JPH1047010A - Seal device for structure of steam feed/discharge part for cooling gas turbine - Google Patents

Seal device for structure of steam feed/discharge part for cooling gas turbine

Info

Publication number
JPH1047010A
JPH1047010A JP20484296A JP20484296A JPH1047010A JP H1047010 A JPH1047010 A JP H1047010A JP 20484296 A JP20484296 A JP 20484296A JP 20484296 A JP20484296 A JP 20484296A JP H1047010 A JPH1047010 A JP H1047010A
Authority
JP
Japan
Prior art keywords
gas turbine
seal
labyrinth
steam
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20484296A
Other languages
Japanese (ja)
Other versions
JP3854341B2 (en
Inventor
Masanori Yuri
雅則 由里
Taku Ichiyanagi
卓 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20484296A priority Critical patent/JP3854341B2/en
Publication of JPH1047010A publication Critical patent/JPH1047010A/en
Application granted granted Critical
Publication of JP3854341B2 publication Critical patent/JP3854341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To constitute the seal part of a steam feed/discharge part for cooling the moving blade of a gas turbine such that the seal part is movable and to form whole structure in a compact manner. SOLUTION: The seal device of the structure of a steam feed/discharge part comprises a body case 21 fixed at one end of the wheel chamber 21 of a gas turbine; an uneven surface for a labyrinth formed on the outer surface of the end part 29a of a steam introduction outer pipe 29 extending coaxially with a rotor; an uneven surface for labyrinth formed in the outer surface of the end part 31a of an introduction inner pipe 31 extending through the steam introduction outer pipe 29; a labyrinth ring 33 with which the uneven surface is surrounded; and a seal retainer 35 slidably arranged in a manner to hold the labyrinth ring 33. Further, link arms 37 and 38 pivotally supported at the body case 23 and connected to the seal retainer 35 are connected to the rotary arm of a thermal expansion compensating link mechanism located between a wheel chamber 21 and the support foundation thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンの構
造に関し、特に詳しくは動翼冷却用蒸気の給排部構造の
シール装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a gas turbine, and more particularly to a seal device for a structure for supplying and discharging steam for cooling a moving blade.

【0002】[0002]

【従来の技術】近年ガスタービンの効率向上のためター
ビン入口ガス温度が上昇しつつあり、高温となるタービ
ン動翼を蒸気によって冷却することが提案されている。
タービン動翼への蒸気の給排は、動翼が固定されるロー
タ軸を介して行うのが一般である。而して、動翼を有す
るタービンロータのロータ軸は、出力端部でスラスト軸
受により軸方向位置が固定されるから、前述の冷却用蒸
気のロータ軸への蒸気の給排は、ロータ軸の他端側で行
われる。然るにスラスト軸受の無いロータ軸の他端では
車室とロータ間の相対熱膨張差、車室の内圧による変
形、ロータの遠心力による軸方向縮み等を逃すようにし
ているから、ロータ軸端と車室等の静止部との間の相対
変位は大きくなっている。このような蒸気給排部におい
て、蒸気の漏れを少なくするにはラビリンスシールの使
用が効果的であるが、多数のフィンを使用すると軸方向
スペースが大きくなる。本出願人は先にそのようなラビ
リンスシール取り付け用スペースを最小にするような提
案を行った(特願平8−158086号)。
2. Description of the Related Art In recent years, the turbine inlet gas temperature has been increasing in order to improve the efficiency of gas turbines, and it has been proposed to cool turbine rotor blades, which become hot, with steam.
The supply and discharge of steam to and from the turbine rotor blades are generally performed via a rotor shaft to which the rotor blades are fixed. Since the axial position of the rotor shaft of the turbine rotor having the moving blades is fixed by the thrust bearing at the output end, the supply and discharge of the cooling steam to the rotor shaft is performed by the rotor shaft. This is performed at the other end. However, at the other end of the rotor shaft without the thrust bearing, the relative thermal expansion difference between the casing and the rotor, the deformation due to the internal pressure of the casing, the axial shrinkage due to the centrifugal force of the rotor, etc. are escaped. The relative displacement with respect to a stationary part such as a vehicle compartment is large. In such a steam supply / discharge section, the use of a labyrinth seal is effective in reducing the leakage of steam, but the use of a large number of fins increases the axial space. The present applicant has previously made a proposal to minimize such a space for attaching a labyrinth seal (Japanese Patent Application No. 8-158080).

【0003】前記提案においては、図3に示すように、
ガスタービンのロータ1の端部を取り囲む車室3の端面
にシールケース5が固定されていて、この端部にロータ
1の端面に臨んで伸差センサ7が設けられている。この
伸差センサ7は電気的にサーボモータ9に連絡し、伸差
センサ7が感知した伸差の量に対応してサーボモータ9
によりシールリテーナ11を軸方向に動かす。シールリ
テーナ11は、ラビリンスシールのラビリンスリング1
3を保持しており、伸差の量に拘わらずラビリンスシー
ルの接触長さを保ち好適なシールを行う。
In the above proposal, as shown in FIG.
A seal case 5 is fixed to an end face of a casing 3 surrounding an end of a rotor 1 of the gas turbine, and an extension sensor 7 is provided at this end facing the end face of the rotor 1. The expansion sensor 7 is electrically connected to the servomotor 9 and operates in accordance with the amount of expansion detected by the expansion sensor 7.
Moves the seal retainer 11 in the axial direction. The seal retainer 11 is a labyrinth ring 1 of a labyrinth seal.
3 is maintained, and the contact length of the labyrinth seal is maintained irrespective of the amount of elongation to perform a suitable seal.

【0004】[0004]

【発明が解決しようとする課題】前述のような提案で
は、高速で回転するロータの位置を計測することになる
ので、伸差センサとしては電気式乃至油圧式のものを使
用することとなる。而してラビリンスリングを保持する
シールリテーナを動かすのに可成大きい力を必要とする
から、伸差センサの信号を大きい力に変換するのに特別
の装置を必要とする。このような装置は、伸差センサの
関係から電気式或いは油圧式のものとならざるを得ない
が、例えば、電源遮断等の事故があると誤作動をするこ
とがあり、信頼性に欠ける嫌いがある。従って、本発明
は、コンパクトで且つシール性能が良く、更には作動信
頼性の高いガスタービン冷却用蒸気給排部構造のシール
装置を提供することを課題とする。
In the above proposal, since the position of the rotor rotating at high speed is measured, an electric or hydraulic type expansion sensor is used. Thus, since a considerably large force is required to move the seal retainer holding the labyrinth ring, a special device is required to convert the signal of the extension sensor into a large force. Such a device is inevitably an electric or hydraulic device due to the extension sensor, but may malfunction if there is an accident such as a power cut-off, so that it lacks reliability. There is. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a sealing device having a gas supply / discharge portion for cooling a gas turbine which is compact, has good sealing performance, and has high operation reliability.

【0005】[0005]

【課題を解決するための手段】如上の課題を解決するた
め、本発明によれば、ガスタービン冷却用蒸気給排部構
造のシール装置は、ガスタービンロータを囲んで設けら
れた車室の一端に固定された本体ケースと、ロータに対
し同軸的に延びる蒸気導入外管の端部外面に形成された
ラビリンスシール用第1凹凸面と、その蒸気導入外管の
内部を延びる導入内管の端部外面に形成されたラビリン
スシール用第2凹凸面と、第1及び第2凹凸面をそれぞ
れ取り囲む第1及び第2ラビリンスリングと、これら第
1及び第2ラビリンスリングを保持し前記本体ケースに
摺動自在に設けられたシールリテーナとから構成され、
ガスタービン車室の支持基礎と前記ガスタービン車室と
に介装されたレバー及びこのレバーに連接された回動ア
ームとを有する熱伸補償リンク機構が付設され、本体ケ
ースに軸支されると共にシールリテーナに連接された駆
動アームを熱伸補償リンク機構の回動アームに連接し、
ガスタービンの車室の軸方向熱伸量に対応して前記シー
ルリテーナを軸方向に駆動して位置調整し、ラビリンス
シールの有効シール長を維持することとしている。
According to the present invention, in order to solve the above problems, a sealing device for a steam supply / discharge structure for cooling a gas turbine is provided at one end of a casing provided around a gas turbine rotor. , A first uneven surface for labyrinth seal formed on the outer surface of an end portion of the steam introduction outer tube extending coaxially with the rotor, and an end of the introduction inner tube extending inside the steam introduction outer tube. A second concavo-convex surface for labyrinth seal formed on the outer surface, first and second labyrinth rings respectively surrounding the first and second concavo-convex surfaces, holding the first and second labyrinth rings, and sliding on the main body case; Movably provided with a seal retainer,
A heat expansion compensating link mechanism having a support base for the gas turbine casing, a lever interposed between the gas turbine casing, and a rotating arm connected to the lever is provided, and is supported by the main body case. The drive arm connected to the seal retainer is connected to the rotation arm of the heat expansion compensation link mechanism,
The position of the seal retainer is adjusted by driving the seal retainer in the axial direction in accordance with the axial heat expansion of the cabin of the gas turbine, thereby maintaining the effective seal length of the labyrinth seal.

【0006】[0006]

【発明の実施の形態】以下添付の図面を参照して本発明
の実施形態を説明する。図1を参照するに、ガスタービ
ンのロータの端部を取り囲む車室21の端面に本体ケー
ス23が固定されていて、これは冷却用蒸気の入口25
及び内部通路27を画成している。図示しないロータに
端部が取り付けられて延出した蒸気導入外管29の端部
29aの外面には、ラビリンスシール用凹凸面が形成さ
れている。同様に図示しないロータに端部が取り付けら
れた蒸気導入内管31が蒸気導入外管29の内部を同軸
状に延びていて、その端部29aより外側へ延出した端
部31aの外面にラビリンスシール用凹凸面が形成され
ている。ラビリンスシール用凹凸面は、通常のものであ
る。ロータと共に回転する蒸気導入内管15及び蒸気導
入外管11の凹凸面をそれぞれ取り囲み、協働してラビ
リンスシールを形成するラビリンスリング33が可動の
シールリテーナ35に保持されている。このシールリテ
ーナ35は、本体ケース23の内面に軸方向に摺動可能
に支持されている。本体ケース23には、リンクアーム
37が軸支されていてその先端がシールリテーナ35に
連接されている。従って、リンクアーム37が枢動すれ
ば、シールリテーナ35が本体ケース23の摺動案内面
に沿って軸方向に移動する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Referring to FIG. 1, a main body case 23 is fixed to an end surface of a casing 21 surrounding an end of a rotor of a gas turbine, and is provided with an inlet 25 for cooling steam.
And an internal passage 27. An irregular surface for labyrinth seal is formed on an outer surface of an end portion 29a of a steam introducing outer tube 29 which is extended by attaching an end portion to a rotor (not shown). Similarly, a steam introduction inner pipe 31 having an end attached to a rotor (not shown) extends coaxially inside the steam introduction outer pipe 29, and has a labyrinth on an outer surface of an end 31a extending outward from the end 29a. An uneven surface for sealing is formed. The irregular surface for labyrinth seal is a normal one. A labyrinth ring 33 which surrounds the concave and convex surfaces of the steam introduction inner pipe 15 and the steam introduction outer pipe 11 which rotate together with the rotor and forms a labyrinth seal in cooperation therewith is held by a movable seal retainer 35. The seal retainer 35 is supported on the inner surface of the main body case 23 so as to be slidable in the axial direction. A link arm 37 is pivotally supported by the main body case 23, and the distal end thereof is connected to the seal retainer 35. Therefore, when the link arm 37 pivots, the seal retainer 35 moves in the axial direction along the sliding guide surface of the main body case 23.

【0007】次に図2を参照して、熱伸補償リンク機構
50を説明する。その前にガスタービン全体の支持を説
明すると、コンクリート基礎39の上に固定された支持
架台41及び支持リンク43によりガスタービン20が
支持されている。支持リンク43は、ガスタービン20
の側部に設けられたトラニオン45と、コンクリート基
礎39上の支持軸47に両端が嵌合していて、コンクリ
ート基礎39に対するガスタービン20の熱膨張変位を
逃している。熱伸補償リンク機構50の構造を説明する
と、コンクリート基礎39に固定されたベース51にブ
ラケット53が取り付けられている。車室21の外面に
もブラケット55が固定されていて、そのブラケット5
5と前述のブラケット53の間に長尺のレバー57がピ
ン軸を介して介装されている。このようなレバー57
は、前述の支持リンク43と同様に熱膨張による車室2
1の水平方向相対変位を許容する。レバー57の上端寄
りに回動リンク59が連接され、これは前述のリンクア
ーム37と同軸のリンクアーム38の先端に連接してい
る。従ってガスタービン20の車室21が、温度上昇に
よりコンクリート基礎39に対し右方(図において)に
相対変位(熱伸び)すると、レバー57は右方に傾く。
ブラケット55との連接点を中心に見ると、レバー57
は矢印Aに示すように回動し、この動きは回動リンク5
9を介してリンクアーム38に伝えられて矢印Bに示す
回動となる。リンクアーム38の矢印Bに示す回動は、
図1に概念的に示すようにリンクアーム37に伝えら
れ、シールリテーナ35を動かすことになる。
Next, the heat stretching compensation link mechanism 50 will be described with reference to FIG. Before explaining the support of the entire gas turbine, the gas turbine 20 is supported by a support base 41 and a support link 43 fixed on a concrete foundation 39. The support link 43 is connected to the gas turbine 20.
Are fitted at both ends to a trunnion 45 provided on the side of the concrete foundation 39 and a support shaft 47 on the concrete foundation 39, so that the thermal expansion displacement of the gas turbine 20 with respect to the concrete foundation 39 is released. Explaining the structure of the heat elongation compensation link mechanism 50, a bracket 53 is attached to a base 51 fixed to the concrete foundation 39. A bracket 55 is also fixed to the outer surface of the passenger compartment 21, and the bracket 5
A long lever 57 is interposed between the bracket 5 and the bracket 53 via a pin shaft. Such a lever 57
The vehicle compartment 2 due to thermal expansion is similar to the support link 43 described above.
One horizontal relative displacement is allowed. A pivot link 59 is connected near the upper end of the lever 57, and is connected to the tip of a link arm 38 coaxial with the link arm 37 described above. Accordingly, when the casing 21 of the gas turbine 20 is relatively displaced (thermally elongated) to the right (in the drawing) with respect to the concrete foundation 39 due to the temperature rise, the lever 57 is tilted to the right.
Looking at the continuous contact point with the bracket 55, the lever 57
Rotates as shown by arrow A, and this movement is
The rotation indicated by arrow B is transmitted to the link arm 38 via 9. The rotation of the link arm 38 indicated by the arrow B is
As shown conceptually in FIG. 1, it is transmitted to the link arm 37 and moves the seal retainer 35.

【0008】以上の構成において、冷却用蒸気は、本体
ケース23の入口25及び内部通路27、シールリテー
ナ35の通し穴及び蒸気導入外管29と蒸気導入内管3
1の間の環状通路を通して図示しない動翼へ供給され、
これを内部から冷却する。冷却使用後の蒸気は、蒸気導
入内管31の内部を流れて、本体ケース23の中心部の
出口から出て回収される。そして熱伸補償リンク機構5
0は、前述したリンク運動により車室21の軸方向熱膨
張(熱伸び)の量に応じてシールリテーナ35の位置を
動かし、有効なラビリンスシール長さを確保する。この
有効なラビリンスシール長さが確保できる原理は次のよ
うに説明される。
In the above configuration, the cooling steam is supplied to the inlet 25 and the internal passage 27 of the main body case 23, the through hole of the seal retainer 35, the steam introducing outer pipe 29 and the steam introducing inner pipe 3
1 to a rotor blade (not shown) through an annular passage between
This is cooled from the inside. The steam that has been used for cooling flows through the inside of the steam introduction pipe 31, exits from the outlet at the center of the main body case 23, and is collected. And the heat expansion compensation link mechanism 5
0 moves the position of the seal retainer 35 in accordance with the amount of axial thermal expansion (thermal elongation) of the vehicle compartment 21 by the link motion described above, and secures an effective labyrinth seal length. The principle by which this effective labyrinth seal length can be ensured is explained as follows.

【0009】ロータの軸端と車室との軸方向伸差は、熱
伸びと遠心応力のポアソン効果による軸方向縮みの和で
あるロータ伸縮量と、熱伸び及び内圧による変形の軸方
向成分の和である車室伸縮量との差であり、[(ロータ
の熱膨張量+ロータの回転による軸方向縮み量)−(車
室の熱膨張量+車室の内圧による伸縮量)]の式で表さ
れる。このうちロータの熱膨張量と車室の熱膨張量につ
いてみると、車室とロータは各々熱容量が異なり、温度
上昇速度に差があるのでガスタービンの起動時における
両者の熱伸量と伸差は比例してはいないが、定常状態で
はある程度それに近い関係にある。一方ロータの軸方向
縮みは回転速度の2乗に比例するが、定常状態では大凡
一定値になる。車室の内圧による伸縮量は、内圧が無負
荷時の内圧と全負荷時の内圧とでは変化が比較的小であ
る。即ちロータの軸端における車室との軸方向伸差は、
車室の熱膨張量に比例するとして取り扱うことは実用上
許容される。尚、ロータの軸端の熱膨張変位は、蒸気導
入外管29及び蒸気導入内管31の端部に表れる。
The axial extension difference between the shaft end of the rotor and the cabin is the amount of expansion and contraction of the rotor, which is the sum of thermal expansion and axial contraction due to the Poisson effect of centrifugal stress, and the axial component of deformation due to thermal expansion and internal pressure. It is the difference from the sum of the vehicle compartment expansion and contraction, which is the sum, and the formula of [(the amount of thermal expansion of the rotor + the amount of axial contraction due to rotation of the rotor) − (the amount of thermal expansion of the vehicle compartment + the amount of expansion and contraction due to the internal pressure of the vehicle compartment)] It is represented by Looking at the thermal expansion of the rotor and the thermal expansion of the cabin, the thermal capacity of the cabin differs from that of the rotor, and there is a difference in the rate of temperature rise. Is not proportional, but in a steady state it has a relationship that is somewhat close to it. On the other hand, the axial shrinkage of the rotor is proportional to the square of the rotation speed, but is substantially constant in a steady state. The change in the amount of expansion and contraction due to the internal pressure of the vehicle compartment is relatively small between the internal pressure when the internal pressure is not loaded and the internal pressure when the internal pressure is full. That is, the axial extension difference between the rotor shaft end and the vehicle compartment is
It is practically permissible to treat it as being proportional to the amount of thermal expansion of the passenger compartment. The thermal expansion displacement of the shaft end of the rotor appears at the ends of the outer steam introducing pipe 29 and the inner steam introducing pipe 31.

