuring device
JP2002031597A (en) Optical tomographic device
TW499577B (en) Coiled optical fiber wavelength - power converter
JPS6147534A (en) Method and apparatus for measuring light loss characteristic of optical fiber
JPH06167421A (en) Measurement of brillouin gain spectrum of optical fiber
JPH034856B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees