JPH1047930A - Shape measuring method using interferometer - Google Patents

Shape measuring method using interferometer

Info

Publication number
JPH1047930A
JPH1047930A JP8205904A JP20590496A JPH1047930A JP H1047930 A JPH1047930 A JP H1047930A JP 8205904 A JP8205904 A JP 8205904A JP 20590496 A JP20590496 A JP 20590496A JP H1047930 A JPH1047930 A JP H1047930A
Authority
JP
Japan
Prior art keywords
measured
measuring
reflectance
interferometer
wavefront aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8205904A
Other languages
Japanese (ja)
Inventor
Takahiro Yamamoto
貴広 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8205904A priority Critical patent/JPH1047930A/en
Publication of JPH1047930A publication Critical patent/JPH1047930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable relative measurement of the shape of a surface to be measured with high accuracy even when the surface of a reflexion origin having reflectivity which is largely different from that of the surface to be measured is used by adjusting the contrast of interference fringes by inserting a damping plate between a reference surface and the surface to be measured and, at the same time, subtracting the transmitted wavefront aberration of the damping plate from measured data. SOLUTION: The interference between the surface 5a to be measured of an object 5 and the surface of a reflexion origin having reflectivity which is different from that of the surface 5a is measured by placing the surface of the reflexion origin at the position of the surface 5a and the error data of the Fizeau surface (reference surface) 1a of an obtained Fizeau flat 1 are subtracted from measured data. At the time of measuring the surface 5a or the surface of the reflexion origin having high reflectivity, a damping plate 3 is inserted between the surface 5a and the surface of the reflexion origin for damping the reflected light from the surface 5a and, at the time of measuring the surface 5a having low reflectivity, the interference is measured without inserting the plate 3 and the separately measured transmitted wavefront aberration of the plate 3 is subtracted from the measured data obtained when the surface 5a having high reflectivity is measured. Therefore, the shape of the surface 5a can be measured with high accuracy even when the surface of the reflexion origin having reflectivity which is different from that of the surface 5a is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、干渉計を用いて、
光学ミラー等の高精度な面形状(平面、球面等)を測定
するための形状測定方法に関する。特には、参照面と被
検面(あるいはレフ原器面)の反射率が相当に異なる場
合においても高精度の測定が可能な形状測定方法に関す
る。
[0001] The present invention relates to an interferometer.
The present invention relates to a shape measuring method for measuring a highly accurate surface shape (plane, spherical surface, etc.) of an optical mirror or the like. In particular, the present invention relates to a shape measuring method capable of performing high-accuracy measurement even when the reflectance of a reference surface and the surface to be inspected (or the surface of a reflex prototype) is considerably different.

【0002】[0002]

【従来の技術】フィゾー干渉計を例にとって従来の技術
を説明する。図2は、最も単純なフィゾー干渉計の原理
を説明するための図である。図2において、フィゾーフ
ラット1と呼ばれるハーフミラー1と測定対象物5と
が、ある距離離れて対向している。フィゾーフラット1
は光学ガラス製の平板であり、その右側の面(測定対象
物側の面)は、高精度な光学面(この場合平面)のフィ
ゾー面1aである。フィゾー面1aは参照面とも呼ばれ
る。フィゾーフラット1の左側の面(反測定対象物面1
b)には、通常反射防止コーティングが施されている。
測定対象物5は、形状測定の対象となる被検面5a(こ
の場合平面)を有する。被検面5aは、フィゾー面1a
と対向して置かれている。
2. Description of the Related Art A conventional technique will be described by taking a Fizeau interferometer as an example. FIG. 2 is a diagram for explaining the principle of the simplest Fizeau interferometer. In FIG. 2, a half mirror 1 called a Fizeau flat 1 and a measurement object 5 face each other at a certain distance. Fizeau Flat 1
Is a flat plate made of optical glass, and the right surface thereof (the surface on the side of the object to be measured) is a Fizeau surface 1a of a high-precision optical surface (a flat surface in this case). The Fizeau surface 1a is also called a reference surface. Left side of Fizeau Flat 1 (anti-measurement object surface 1
b) is usually provided with an anti-reflection coating.
The measurement object 5 has a surface 5a (in this case, a plane) to be measured. The test surface 5a is the Fizeau surface 1a
Is placed facing.

【0003】このフィゾーフラット1に図の左側(反被
対象物5側)から可干渉光13aが入射している。光1
3aは、通常、レーザー光であって、フィゾー面1aに
垂直に入射するように調整されている。光13aはフィ
ゾーフラット1内に入り、その一部がフィゾー面1aで
反射する(光13b)。このフィゾー面1aの反射率
は、光学ガラスの一般値で約4%である。したがって、
残りの96%の光13cはフィゾーフラット1を透過し
てさらに右に進む。
A coherent light 13a is incident on the Fizeau flat 1 from the left side of the figure (the side opposite to the object 5). Light 1
A laser beam 3a is usually adjusted so as to be perpendicular to the Fizeau surface 1a. The light 13a enters the Fizeau flat 1, and a part of the light 13a is reflected by the Fizeau surface 1a (light 13b). The reflectance of the Fizeau surface 1a is about 4% as a general value of optical glass. Therefore,
The remaining 96% of the light 13c passes through the Fizeau flat 1 and travels further right.

【0004】光13cは、次に、被検面5aで反射する
(光13d)。被検面5aの反射率は、測定対象物5の
材質と同面5aの性状によって異なる。光学ガラスの場
合は反射率は約4%であり、高反射率の金属面の場合は
反射率は90%以上となる。被検面5aで反射した光1
3dは、フィゾーフラット1を通り(光13e)、フィ
ゾー面1aで反射した光13bと干渉する。両光の干渉
の情報(通常干渉縞の形状・本数・寸法)を分析すれ
ば、フィゾー面1aと被検面5aとの相対的形状差に関
する情報が得られる。もし、フィゾー面1aが高精度の
平面と考えてよい場合は、被検面5aの平面度誤差を干
渉情報が表すこととなる。
[0004] Next, the light 13c is reflected by the surface 5a to be inspected (light 13d). The reflectance of the test surface 5a differs depending on the material of the measurement object 5 and the properties of the same surface 5a. In the case of optical glass, the reflectance is about 4%, and in the case of a highly reflective metal surface, the reflectance is 90% or more. Light 1 reflected by the test surface 5a
3d passes through the Fizeau flat 1 (light 13e) and interferes with the light 13b reflected by the Fizeau surface 1a. By analyzing information on the interference between the two lights (usually the shape, number, and size of interference fringes), information on the relative shape difference between the Fizeau surface 1a and the test surface 5a can be obtained. If the Fizeau surface 1a can be considered as a high-precision plane, the interference information indicates the flatness error of the test surface 5a.

【0005】しかし、フィゾー面1a(参照面)も、誤
差を有する。したがって、特に高精度の測定を行う場合
には、フィゾー面1aの精度を原器で校正する作業を行
う。この際、図の測定対象物5として原器(あるいは液
体)を用い、その原器の表面(面5a、液体の場合は液
表面)を正として(あるいは他の波面創成抽出法等の手
法を用いて)、フィゾー面1aの校正を行う。このよう
な校正測定作業においては、被検面5aをレフ原器面
(あるいは基準面)と呼ぶ。
However, the Fizeau surface 1a (reference surface) also has an error. Therefore, in the case of performing particularly high-accuracy measurement, an operation of calibrating the accuracy of the Fizeau surface 1a with the prototype is performed. At this time, a prototype (or liquid) is used as the measurement object 5 in the figure, and the surface of the prototype (surface 5a, the liquid surface in the case of liquid) is defined as positive (or another method such as a wavefront creation extraction method). ), And the calibration of the Fizeau surface 1a is performed. In such a calibration measurement operation, the test surface 5a is referred to as a ref prototype surface (or reference surface).

【0006】このようなフィゾー干渉計における干渉縞
観察においては、フィゾー面1aからの反射光13b
と、被検面5aからの反射光13eの強度比が問題とな
る。強度比が1:1のときに最もコントラストの高い干
渉縞が得られる。しかし、強度比が大きくなるに従いコ
ントラストが下がり、ついには干渉縞を観察できなくな
る。
In observing interference fringes in such a Fizeau interferometer, the reflected light 13b from the Fizeau surface 1a
Then, the intensity ratio of the reflected light 13e from the test surface 5a becomes a problem. When the intensity ratio is 1: 1, an interference fringe with the highest contrast is obtained. However, as the intensity ratio increases, the contrast decreases, and eventually interference fringes cannot be observed.

【0007】図2で、フィゾー面1aの反射率をRf、
被検面の反射率をRwとすると、上記両光13bと13
eの強度比は、Rf:(1−Rf)×Rw×(1−R
f)、つまり、Rf:(1−Rf)2 ×Rwとなる。
ここでRf=0.04とすると、比は、0.04:0.
92Rwとなる。さらにRw=0.90(高反射率、水
銀の表面など)とすると、比は、0.04:0.83=
1:21となり、一般的には両光の強度が違いすぎて干
渉縞観察が不能となり、形状測定できない。
In FIG. 2, the reflectance of the Fizeau surface 1a is Rf,
Assuming that the reflectance of the test surface is Rw, the two lights 13b and 13b
The intensity ratio of e is Rf: (1-Rf) × Rw × (1-R
f), that is, Rf: (1−Rf) 2 × Rw.
Here, assuming that Rf = 0.04, the ratio is 0.04: 0.
92Rw. Further, assuming that Rw = 0.90 (high reflectance, mercury surface, etc.), the ratio is 0.04: 0.83 =
1:21, and the intensity of the two lights is generally too different, so that interference fringes cannot be observed and shape measurement cannot be performed.

【0008】このような場合、強い反射光を減衰板(ハ
ーフミラーやペリクル)に通して強度を弱めることが考
えられる。図1は、フィゾー面1aと被検面5aの間に
減衰板3を有する干渉光学系の図である。すなわち、フ
ィゾーフラット1の入射光の大部分はフィゾーフラット
1を抜けて(11c)、さらに減衰板3を抜け(11
d)、被検面5aで反射して(11e)、減衰板3を抜
け(11f)、フィゾーフラット1を抜ける(11
g)。
In such a case, it is conceivable to reduce the intensity by passing strong reflected light through an attenuation plate (half mirror or pellicle). FIG. 1 is a diagram of an interference optical system having an attenuation plate 3 between a Fizeau surface 1a and a test surface 5a. That is, most of the incident light on the Fizeau flat 1 passes through the Fizeau flat 1 (11c), and further passes through the attenuation plate 3 (11c).
d), the light is reflected by the test surface 5a (11e), passes through the attenuation plate 3 (11f), and passes through the Fizeau flat 1 (11)
g).

【0009】この場合の光の強度を検討する。なお、減
衰板3の透過率をTdとする。図1でのフィゾー面1a
からの反射光11bと、被検面5aからの反射光11g
との強度比は、 Rf:(1−Rf)×Td×Rw×Td×(1−R
f)、つまり、 Rf:(1−Rf)2 ×Td2 ×Rw、である。
Consider the light intensity in this case. The transmittance of the attenuation plate 3 is defined as Td. Fizeau surface 1a in FIG.
11b reflected from the surface 5a and reflected light 11g
Rf: (1-Rf) × Td × Rw × Td × (1-R
f), that is, Rf: (1−Rf) 2 × Td2 × Rw.

【0010】ここで、Rf=0.04、Rw=0.90
のときは、比は、0.04:0.83Td2 、であ
る。Tdを0.2とすると、比は、0.04:0.03
3、となって、両光の強度が近接して干渉縞のコントラ
ストが良好となるので、良好な干渉測定を行うことがで
きる。
Here, Rf = 0.04, Rw = 0.90
In this case, the ratio is 0.04: 0.83 Td2. If Td is 0.2, the ratio is 0.04: 0.03
3. Since the intensities of both lights are close to each other and the contrast of the interference fringes is good, good interference measurement can be performed.

【0011】次に、図1の干渉系における波面収差測定
データについて説明する。図1において、被検面測定時
に観測される波面収差H1は、 H1=F+D+W・・・・・(1) である。ここでFはフィゾー面の形状誤差収差、Dは減
衰板の透過波面収差、Wは被検面の反射波面収差であ
る。被検面の代わりに、基準となるレフ原器面を置いて
測定したときに観測される波面収差H2は、 H2=F+D+R・・・・・(2) である。ここでRはレフ原器面の反射波面収差である。
H1とH2の差を算出するためデータ処理を行うと、 H1−H2=W−R・・・・・(3) が求められる。また、ここでRがWに比べて無視できる
量ならば、 H1−H2≒W・・・・・(4) とすることができる。
Next, the wavefront aberration measurement data in the interference system shown in FIG. 1 will be described. In FIG. 1, the wavefront aberration H1 observed at the time of measuring the test surface is as follows: H1 = F + D + W (1) Here, F is the shape error aberration of the Fizeau surface, D is the transmitted wavefront aberration of the attenuation plate, and W is the reflected wavefront aberration of the test surface. The wavefront aberration H2 observed when the measurement is performed by placing a reference ref prototype instead of the test surface is as follows: H2 = F + D + R (2) Here, R is the reflected wavefront aberration of the ref prototype.
When data processing is performed to calculate the difference between H1 and H2, H1−H2 = WR (3) is obtained. If R is negligible compared to W, then H1−H2 ≒ W (4)

【0012】[0012]

【発明が解決しようとする課題】しかしながら、高反射
率のレフ原器面(例えば水銀液面)を基準として、フィ
ゾー面と同等な反射率の被検面を測定する場合には、レ
フ原器面測定時にのみ減衰板を挿入し、被検面測定時に
は減衰板を挿入しないこととなると、減衰板のありなし
の差が生まれる。高反射率のレフ原器面を測定したとき
の波面収差H2は上記式(2)になる。一方、低反射率
の被検面を測定する場合には減衰板を除去するため、該
被検面を測定したときに観測される波面収差H3は、 H3=F+W・・・・・(5) である。H3とH2との差は、(5)式から(2)式を
引いて、 H3−H2=W−(D+R)・・・・・(6) となり、減衰板の透過波面収差Dがデータに乗ってしま
う。
However, when measuring a test surface having a reflectance equivalent to that of a Fizeau surface with reference to a high-reflectivity ref prototype surface (for example, a mercury liquid surface), the ref prototype is required. If the attenuation plate is inserted only when measuring the surface and the attenuation plate is not inserted when measuring the surface to be measured, there is a difference between the presence and absence of the attenuation plate. The wavefront aberration H2 when measuring a high-reflection REF prototype is given by the above equation (2). On the other hand, when measuring a low-reflectance surface to be measured, the wavefront aberration H3 observed when the surface to be measured is measured is as follows: H3 = F + W (5) It is. The difference between H3 and H2 is obtained by subtracting equation (2) from equation (5), and H3−H2 = W− (D + R) (6). I get on.

【0013】従って、高反射率のレフ原器面を基準とし
て低反射率の被検面の相対測定を行うことができないと
いう問題点があった。本発明は上記従来の欠点に鑑みな
されたもので、被検面に対して反射率が大きく異なるレ
フ原器面を使用しても、被検面の高精度な相対測定が可
能な、形状測定方法を提供することを目的とする。
Therefore, there is a problem that relative measurement of a low-reflectance test surface cannot be performed with reference to a high-reflection ref prototype surface. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional drawbacks, and is capable of performing high-precision relative measurement of a test surface even when using a reflex prototype surface having a significantly different reflectance with respect to the test surface. The aim is to provide a method.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するた
め、本発明の形状測定方法は、 参照面と被検面に可干
渉光を当て両面からの反射光を干渉させる干渉計を用い
て被検面の形状を測定する方法において; 参照面と被
検面の間に、被検面からの反射光の強度を落とす減衰板
を挿入して干渉縞のコントラストを調整するとともに、
別途測定した該減衰板の透過波面収差を測定データから
差し引くことを特徴とする。
In order to solve the above-mentioned problems, a shape measuring method according to the present invention employs an interferometer that applies coherent light to a reference surface and a surface to be inspected and interferes with reflected light from both surfaces. In a method of measuring the shape of a test surface, an attenuating plate for reducing the intensity of light reflected from the test surface is inserted between the reference surface and the test surface to adjust the contrast of interference fringes,
The transmission wavefront aberration of the attenuation plate, which is separately measured, is subtracted from the measurement data.

【0015】[0015]

【発明の実施の形態】本発明の第一の態様の干渉計を用
いた形状測定方法は、 参照面と被検面に可干渉光を当
て両面からの反射光を干渉させる干渉計を用いて被検面
の形状を測定する方法であって; ここで、該測定方法
は、上記被検面とは反射率の異なるレフ原器面を被検面
の位置において干渉測定することにより得た参照面等の
誤差データを測定データから差し引くプロセスを含み、
上記被検面とレフ原器面のいずれか反射率の高いほう
の面を測定する際には、該面からの反射光の強度を落と
す減衰板を挿入して干渉測定し、 低反射率の面を測定
する際には、減衰板を挿入せずに干渉測定し、 別途測
定した該減衰板の透過波面収差を上記高反射率面測定デ
ータより差し引くことを特徴とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A shape measuring method using an interferometer according to a first aspect of the present invention uses an interferometer that applies coherent light to a reference surface and a test surface and interferes with reflected light from both surfaces. A method for measuring the shape of a surface to be measured; wherein the measuring method includes a reference obtained by performing interference measurement at a position of the surface to be measured on a ref prototype surface having a reflectance different from that of the surface to be measured. Including the process of subtracting error data such as surfaces from measurement data,
When measuring the surface with the higher reflectivity, either the test surface or the reference surface of the ref, insert an attenuator to reduce the intensity of the light reflected from the surface, perform interference measurement, and measure the lower reflectivity. When measuring the surface, the interference measurement is performed without inserting the attenuation plate, and the transmitted wavefront aberration of the attenuation plate separately measured is subtracted from the high reflectance surface measurement data.

【0016】すなわち、減衰板の透過波面収差Dが既知
になっていれば、式(6)に代入することにより、レフ
原器面に対する被検面の相対波面収差H4は H4=W−R≒W・・・・・(7) として求められる。減衰板の透過波面収差Dは、図1の
ように減衰板を挿入してレフ原器面を測定した波面収差
H2と、図2のように減衰板を挿入せずに測定したとき
に観測される波面収差H5の差として得られる。H5
は、 H5=F+R・・・・・(8) となる。従って、式(2)と式(8)より、減衰板の透
過波面収差Dは D=H2−H5・・・・・(9) から求めることができる。
That is, if the transmitted wavefront aberration D of the attenuation plate is known, the relative wavefront aberration H4 of the test surface with respect to the ref prototype surface can be obtained by substituting into the equation (6): H4 = WR− W... (7) The transmitted wavefront aberration D of the attenuation plate is observed when the attenuation plate is inserted as shown in FIG. 1 and the wavefront aberration H2 obtained by measuring the reference surface of the reflex is measured when the attenuation plate is not inserted as shown in FIG. Of the wavefront aberration H5. H5
Is as follows: H5 = F + R (8) Therefore, from equations (2) and (8), the transmitted wavefront aberration D of the attenuation plate can be obtained from D = H2−H5 (9).

【0017】この減衰板の透過波面収差Dを式(6)に
代入することで被検面の形状測定が可能になる。この
際、当然ながら、倍率、歪み、シフト等の座標の整合性
を満たすための画像処理が必要であるが、それには公知
の方法を用いることができる。
By substituting the transmitted wavefront aberration D of the attenuating plate into the equation (6), the shape of the surface to be measured can be measured. At this time, naturally, image processing for satisfying coordinate consistency such as magnification, distortion, and shift is required, but a known method can be used for this.

【0018】本発明においては、上記参照面(フィゾー
面)における反射率をRf、上記減衰板の透過率をTd
とした場合、以下の式を満足する反射率Rw′を有する
ダミー被検面を用い、 0.1Rf≦(1−Rf)2 ×Td2 ×Rw′・・・・・(A) (1−Rf)2 ×Rw′≦10Rf・・・・・・・・・・(B) 減衰板を参照面とダミー被検面間に挿入した場合及び挿
入しない場合の波面収差を求め、両波面収差の差を取る
ことによって該減衰板の透過波面収差を得ることができ
る。
In the present invention, the reflectance on the reference surface (Fizeau surface) is Rf, and the transmittance of the attenuation plate is Td.
When a dummy test surface having a reflectance Rw 'that satisfies the following equation is used, 0.1Rf ≦ (1-Rf) 2 × Td2 × Rw ′ (A) (1-Rf ) 2 × Rw ′ ≦ 10Rf (B) The wavefront aberration when the attenuation plate is inserted between the reference surface and the dummy test surface and when it is not inserted are determined, and the difference between the two wavefront aberrations is obtained. Thus, the transmitted wavefront aberration of the attenuation plate can be obtained.

【0019】本発明者は、干渉計のCCDのノイズ等の
関係から、被検面からの反射光の強度が参照面からの反
射光の強度の1/10から10倍程度の範囲にあれば、
一般的に干渉測定は可能であるが、該強度比がその範囲
から外れる場合には、強度比の問題からコントラストが
劣化し、干渉縞の計測が一般的には困難であることを見
出した。この知見をもとに減衰板の有無にかかわらず、
いずれの場合も干渉測定できるようなダミー被検面を用
いて上述の図1、式(2)の測定と、図2、式(8)の
測定を行い、それらの測定結果から減衰板透過波面収差
を求めることができる。
The present inventor has determined that if the intensity of the light reflected from the test surface is in the range of about 1/10 to 10 times the intensity of the light reflected from the reference surface, due to the noise of the CCD of the interferometer, etc. ,
Generally, interference measurement is possible, but when the intensity ratio is out of the range, the contrast is deteriorated due to the problem of the intensity ratio, and it has been found that measurement of interference fringes is generally difficult. Based on this knowledge, regardless of the presence or absence of a damping plate,
In each case, the above-described measurement of FIG. 1 and Expression (2) and the measurement of FIG. 2 and Expression (8) are performed using a dummy test surface capable of performing interference measurement, and the wavefront transmitted through the attenuation plate is obtained from the measurement results. Aberration can be determined.

【0020】本発明の第2の態様の干渉計を用いた形状
測定方法は、参照面と被検面に可干渉光を当て両面から
の反射光を干渉させる干渉計を用いて被検面の形状を測
定する方法であって; ここで、該測定方法は、上記被
検面とは反射率の異なるレフ原器面を被検面の位置にお
いて干渉測定することにより得た参照面等の誤差データ
を測定データから差し引くプロセスを含み、 参照面と
被検面及びレフ原器面の間に、該被検面及びレフ原器面
からの反射光の強度を落とす減衰板を挿入して干渉縞の
コントラストを調整し、 上記参照面における反射率を
Rf、上記減衰板の透過率をTd、上記被検面の反射率
をRw、上記レフ原器面の反射率をRrとした場合、 0.1Rf≦(1−Rf)2 ×Td2 ×Rw ・・・・・・・(C) 10Rf≧(1−Rf)2 ×Td2 ×Rr ・・・・・・・・(D) となるようにTdを選択することを特徴とする。
In the shape measuring method using the interferometer according to the second aspect of the present invention, the coherent light is applied to the reference surface and the test surface, and the interferometer causes the reflected light from both surfaces to interfere with each other. A method for measuring a shape, wherein the measurement method includes measuring an error of a reference surface or the like obtained by performing interference measurement at a position of the test surface on a ref prototype surface having a reflectance different from that of the test surface. Includes the process of subtracting data from the measured data, and inserting an attenuator between the reference surface and the test surface and the reference surface of the ref. Where Rf is the reflectance on the reference surface, Td is the transmittance of the attenuating plate, Rw is the reflectance of the test surface, and Rr is the reflectance of the ref prototype surface. 1Rf ≦ (1-Rf) 2 × Td2 × Rw (C) 10Rf ≧ 1-Rf) and selects the Td such that the 2 × Td2 × Rr ········ (D).

【0021】この場合は、適当な減衰板の透過率Tdを
選択することにより、反射率の異なる被検面とレフ原器
面を同一の減衰板を挿入したままで測定できるので、上
記式(1)から式(4)に至る手法により、被検面の高
精度形状測定を行うことができる。
In this case, by selecting an appropriate transmittance Td of the attenuating plate, it is possible to measure the surface to be inspected and the surface of the ref prototype having different reflectivities while inserting the same attenuating plate. By the method from 1) to the expression (4), highly accurate shape measurement of the test surface can be performed.

【0022】[0022]

【実施例】まず本発明の第1の態様の形状測定方法のフ
ィゾー干渉計における実施例を説明する。フィゾー面及
び被検面の反射率を光学ガラスの一般的な反射率0.0
4とし、レフ原器面の反射率を水銀面を想定した0.9
0とする。また、減衰板の透過率が0.20で固定され
ているとする。そして、レフ原器面測定時には減衰板を
挿入し、被検面測定時には減衰板を挿入しないで測定す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an embodiment of a Fizeau interferometer of the shape measuring method according to the first embodiment of the present invention will be described. The reflectance of the Fizeau surface and the surface to be inspected is set to the general reflectance of optical glass of 0.0.
4 and the reflectivity of the reflex prototype surface was assumed to be 0.9 on the mercury surface.
Set to 0. It is also assumed that the transmittance of the attenuation plate is fixed at 0.20. Then, an attenuation plate is inserted at the time of measuring the reference surface of the reflex, and the measurement is performed without inserting the attenuation plate at the time of measuring the surface to be measured.

【0023】このときレフ原器面を、減衰板を挿入して
測定したときの干渉光の強度比は、 フィゾー面反射光:レフ原器面反射光 =0.04:(1−0.04)×0.2×0.9×0.2×(1−0.04) =0.04:0.033 となる。
At this time, the intensity ratio of the interference light when measuring the ref prototype surface with an attenuation plate inserted is: Fizeau surface reflection light: ref prototype surface reflection light = 0.04: (1−0.04) ) × 0.2 × 0.9 × 0.2 × (1−0.04) = 0.04: 0.033.

【0024】被検面を、減衰板を抜いて測定したときの
干渉光の強度比は、 フィゾー面反射光:被検面反射光 =0.04:(1−0.04)×0.04×(1−0.04) =0.04:0.037 となる。
The intensity ratio of the interference light when the test surface was measured without the attenuating plate was: Fizeau surface reflection light: Test surface reflection light = 0.04: (1−0.04) × 0.04 × (1−0.04) = 0.04: 0.037.

【0025】いずれの場合も干渉光の強度比がほぼ1:
1で良好な干渉縞のコントラストを得られる。
In each case, the intensity ratio of the interference light is approximately 1: 1.
1, a good contrast of interference fringes can be obtained.

【0026】次に、好適なダミー被検面の反射率を得る
方法について説明する。上記の反射率等の値を上記
(A)式と(B)式に適用する。 0.1Rf≦(1−Rf)2 Td2 ×Rw′・・・・・(A) 0.1×0.04≦(1−0.04)2 (0.2)2
×Rw′ 0.11≦Rw′ (1−Rf)2 ×Rw′≦10Rf・・・・・・・・・(B) (1−0.04)2 ×Rw′≦10×0.04 Rw′≦0.43 すなわち、反射率が0.11から0.43のダミー被検
面を、減衰板有と無の2つの状態で測定し、上記(2)
式〜(9)式の手法を行うことにより、減衰板の透過波
面収差を求め、それを測定データから差し引けば高精度
の被検面の形状データを得ることができる。
Next, a method for obtaining a suitable reflectance of the dummy test surface will be described. The above values of the reflectance and the like are applied to the above-described equations (A) and (B). 0.1Rf ≦ (1-Rf) 2 Td2 × Rw ′ (A) 0.1 × 0.04 ≦ (1−0.04) 2 (0.2) 2
× Rw ′ 0.11 ≦ Rw ′ (1-Rf) 2 × Rw ′ ≦ 10Rf (B) (1−0.04) 2 × Rw ′ ≦ 10 × 0.04 Rw '≦ 0.43 That is, a dummy test surface having a reflectivity of 0.11 to 0.43 was measured in two states, with and without an attenuating plate.
By applying the formulas (9) to (9), the transmitted wavefront aberration of the attenuation plate is obtained, and by subtracting it from the measurement data, highly accurate shape data of the test surface can be obtained.

【0027】次に本発明の第2態様の形状測定方法のフ
ィゾー干渉計における実施例を説明する。上記第1態様
の実施例同様に、フィゾー面及び被検面の反射率を0.
04とし、レフ原器面の反射率を0.9とする。そし
て、被検面を測定するときも、レフ原器面を測定すると
きも減衰板がある状態で測定を行えるように減衰板の透
過率Tdを選択する。
Next, an embodiment of a Fizeau interferometer of the shape measuring method according to the second embodiment of the present invention will be described. As in the embodiment of the first aspect, the reflectance of the Fizeau surface and the surface to be inspected is set to 0.
04, and the reflectivity of the ref prototype surface is 0.9. Then, the transmittance Td of the attenuation plate is selected so that the measurement can be performed with the attenuation plate both when measuring the surface to be measured and when measuring the surface of the ref prototype.

【0028】上記(C)、(D)式に各値を代入する。 0.1Rf≦(1−Rf)2 ×Td2 ×Rw・・・・・(C) 0.1×0.04≦(1−0.04)2 ×Td2 ×
0.04 0.33≦Td 10Rf≧(1−Rf)2 ×Td2 ×Rr・・・・・(D) 10×0.04≧(1−0.04)2 ×Td2 ×0.
90 0.69≧Td すなわち、0.33≦Td≦0.69が減衰板の透過率
範囲となる。この範囲で最も好ましいのは、上下限値の
積の平方根値近辺であり、Td=(0.33×0.6
9)1/2 =0.48となる。
Each value is substituted into the above equations (C) and (D). 0.1Rf ≦ (1-Rf) 2 × Td2 × Rw (C) 0.1 × 0.04 ≦ (1-0.04) 2 × Td2 ×
0.04 0.33 ≦ Td 10Rf ≧ (1-Rf) 2 × Td2 × Rr (D) 10 × 0.04 ≧ (1-0.04) 2 × Td2 × 0.
90 0.69 ≧ Td That is, 0.33 ≦ Td ≦ 0.69 is the transmittance range of the attenuation plate. The most preferable in this range is around the square root of the product of the upper and lower limits, and Td = (0.33 × 0.6
9) 1/2 = 0.48.

【0029】Td=0.48のときの、レフ原器面測定
時の干渉光強度比は以下となる。 フィゾー面反射光:被検面反射光=0.04:(1−
0.04)×0.48×0.90×0.48×(1−
0.04)=0.04:0.23≒1:6 また、被検面測定時の干渉光強度比は以下となる。
When Td = 0.48, the interference light intensity ratio at the time of measuring the reference surface of the reflex device is as follows. Fizeau surface reflected light: Test surface reflected light = 0.04: (1-
0.04) × 0.48 × 0.90 × 0.48 × (1-
0.04) = 0.04: 0.23 ≒ 1: 6 Further, the interference light intensity ratio at the time of measuring the test surface is as follows.

【0030】参照面反射光:被検面反射光=0.04:
(1−0.04)×0.48×0.04×0.48×
(1−0.04)=0.04:0.0084≒5:1 これらいずれの場合も干渉測定が十分に可能である。こ
の第二態様によれば、減衰板の抜き差しを行うことなく
干渉測定を行うことができるため、測定の手数が少なく
てすむ。
Reference surface reflected light: Test surface reflected light = 0.04:
(1-0.04) × 0.48 × 0.04 × 0.48 ×
(1−0.04) = 0.04: 0.0084 ≒ 5: 1 In any of these cases, interference measurement is sufficiently possible. According to the second aspect, since the interference measurement can be performed without inserting and removing the attenuation plate, the number of measurement steps is reduced.

【0031】[0031]

【発明の効果】以上の説明から明らかなように、本発明
によれば、被検面に対して反射率が大きく異なるレフ原
器面を使用しても、被検面の高精度な相対測定が可能と
なる。
As is apparent from the above description, according to the present invention, even if a ref prototype having a large difference in reflectance with respect to the test surface is used, the relative measurement of the test surface can be performed with high accuracy. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フィゾー面と被検面の間に減衰板を有する干渉
光学系の図である。
FIG. 1 is a diagram of an interference optical system having an attenuation plate between a Fizeau surface and a test surface.

【図2】最も単純なフィゾー干渉計の原理を説明するた
めの図である。
FIG. 2 is a diagram for explaining the principle of the simplest Fizeau interferometer.

【符号の説明】[Explanation of symbols]

1 フィゾーフラット(ハーフミラー) 1a フィゾ
ー面(参照面) 3 減衰板 5 測定対象
物 5a 被検面(レフ原器面) 11、13 光
DESCRIPTION OF SYMBOLS 1 Fizeau flat (half mirror) 1a Fizeau surface (reference surface) 3 Attenuation plate 5 Measurement object 5a Surface to be inspected (reflective prototype surface) 11, 13 light

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 参照面と被検面に可干渉光を当て両面か
らの反射光を干渉させる干渉計を用いて被検面の形状を
測定する方法において;参照面と被検面の間に、被検面
からの反射光の強度を落とす減衰板を挿入し干渉縞のコ
ントラストを調整するとともに、別途測定した該減衰板
の透過波面収差を測定データから差し引くことを特徴と
する干渉計を用いた形状測定方法。
1. A method of measuring the shape of a test surface using an interferometer that irradiates coherent light to a reference surface and a test surface and interferes reflected light from both surfaces; An interferometer characterized by inserting an attenuation plate for reducing the intensity of the reflected light from the test surface to adjust the contrast of interference fringes and subtracting the separately measured transmitted wavefront aberration of the attenuation plate from the measurement data. Shape measurement method.
【請求項2】 参照面と被検面に可干渉光を当て両面か
らの反射光を干渉させる干渉計を用いて被検面の形状を
測定する方法であって;ここで、該測定方法は、上記被
検面とは反射率の異なるレフ原器面を被検面の位置にお
いて干渉測定することにより得た参照面等の誤差データ
を測定データから差し引くプロセスを含み、 上記被検面とレフ原器面のいずれか反射率の高いほうの
面を測定する際には、該面からの反射光の強度を落とす
減衰板を挿入して干渉測定し、 低反射率の面を測定する際には、減衰板を挿入せずに干
渉測定し、 別途測定した該減衰板の透過波面収差を上記高反射率面
測定データより差し引くことを特徴とする干渉計を用い
た形状測定方法。
2. A method of measuring the shape of a test surface using an interferometer that irradiates coherent light to a reference surface and a test surface and causes reflected light from both surfaces to interfere with each other; A process of subtracting error data of a reference surface or the like obtained by interferometrically measuring a reference surface of a ref having a different reflectance from the surface to be measured at a position of the surface to be measured from the measurement data, When measuring one of the original surfaces with the higher reflectivity, insert an attenuator to reduce the intensity of the reflected light from the surface, perform interference measurement, and measure the lower reflectivity surface. Is a method for measuring a shape using an interferometer, wherein interference measurement is performed without inserting an attenuation plate, and a transmitted wavefront aberration of the attenuation plate, which is separately measured, is subtracted from the high reflectance surface measurement data.
【請求項3】 上記参照面における反射率をRf、上記
減衰板の透過率をTdとした場合において、 以下の式を満足する反射率Rw′を有するダミー被検面
を用い、 0.1Rf≦(1−Rf)2 ×Td2 ×Rw′・・・・・・(A) (1−Rf)2 ×Rw′≦10Rf・・・・・・・・・・・(B) 減衰板を参照面とダミー被検面の間に挿入した場合及び
挿入しない場合の波面収差を求め、両波面収差の差を取
ることによって該減衰板の透過波面収差を得る請求項1
又は2記載の干渉計を用いた形状測定方法。
3. When the reflectance at the reference surface is Rf and the transmittance of the attenuating plate is Td, a dummy test surface having a reflectance Rw ′ satisfying the following expression is used: 0.1Rf ≦ (1−Rf) 2 × Td2 × Rw ′ (A) (1−Rf) 2 × Rw ′ ≦ 10Rf (B) Refer to the attenuation plate 2. A wavefront aberration in a case where the wavefront aberration is inserted and a wavefront aberration in a case where the wavefront aberration is not inserted between the dummy test surface, and a difference between both wavefront aberrations is obtained to obtain a transmitted wavefront aberration of the attenuation plate.
Or a shape measuring method using the interferometer according to 2.
【請求項4】 参照面と被検面に可干渉光を当て両面か
らの反射光を干渉させる干渉計を用いて被検面の形状を
測定する方法であって;ここで、該測定方法は、上記被
検面とは反射率の異なるレフ原器面を被検面の位置にお
いて干渉測定することにより得た参照面等の誤差データ
を測定データから差し引くプロセスを含み、 参照面と被検面及びレフ原器面の間に、該被検面及びレ
フ原器面からの反射光の強度を落とす減衰板を挿入して
干渉縞のコントラストを調整し、 上記参照面における反射率をRf、上記減衰板の透過率
をTd、上記被検面の反射率をRw、上記レフ原器面の
反射率をRrとした場合、 0.1Rf≦(1−Rf)2 ×Td2 ×Rw ・・・・・・・(C) 10Rf≧(1−Rf)2 ×Td2 ×Rr ・・・・・・・・(D) となるようにTdを選択することを特徴とする干渉計を
用いた形状測定方法。
4. A method for measuring the shape of a test surface using an interferometer that applies coherent light to a reference surface and a test surface and causes reflected light from both surfaces to interfere with each other; , Including a process of subtracting error data such as a reference surface obtained by interferometrically measuring a reference surface of a reflex device having a different reflectance from the surface to be measured at the position of the surface to be measured, from the measured data. And an attenuating plate for reducing the intensity of the reflected light from the surface to be inspected and the surface of the ref prototype is adjusted between the surfaces of the reference surface and the ref prototype to adjust the contrast of the interference fringes. When the transmittance of the attenuating plate is Td, the reflectance of the test surface is Rw, and the reflectance of the ref prototype surface is Rr, 0.1Rf ≦ (1-Rf) 2 × Td2 × Rw (C) 10Rf ≧ (1-Rf) 2 × Td2 × Rr (D) A shape measuring method using an interferometer, wherein Td is selected such that
JP8205904A 1996-08-05 1996-08-05 Shape measuring method using interferometer Pending JPH1047930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8205904A JPH1047930A (en) 1996-08-05 1996-08-05 Shape measuring method using interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8205904A JPH1047930A (en) 1996-08-05 1996-08-05 Shape measuring method using interferometer

Publications (1)

Publication Number Publication Date
JPH1047930A true JPH1047930A (en) 1998-02-20

Family

ID=16514685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8205904A Pending JPH1047930A (en) 1996-08-05 1996-08-05 Shape measuring method using interferometer

Country Status (1)

Country Link
JP (1) JPH1047930A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349534A (en) * 2005-06-16 2006-12-28 Fujinon Corp Interferometer system and method of optical interferometry for measuring moving body
JP2007132743A (en) * 2005-11-09 2007-05-31 Olympus Corp Infrared microscope having calibration function, and calibration method of infrared microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349534A (en) * 2005-06-16 2006-12-28 Fujinon Corp Interferometer system and method of optical interferometry for measuring moving body
JP2007132743A (en) * 2005-11-09 2007-05-31 Olympus Corp Infrared microscope having calibration function, and calibration method of infrared microscope

Similar Documents

Publication Publication Date Title
Lawson et al. Specification of optical components using the power spectral density function
US8319975B2 (en) Methods and apparatus for wavefront manipulations and improved 3-D measurements
JP3517903B2 (en) Interferometer
US20060274325A1 (en) Method of qualifying a diffraction grating and method of manufacturing an optical element
Lawson et al. Power spectral density specifications for high-power laser systems
US20040184038A1 (en) Method and apparatus for measuring the shape and thickness variation of polished opaque plates
JPH09119813A (en) Method and device to measure thickness of film and refractive index
JPH04249752A (en) Optical inspection method and device for specimen
US20030161038A1 (en) Microscope and method for measuring surface topography in a quantitative and optical manner
US7050175B1 (en) Method for calibrating an interferometer apparatus, for qualifying an optical surface, and for manufacturing a substrate having an optical surface
US7274467B2 (en) Phase shifting interferometric method, interferometer apparatus and method of manufacturing an optical element
Gerchman et al. Differential technique for accurately measuring the radius of curvature of long radius concave optical surfaces
US5303033A (en) Gradient index measuring apparatus
JPH1047930A (en) Shape measuring method using interferometer
US7042578B2 (en) Method and apparatus for absolute figure metrology
US7123365B1 (en) Method of calibrating an interferometer optics and method of processing an optical element having an aspherical surface
Chatterjee et al. Measurement of residual wedge angle with a reversal shear interferometer
US20060023225A1 (en) Microscope and method of measurement of a surface topography
TW201420993A (en) Multi-function measurement system for thin film elements
JP4112072B2 (en) Optical measuring device and optical measuring adapter
JP3871183B2 (en) Method and apparatus for measuring three-dimensional shape of optical element
JPH11311600A (en) Method and apparatus for measuring refractive index distribution
JP3417834B2 (en) Method and apparatus for measuring phase shift amount for processing phase shift mask
Cochran III Limitations of phase-measuring interferometry for surface characterization and testing: a review
JP2000275021A (en) Apparatus for measuring shape of face