【0010】[0010]

【発明の効果】以上説明したように、本発明によればガ
スタービンの車室の熱伸びに応じて機械的構造体である
熱伸補償リンク機構によりシールリテーナの位置を調整
するので、電源遮断等の影響を受けずに冷却用蒸気給排
部の有効ラビリンスシール長を確保することができる。
しかも、熱膨張差を考慮してシールリテーナの位置を調
整するので、冷却用蒸気給排部のシール形成部材の長さ
を最小にすることができ、装置をコンパクトにすること
ができる。
As described above, according to the present invention, the position of the seal retainer is adjusted by the heat expansion compensating link mechanism, which is a mechanical structure, according to the heat expansion of the cabin of the gas turbine. Thus, the effective labyrinth seal length of the cooling steam supply / discharge section can be secured without being affected by the above.
In addition, since the position of the seal retainer is adjusted in consideration of the difference in thermal expansion, the length of the seal forming member of the cooling steam supply / discharge unit can be minimized, and the apparatus can be made compact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す内部の縦断面図であ
る。
FIG. 1 is an internal longitudinal sectional view showing an embodiment of the present invention.

【図2】前記実施形態の要部を示す位置部切欠き側面図
である。
FIG. 2 is a side view of a position notch showing a main part of the embodiment.

【図3】従来提案の概念的構造を示す部分断面図であ
る。
FIG. 3 is a partial cross-sectional view showing a conceptual structure proposed in the related art.

【符号の説明】[Explanation of symbols]

21 車室 23 本体ケース 25 入口 27 内部通路 29 蒸気導入外管 29a 端部 31 蒸気導入内管 31a 端部 33 ラビリンスリング 35 シールリテーナ 37,38 リンクアーム 50 熱伸補償リンク機構 51 ベース 53,55 ブラケット 57 レバー 59 回動リンク DESCRIPTION OF SYMBOLS 21 Cabinet 23 Main body case 25 Inlet 27 Internal passage 29 Steam introduction outer pipe 29a End 31 Steam introduction inner pipe 31a End 33 Labyrinth ring 35 Seal retainer 37, 38 Link arm 50 Heat extension compensation link mechanism 51 Base 53, 55 Bracket 57 Lever 59 Rotating link

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンロータを囲んで設けられた
車室の一端に固定された本体ケースと、前記ロータに対
し同軸的に延びる蒸気導入外管の端部外面に形成された
ラビリンスシール用第1凹凸面と、前記蒸気導入外管の
内部を延びる導入内管の端部外面に形成されたラビリン
スシール用第2凹凸面と、前記第1及び第2凹凸面をそ
れぞれ取り囲む第1及び第2ラビリンスリングと、同第
1及び第2ラビリンスリングを保持し前記本体ケースに
摺動自在に設けられたシールリテーナとを有するガスタ
ービン冷却用蒸気給排部構造のシール装置において、ガ
スタービン車室の支持基礎と該ガスタービン車室とに介
装されたレバー及び同レバーに連接された回動アームと
を有する熱伸補償リンク機構を付設し、前記本体ケース
に軸支されると共に前記シールリテーナに連接した駆動
アームを前記熱伸補償リンク機構の前記回動アームに連
接し、前記ガスタービンの車室の軸方向熱伸量に対応し
て前記シールリテーナを軸方向に駆動して位置調整し、
前記ラビリンスシールの有効シール長を維持することを
特徴とするガスタービン冷却用蒸気給排部構造のシール
装置。
1. A body case fixed to one end of a vehicle room provided surrounding a gas turbine rotor, and a labyrinth seal formed on an outer surface of an end portion of a steam introduction outer tube extending coaxially with the rotor. 1 irregular surface, a second irregular surface for labyrinth seal formed on an end outer surface of an introduction inner tube extending inside the steam introduction outer tube, and first and second surfaces surrounding the first and second irregular surfaces, respectively. A gas turbine cooling steam supply / discharge unit sealing device comprising: a labyrinth ring; and a seal retainer holding the first and second labyrinth rings and slidably provided in the main body case. A heat expansion compensating link mechanism including a support base, a lever interposed between the gas turbine casing, and a rotating arm connected to the lever is provided, and is supported by the main body case. A drive arm connected to the seal retainer is connected to the rotating arm of the heat expansion compensating link mechanism, and the seal retainer is driven in the axial direction corresponding to an axial heat expansion amount of the cabin of the gas turbine. Adjust the position,
A sealing device having a steam supply / discharge unit structure for cooling a gas turbine, wherein an effective seal length of the labyrinth seal is maintained.
JP20484296A 1996-08-02 1996-08-02 Sealing device with steam supply / exhaust structure for gas turbine cooling Expired - Fee Related JP3854341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20484296A JP3854341B2 (en) 1996-08-02 1996-08-02 Sealing device with steam supply / exhaust structure for gas turbine cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20484296A JP3854341B2 (en) 1996-08-02 1996-08-02 Sealing device with steam supply / exhaust structure for gas turbine cooling

Publications (2)

Publication Number Publication Date
JPH1047010A true JPH1047010A (en) 1998-02-17
JP3854341B2 JP3854341B2 (en) 2006-12-06

Family

ID=16497303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20484296A Expired - Fee Related JP3854341B2 (en) 1996-08-02 1996-08-02 Sealing device with steam supply / exhaust structure for gas turbine cooling

Country Status (1)

Country Link
JP (1) JP3854341B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102953770A (en) * 2011-08-19 2013-03-06 通用电气公司 Turbomachine seal assembly
TWI409383B (en) * 2007-09-24 2013-09-21 Alstom Technology Ltd Seal in gas turbine
CN113898740A (en) * 2021-10-04 2022-01-07 哈尔滨理工大学 Sealing structure with electric spindle thermal elongation detection function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI409383B (en) * 2007-09-24 2013-09-21 Alstom Technology Ltd Seal in gas turbine
CN102953770A (en) * 2011-08-19 2013-03-06 通用电气公司 Turbomachine seal assembly
CN102953770B (en) * 2011-08-19 2015-09-23 通用电气公司 Turbomachinery black box
CN113898740A (en) * 2021-10-04 2022-01-07 哈尔滨理工大学 Sealing structure with electric spindle thermal elongation detection function

Also Published As

Publication number Publication date
JP3854341B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
JP4283488B2 (en) gas turbine
JP4362231B2 (en) Gas turbine having interstage sealing mechanism
US4343592A (en) Static shroud for a rotor
US5601402A (en) Turbo machine shroud-to-rotor blade dynamic clearance control
EP2570615B1 (en) Self-adjusting device for controlling the clearance between rotating and stationary components of a turbomachine
US8240986B1 (en) Turbine inter-stage seal control
US10935044B2 (en) Segregated impeller shroud for clearance control in a centrifugal compressor
US11002284B2 (en) Impeller shroud with thermal actuator for clearance control in a centrifugal compressor
CA2087690A1 (en) Tip clearance control apparatus for a turbo-machine blade
CA2333991A1 (en) A system for delivering pressurized lubricant fluids to an interior of a rotating hollow shaft
US5035572A (en) Arrangement for adjusting guide blades
JP2001355737A (en) Surface trailing brush seal
JPH0656214B2 (en) Dry gas seal device
JPH1150809A (en) Elongation adjuster for rotating body
JPH1047010A (en) Seal device for structure of steam feed/discharge part for cooling gas turbine
US4948264A (en) Apparatus for indirectly determining the temperature of a fluid
JPS62243997A (en) Control device for vane end gap of centrifugal impeller
JP2002357103A (en) Seal device for steam turbine
JP2011137512A (en) Seal device
JP2001289004A (en) Axial flow fluid machinery with guide device having adjustable stator blade
JPS5918207A (en) Clearance adjusting device of steam turbine
US3906728A (en) Auxiliary water pump
JPH06272698A (en) Axial gap control method for centrifugal compressor
JPH0312201B2 (en)
JP2001227543A (en) Static pressure gas bearing spindle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060908

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees