JPH1046872A - Support method of utility pole - Google Patents

Support method of utility pole

Info

Publication number
JPH1046872A
JPH1046872A JP22065196A JP22065196A JPH1046872A JP H1046872 A JPH1046872 A JP H1046872A JP 22065196 A JP22065196 A JP 22065196A JP 22065196 A JP22065196 A JP 22065196A JP H1046872 A JPH1046872 A JP H1046872A
Authority
JP
Japan
Prior art keywords
utility pole
branch line
arm
pole
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22065196A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Osawa
達宏 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22065196A priority Critical patent/JPH1046872A/en
Publication of JPH1046872A publication Critical patent/JPH1046872A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the root-opening width of a supporting wire fitted to a utility pole. SOLUTION: The support method of the utility pole is constituted so that a supporting wire capable of resisting unequal tension working to the utility pole is stretched between the utility pole and a ground surface at a specified setting angle. An arm 11 projected from the utility pole 1 approximately horizontally is installed at the place of the intermediate section of the utility pole 1 on the reverse side in the direction of application of unequal tension P at that time, the first supporting wire 12 is mounted on the utility pole through the arm 11 while an arm 21 protruded from the utility pole 1 approximately horizontally at the place of the upper section of the utility pole 1 on the reverse side in the direction of application of unequal tension P, and the second supporting wire 22 is set up to the utility pole 1 through the arm 21. Root- opening can be inhibited within 1.3m though it has been 3m or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電柱の支持方法に係
り、とくに電柱に取付けられる支線の根開き幅を狭める
支線の取付構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of supporting a utility pole, and more particularly, to a branch wire mounting structure for narrowing the width of a branch wire attached to a utility pole.

【0002】[0002]

【従来の技術】架空電線路の支持物である電柱は、下端
部を所定の長さ地中に埋めて設置され、それ自体では自
立できるものであるが、例えば電線の引留箇所やカーブ
箇所、あるいは両側の架線条数に差がある場合などに
は、電柱に偏った張力(不平均張力)が働くため、これ
を打ち消し、電柱の傾斜や倒壊事故を防ぐために支線が
取付けられる。かかる支線は、一般に図9に示すように
電柱1の上部から所定仕様のワイヤ2を斜め下方に張設
し、地中に埋設したアンカ3により支線端部を地面に固
定する構造をとる。
2. Description of the Related Art An electric pole, which is a support for an overhead electric wire path, is installed with its lower end buried in a predetermined length in the ground and can stand on its own. Alternatively, when there is a difference in the number of overhead wire strips on both sides, biased tension (non-average tension) acts on the electric pole, and a branch line is attached to cancel the tension and prevent a tilt or a collapse accident of the electric pole. Such a branch line generally has a structure in which a wire 2 of a predetermined specification is stretched obliquely downward from the upper part of the telephone pole 1 and an end of the branch line is fixed to the ground by an anchor 3 buried underground, as shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来の支線
構造では、電柱からの支線の張り出しW0(いわゆる根
開き)が大きくなってしまう不都合があった。すなわち
図10に示すように電線4により水平方向の不平均張力
Pが電柱1に作用する場合には、これと反対方向の水平
張力T0(=P)で電柱1を支持すれば張力Pが打ち消
され、電柱1のバランスをとることが出来る。この支持
張力T0は、前記図9に示すように支線の取付角度をθ
とすると、支線張力tの水平分力となるから、次式の通
りとなる。 T0=t・sinθ…(式1) 従って同式からも明らかなように、θが小さくなるほど
支持張力T0は小さくなってしまうから、電線の張力P
を支えるためにはθ=0とすることはできず、ある程度
以上の取付角度θが必要となって、これに伴い根開きW
0が生じる。
By the way [0008], in the conventional branch structure, branch line of the overhanging W 0 (the so-called root opening) from the utility pole there was a disadvantage that becomes larger. That is, as shown in FIG. 10, when the non-average tension P in the horizontal direction acts on the electric pole 1 by the electric wire 4, if the electric pole 1 is supported by the horizontal tension T 0 (= P) in the opposite direction, the tension P is increased. It is canceled and the pole 1 can be balanced. The support tension T 0 is determined by changing the angle of attachment of the branch line to θ as shown in FIG.
Then, since the horizontal component force of the branch line tension t is obtained, the following expression is obtained. T 0 = t · sin θ (Equation 1) Therefore, as is clear from the equation, the smaller the θ, the smaller the support tension T 0.
Can not be set to 0 to support the angle, and a certain degree of attachment angle θ is required.
0 occurs.

【0004】この根開きは、とくに住宅や建物が密集し
た都市部市街地において厄介な問題を引き起こす。支線
が歩道を跨いで住宅敷地内に達することとなったり、玄
関や車庫出入口、あるいは歩道縁石を低段差とした車輌
出入り箇所などを遮ってこれらを塞いでしまうことがあ
るのである。このため、建柱箇所に位置する住民の承諾
が得られず、線路の敷設に支障をきたすことも少なくな
い。尚、支線の取付け方向を邪魔にならない別方向に変
えることは一般的に云って困難である。支線の取付方向
は線路の配設状態(電線張力が働く方向)によって必然
的に決まってくるからである。
[0004] This rooting causes a troublesome problem, especially in urban urban areas where houses and buildings are densely packed. In some cases, a branch line straddles the sidewalk and reaches the inside of the residential premises, or blocks and blocks an entrance, a garage doorway, or a vehicle entrance where the sidewalk curb is at a low level. For this reason, the consent of the residents located on the pillars cannot be obtained, and there are many cases in which the installation of the track is hindered. It is generally difficult to change the direction of attaching the branch line to another direction that does not interfere. This is because the mounting direction of the branch line is inevitably determined by the arrangement state of the line (the direction in which the wire tension acts).

【0005】さらに冬期間降雪量の多い地域にあって
は、支線が単に邪魔になるだけでなく、降り積もった雪
の重みが支線にかかり、支線が緩んでその機能が損なわ
れる問題が生じる。この支線にかかる雪の重みは根開き
が広くなるほど大きいものとなり、例えば北海道や東北
日本海側、上信越、北陸地方等の積雪量が数メートルに
も及ぶ豪雪地域あっては、雪の重みでアンカが浮き上が
り、支線が弛んでその機能が全く失われる被害も少なか
らず発生している。
[0005] Further, in an area where the amount of snowfall is large in the winter period, not only the branch line is an obstacle, but also the weight of the accumulated snow is applied to the branch line, so that the branch line is loosened and its function is impaired. The weight of snow on this branch line increases as the root spread increases.For example, in heavy snow areas where the amount of snow covers several meters, such as Hokkaido and the Tohoku Sea of Japan, Joshinetsu, and the Hokuriku region, the weight of snow is Anchors have risen, branch lines have been loosened, and their functions have been lost at all.

【0006】一方、支線角度θを小さくしてもその分、
支線の設計張力tを大きくとれば理論上同様の支持張力
Tが得られるから、根開きを小さく抑えることが可能と
も考えられる。しかしながら支線の設計張力tを増大す
るには、太径で高強度のワイヤを使用する必要があるか
ら材料コストが嵩むとともに、支線を固定するアンカ
(3)も大型化してその埋設作業が容易ではない。また
支線張力tが大きくなれば電柱に作用する垂直分力も増
大するから、この垂直分力により電柱が沈下するとの新
たな問題も生じる。
On the other hand, even if the branch line angle θ is reduced,
If the design tension t of the branch line is increased, a similar support tension T can be obtained in theory, so that it is possible to reduce the root opening. However, in order to increase the design tension t of the branch line, it is necessary to use a wire having a large diameter and high strength, so that the material cost increases, and the anchor (3) for fixing the branch line is also large, so that the embedding work is not easy. Absent. In addition, when the branch line tension t increases, the vertical component acting on the utility pole also increases, so that a new problem arises in that the utility pole sinks due to the vertical component.

【0007】他方、このような問題を解消するために、
本発明者は支線の新たな取付方法に関する提案を先に行
った(特願平8−157642号)。この方法は、電柱
から略水平に張り出すアームを介して支線を取付けるも
ので、この方法によれば在来の方法に較べ根開きを格段
に幅狭に(例えば従来3m程度あったところを1.8m
程度に)抑えることが可能であり、実用上十分な効果が
期待できる。しかしながら同様の支持力と安全性を確保
しつつ、根開きをさらに狭めることが出来れば、当該発
明の利用範囲を広げ、建柱施工現場において得られるメ
リットは一層増大する。
On the other hand, in order to solve such a problem,
The inventor of the present invention has previously proposed a new method of attaching a branch line (Japanese Patent Application No. 8-157624). According to this method, a branch line is attached via an arm that extends substantially horizontally from a telephone pole. According to this method, the divergence is significantly narrower than that of a conventional method (for example, the conventional method has been reduced to about 1 m instead of about 3 m). .8m
To the extent), and a practically sufficient effect can be expected. However, if the rooting can be further narrowed while securing the same supporting force and safety, the range of use of the present invention is expanded, and the merit obtained at the construction site of the pole is further increased.

【0008】そこで本発明の目的は、電柱に取付けられ
る支線の根開き幅をさらに狭めることにある。
[0008] Therefore, an object of the present invention is to further reduce the root opening width of a branch line attached to a utility pole.

【0009】[0009]

【課題を解決するための手段】前記目的を達成して課題
を解決するため、本発明に係る電柱の支持方法は、電柱
に作用する不平均張力に対抗可能な支線を、所定の取付
角度をもって電柱と地面との間に張設する電柱の支持方
法において、前記不平均張力の作用方向と反対側かつ電
柱の中間部位置に、電柱から略水平に張り出すアーム
(下段アーム)を設け、該アームを介し第一の支線を電
柱に取付ける一方、前記不平均張力の作用方向と反対側
かつ電柱の上部位置に、電柱から略水平に張り出すアー
ム(上段アーム)を設け、該アームを介し第二の支線を
電柱に取付ける。
In order to achieve the above-mentioned object and to solve the problem, a method of supporting a utility pole according to the present invention comprises the steps of: forming a branch line capable of withstanding non-average tension acting on the utility pole at a predetermined mounting angle; In a method for supporting a utility pole stretched between a utility pole and the ground, an arm (lower arm) projecting substantially horizontally from the utility pole is provided at a position opposite to the direction of action of the non-average tension and at an intermediate portion of the utility pole. While the first branch line is attached to the utility pole via the arm, an arm (upper arm) projecting substantially horizontally from the utility pole is provided on the opposite side of the direction of the non-average tension and at the upper position of the utility pole. Attach the second branch line to the utility pole.

【0010】[0010]

【作用】本発明の支持方法では、電柱に作用する不平均
張力と反対側かつ電柱の中間部位置にアームを介して第
一の支線(下段支線)を取付けるとともに、不平均張力
と反対側かつ電柱の上部位置に同じくアームを介して第
二の支線(上段支線)を取付けることにより電柱を支持
する。従来では、不平均張力に対抗できる水平分力を得
るために、単に電柱上部に一定の角度をもたせて支線を
取付けるだけであったのに対し、本支持方法では、電柱
から略水平に張り出すアームを介して支線(上段支線)
を取付けるから、水平分力に加え垂直方向の分力を支持
力として利用することが可能となる。
According to the supporting method of the present invention, a first branch line (lower branch line) is attached via an arm at a position opposite to the non-average tension acting on the utility pole and at an intermediate position of the utility pole, and at a side opposite to the non-average tension. The electric pole is supported by attaching a second branch line (upper branch line) to the upper position of the telephone pole via an arm. Conventionally, in order to obtain a horizontal component force that can counteract the non-average tension, a branch line was simply attached at a certain angle to the upper part of the utility pole, but in this support method, it is extended substantially horizontally from the utility pole Branch line via arm (upper branch line)
Because of the mounting, the vertical component in addition to the horizontal component can be used as the supporting force.

【0011】しかも本発明によれば、かかる電柱上部の
支線(上段支線)による支持を一層効果的にすることが
出来る。なぜなら電柱の中間部位置に、電柱から略水平
に張り出すアームを介して別の支線(下段支線)を配設
してあり、この下段支線が電柱中間部(下段支線取付位
置)において不平均張力に抗する反力モーメントを発生
させ、後に数式および具体的数値に基づいて説明するよ
うに、見かけ上電柱の下端(地際)を上方に移動させ、
電柱を実際の地際より上方の位置まで地中に埋設したの
と同等とすることが出来る機能を営むからである。
Further, according to the present invention, it is possible to further effectively support the power line by using the upper branch line. This is because another branch line (lower branch line) is provided at the middle part of the telephone pole via an arm that extends substantially horizontally from the telephone pole, and this lower branch line has an unbalanced tension at the middle part of the telephone pole (lower branch line mounting position). , And apparently move the lower end (ground) of the utility pole upward, as will be described later based on mathematical formulas and specific numerical values.
This is because it has a function that can be equivalent to burying a telephone pole in the ground up to a position above the actual ground.

【0012】従って本支持方法によれば、従来より支線
張力が小さいにもかかわらず大きな支持力を得ることが
でき、同じ支線張力(支線の設計張力)でも取付角度を
小さくして、支線の根開きを幅狭に抑えることが可能と
なる。また、根開きを小さくしても、従来と同様の、あ
るいは従来より大きな支持力が得られるから、支線ワイ
ヤを太径で高強度のものとしたり、アンカを大型化する
必要もない。尚、スペース的に余裕があって支線の根開
きをとくに狭める必要のない施工箇所においては、従来
と同様の根開きを確保しても勿論構わない。本発明は小
さな根開きで従来同様の支持力を得られるものである
が、根開きを従来と同様にすれば支線の設計張力を一層
小さくすることができるから、従来より細径の支線ワイ
ヤと小型のアンカで電柱の支持が可能となって、材料コ
ストの低減と施工の簡略化を図ることが出来る。
Therefore, according to the present supporting method, a large supporting force can be obtained even though the branch line tension is smaller than before, and the mounting angle is reduced even with the same branch line tension (designed tension of the branch line), and the root of the branch line is reduced. The opening can be kept narrow. Further, even if the root opening is reduced, the same or larger supporting force can be obtained as before, so that it is not necessary to make the branch wire large in diameter and high in strength or to make the anchor large. It should be noted that, in a construction site where there is a sufficient space and there is no need to particularly narrow the root opening of the branch line, it is of course possible to secure the same root opening as in the related art. The present invention can obtain the same supporting force as the conventional one with a small root opening, but if the root opening is the same as the conventional one, it is possible to further reduce the design tension of the branch line. The utility pole can be supported by a small anchor, which can reduce material costs and simplify construction.

【0013】また支線の取付角度を小さくして、例えば
支線をほぼ垂直に張設すれば、積雪量の多い地域にあっ
ても支線に雪の重みが殆どかかることがなくなるから、
支線への積雪荷重によるアンカの浮き上がりや支線の緩
み等の被害を防ぐことが可能となる。尚、第一の支線を
取付ける「電柱の中間部位置」とは、電柱上部の第二支
線取付位置と電柱下端(地際)との間を意味するもので
あって、電柱の丁度2分の1の高さ位置のみを云うもの
ではない。
[0013] Further, if the angle of attachment of the branch line is reduced, for example, if the branch line is stretched substantially vertically, even in an area with a large amount of snow, the weight of the snow on the branch line will hardly be applied.
Damage such as lifting of the anchor or loosening of the branch line due to snow load on the branch line can be prevented. The "intermediate position of the telephone pole" where the first branch line is mounted means between the second branch line mounting position on the upper part of the telephone pole and the lower end of the telephone pole (at the ground), and is just half of the telephone pole. It does not mean only the height position of 1.

【0014】[0014]

【実施例】以下、添付図面に基づいて本発明の実施例を
説明する。図1は本発明に係る電柱支持方法の一例を示
すものである。同図に示すようにこの支持方法は、不平
均張力Pと反対側の電柱中間部と電柱上部とにそれぞれ
アーム11(下段アーム),21(上段アーム)を配設
し、これらのアームを介して支線12,22を取付ける
ものである。尚、アーム11,21の破損を防止するた
めに、各アーム先端部から適当な設置角度をもって補強
用の斜材13,23を設けてある。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an example of a utility pole supporting method according to the present invention. As shown in the figure, in this supporting method, arms 11 (lower arm) and 21 (upper arm) are arranged at the middle part of the utility pole opposite to the non-average tension P and the upper part of the utility pole, respectively. The branch lines 12 and 22 are attached. In order to prevent breakage of the arms 11 and 21, diagonal members 13 and 23 for reinforcement are provided at an appropriate installation angle from the end of each arm.

【0015】既に述べたように本発明者は先に、アーム
を使用した電柱の支持方法に関する提案を行った(特願
平8−157642号)。この方法は、図8に示すよう
に電柱1から略水平に張出するアーム31を介して支線
32を取付けるもので、支線張力をt、支線の取付角度
をθ、アーム長をl、電柱の地上高(地面Gから電線3
3および支線32の取付位置までの高さ)をHとする
と、地際点Eまわりのモーメントのつり合いから次式が
成立する。 P・H=t・sinθ・H+t・cosθ・l…(式2) 従って支線32により得られる支持張力T(前記図10
のT0)は、 T=t・sinθ+t・cosθ・l/H…(式3) となり、同式から明らかなように、在来の方法では不平
均張力Pの支持に何ら寄与しなかった支線の垂直分力
(t・cosθ)を支持に利用することが可能となり、
電柱からのアームの張出分lを含めても支線の根開き幅
Wを狭めることが出来る。
As described above, the present inventor has previously proposed a method of supporting a utility pole using an arm (Japanese Patent Application No. 8-157624). In this method, as shown in FIG. 8, a branch line 32 is attached via an arm 31 projecting substantially horizontally from the utility pole 1. The branch line tension is t, the attachment angle of the branch line is θ, the arm length is l, and Height above ground (Electric wire 3 from ground G)
3 and the height of the branch line 32 to the mounting position), the following equation is established from the balance of the moment around the ground point E. P · H = t · sin θ · H + t · cos θ · l (Equation 2) Accordingly, the supporting tension T obtained by the branch line 32 (see FIG. 10)
T 0 ) is given by: T = t · sin θ + t · cos θ · l / H (Equation 3) As is apparent from the equation, the branch line which did not contribute to supporting the non-average tension P by the conventional method. It is possible to use the vertical component (t · cosθ) of
Even if the extension l of the arm from the telephone pole is included, the root width W of the branch line can be reduced.

【0016】一方、本発明者はさらに研究を進め、電柱
の地上高Hを小さくすることが出来れば、前記式3であ
らわされる支持張力Tをさらに増大できることに着目し
(アーム長lを大きくすれば支持力が増大することは勿
論として)、このような支持構造が得られるか検討を行
った。その結果、電柱の中間部を別の支線で支持する本
発明を完成するに至った。
On the other hand, the present inventor has further researched and noticed that if the ground height H of the utility pole can be reduced, the support tension T expressed by the above equation 3 can be further increased (the arm length l should be increased). (Of course, the supporting force increases), and it was examined whether such a supporting structure can be obtained. As a result, the present invention in which the intermediate part of the telephone pole is supported by another branch line has been completed.

【0017】すなわち前記図1に示すように、電線張力
(不平均張力)をP、電柱の地上高をH、下段支線12
による支持モーメントをM1、下段アーム11の取付高
さをh1、該アームから上段アーム21までの高さを
2、アーム11,21の長さをl、上段支線22の取
付角度をθ2、上段支線22の張力をt2とすれば、電柱
1の地際E点まわりのモーメントのつり合いから、次式
が成立する。 P・H=t2・sinθ2・H+t2・cosθ2・l+M1…(式4) H=h1+h2であるから、同式は、 P・(h1+h2)=t2・sinθ2・H+t2・cosθ2・l+M1…(式5 ) となって、次式のように変形することが出来る。 P・h2=t2・sinθ2・H+t2・cosθ2・l+M1−P・h1…(式6 )
That is, as shown in FIG. 1, the wire tension (average tension) is P, the ground height of the pole is H, and the lower branch line 12 is
M 1 a support moment due, h 1 the mounting height of the lower arm 11, the height h 2 from the arm to the upper arm 21, the length of the arm 11 and 21 l, the mounting angle of the upper branch 22 theta 2. Assuming that the tension of the upper branch line 22 is t 2 , the following equation is established from the balance of the moment around the ground E point of the electric pole 1. P · H = t 2 · sin θ 2 · H + t 2 · cos θ 2 · l + M 1 (Equation 4) Since H = h 1 + h 2 , the same equation is obtained by P · (h 1 + h 2 ) = t 2 · sin θ 2 · H + t 2 · cos θ 2 · l + M 1 (Equation 5) and can be transformed as shown in the following equation. P · h 2 = t 2 · sin θ 2 · H + t 2 · cos θ 2 · l + M 1 -P · h 1 (Equation 6)

【0018】従って同式から明らかなように、M1=P
・h1となる支持モーメントM1を電柱に対し加えてやれ
ば、不平均張力Pを支持するうえで、見かけ上電柱をC
点まで地面に埋設したのと同等の効果を得ることが出来
る。なぜならM1=P・h1であれば、式6は、 P・h2=t2・sinθ2・H+t2・cosθ2・l…(式7) となって、不平均張力P(左辺)については、電柱の高
さがh2となるからである。また、得られる支持張力T2
は、式7から次の通りとなり、H/h2>1,h2<Hで
あるから、前記式3の支持張力Tよりさらに大きな支持
力が得られる。 T2=t2・sinθ2・H/h2+t2・cosθ2・l/h2…(式8) このように本発明によれば、電柱上部のみに支線(上段
支線22)を取付ける支持構造と異なって、電柱の埋設
位置(地際)を見かけ上上昇させ、大きな支持力を得る
ことが出来るから、支線の根開き幅(W2)を一層狭め
ることが可能となる。
Therefore, as is apparent from the equation, M 1 = P
Do it a · h 1 and comprising support moment M 1 in addition to utility poles, in order to support the non-round tension P, and apparently utility pole C
The same effect can be obtained as if the point were buried in the ground. Because M 1 = P · h 1 , Equation 6 is given by: P · h 2 = t 2 · sin θ 2 · H + t 2 · cos θ 2 · l (Equation 7), and the non-average tension P (left side) for, because the height of the utility pole is h 2. Further, the obtained supporting tension T 2
Is as follows from Equation 7, and H / h 2 > 1 and h 2 <H, so that a larger supporting force than the supporting tension T of Equation 3 can be obtained. T 2 = t 2 · sin θ 2 · H / h 2 + t 2 · cos θ 2 · l / h 2 (Equation 8) As described above, according to the present invention, the support for attaching the branch line (upper branch line 22) only to the upper part of the telephone pole is provided. Unlike the structure, the buried position (ground) of the utility pole can be apparently raised and a large supporting force can be obtained, so that the width (W 2 ) of the branch line can be further narrowed.

【0019】尚、下段支線による支持モーメントM1
大きさは、必ずしも厳密にM1=P・h1となるように設
定する必要はなく、適宜これより大きくすることも出来
るし、小さくしても構わない。前述のようにM1=P・
1とすれば、見かけ上の電柱高はh2となって、ちょう
ど下段支線取付位置Cまで電柱を埋めたのと同等の効果
が得られるが、例えば図1に示すように、H=h11+h
12で且つh11<h1,h12>h2となる距離h11およびh
12を考えれば、M1をP・h1より小さくしても(M1
P・h11とする)、前記式4は、 P・(h11+h12)=t2・sinθ2・H+t2・cosθ2・l+M1…(式 9) と置くことが出来るから、 P・h12=t2・sinθ2・H+t2・cosθ2・l+M1−P・h11 =t2・sinθ2・H+t2・cosθ2・l…(式10) となって、見かけ上の電柱高はh12となり、依然、h11
だけ電柱を地中に埋めたのと同等の支持効果が得られる
からである。すなわち本発明における下段支線は、不平
均張力Pを支持することを目的としたものではなく、あ
くまで地際を見かけ上上昇させ、当該位置で電柱を係止
するために設置するものある。従って本発明により電柱
に取付ける支線本数が増え、根開きが小さくなったとし
ても、電柱に働く垂直方向の荷重が在来の方法に較べ増
大するようなことはなく、電柱が沈下する問題が生じる
ことはない。
The magnitude of the supporting moment M 1 by the lower branch line does not necessarily have to be set strictly so that M 1 = P · h 1 , but can be made larger or smaller as appropriate. No problem. As described above, M 1 = P ·
if h 1, the apparent utility pole height becomes h 2, just but the same effect as buried utility pole to the lower branch mounting position C is obtained, for example, as shown in FIG. 1, H = h 11 + h
12 and h 11 <h 1, h 12> the h 2 distance h 11 and h
Considering 12 , even if M 1 is smaller than P · h 1 (M 1 =
And P · h 11), the equation 4, since P · (h 11 + h 12 ) = t 2 · sinθ 2 · H + t 2 · cosθ 2 · l + M 1 ... ( can be put to Equation 9), P · h 12 = t 2 · sin θ 2 · H + t 2 · cos θ 2 · l + M 1 -P · h 11 = t 2 · sin θ 2 · H + t 2 · cos θ 2 · l (Equation 10) the h 12, and the still, h 11
This is because a support effect equivalent to burying a telephone pole in the ground can be obtained. That is, the lower branch line in the present invention is not intended to support the non-average tension P, but is installed to raise the ground apparently and lock the telephone pole at the position. Therefore, according to the present invention, even if the number of branch lines attached to the power pole is increased and the root gap is reduced, the vertical load acting on the power pole does not increase as compared with the conventional method, and the problem that the power pole sinks occurs. Never.

【0020】以下、本方法によれば従来に較べどの程度
根開きを狭めることができるか、引留支線を例として具
体的に検討を行う。尚、従来の方法としては日本電信電
話株式会社(NTT)の規格、設計仕様に基づいて施工
を行うこととし、これと本方法とを対比する。 (a)従来法の場合 従来の方法(図9)では、電柱の地上高Hを6.5m、
支持すべき電線張力P(=T0)を1670kg(NT
T規格30CR線に相当、以下同様)、支線張力tを3
866kg(65CR線)とした場合、NTTの設計仕
様によれば、支線取付角θは25゜以上とされる。従っ
て、根開きW0は、 W0=6.5×tan25゜=3.03…(式11) となって、従来では少なくとも3.03mの根開きが生
じた。
In the following, the extent to which the root gap can be reduced by the present method as compared with the conventional method will be concretely examined by taking a branch line as an example. As a conventional method, construction is performed based on the standards and design specifications of Nippon Telegraph and Telephone Corporation (NTT), and this method is compared with the present method. (A) In the case of the conventional method In the conventional method (FIG. 9), the ground height H of the telephone pole is 6.5 m,
The wire tension P (= T 0 ) to be supported is 1670 kg (NT
(Corresponding to T standard 30CR wire, the same applies hereinafter), and branch line tension t is 3
In the case of 866 kg (65 CR line), the branch line mounting angle θ is 25 ° or more according to the NTT design specifications. Therefore, the root opening W 0 is expressed as: W 0 = 6.5 × tan25 ゜ = 3.03 (Equation 11), and a root opening of at least 3.03 m has conventionally occurred.

【0021】(b)本方法の場合 これに対し、同一の支線(支線張力3866kg)を使
用し、本方法(図1)を適用すれば次の通りとなる。ま
ず下段支線12の設置により電柱地際を見かけ上当該支
線位置まで上昇させることとし、M1=P・h1となる支
線12の取付角θ1および取付高さh1を求める。下段支
線の支線張力をt1とすると、該支線による支持モーメ
ントM1は、M1=t1・sinθ1・h1+t1・cosθ
1・lであるから、 t1・sinθ1・h1+t1・cosθ1・l=P・h1…(式12) となり、同式をh1について解けば、次式の通りとな
る。 h1=t1cosθ1・l/(P−t1sinθ1) =3866×cosθ1×1.0/(1670×0.9−3866×sin θ1)…(式13) 尚、同式において不平均張力Pに0.9を乗じたのは、
電線張力の90%を支線で、残りの10%を電柱自身で
支持するとするNTTの設計仕様に合致させるためであ
る。またアームの長さlは1.0mとした。
(B) In the case of the present method On the other hand, if the same branch line (branch tension: 3866 kg) is used and the present method (FIG. 1) is applied, the following is obtained. First, it is assumed that the lower branch line 12 is installed to apparently rise to the position of the branch line near the telephone pole, and the mounting angle θ 1 and the mounting height h 1 of the branch line 12 where M 1 = P · h 1 are obtained. Assuming that the branch line tension of the lower branch line is t 1 , the supporting moment M 1 by the branch line is M 1 = t 1 · sin θ 1 · h 1 + t 1 · cos θ
Since it is 1 · l, t 1 · sin θ 1 · h 1 + t 1 · cos θ 1 · l = P · h 1 (Equation 12) When the same equation is solved for h 1 , the following equation is obtained. h 1 = t 1 cos θ 1 · l / (P−t 1 sin θ 1 ) = 3866 × cos θ 1 × 1.0 / (1670 × 0.9−3866 × sin θ 1 ) (Expression 13) Multiplied by 0.9 to the average tension P
This is in order to meet the design specifications of NTT in which 90% of the wire tension is supported by the branch wire and the remaining 10% is supported by the utility pole itself. The length l of the arm was 1.0 m.

【0022】式13において例えばθ1=0゜すなわち
下段支線12を垂直に設置することとすると、h1
2.6mとなる。また、H=h1+h2=6.5mである
から、h2=3.9mとなる。さらに前記式7により上
段支線の取付角θ2を求めるが、同式をθ2について解く
ために次のように変形する。 P・h2=t2・sinθ2・H+t2・cosθ2・l =t2(H2+l21/2sin(θ2+ψ)…(式14) ただし、ψ=cos-1{H/(H2+l21/2}=co
-1{6.5/(6.52+121/2}=8.7[゜]
である。式14をθ2について解けば、次式の通りとな
る。 θ2=sin-1{P・h2/t2/(H2+l21/2}−ψ…(式15) 同式に数値を代入し、θ2を求めれば、次の通りとな
る。 θ2=sin-1{1670×0.9×3.9/3866/(6.52+121/2 }−8.7=4.6[゜]…(式16)
In equation (13), for example, if θ 1 = 0 °, that is, if the lower branch line 12 is set vertically, h 1 =
2.6 m. Since H = h 1 + h 2 = 6.5 m, h 2 = 3.9 m. Further, the mounting angle θ 2 of the upper branch line is obtained by the above equation 7, and the equation is modified as follows to solve the equation for θ 2 . P · h 2 = t 2 · sin θ 2 · H + t 2 · cos θ 2 · l = t 2 (H 2 + l 2 ) 1/2 sin (θ 2 + ψ) (Equation 14) where ψ = cos -1 {H / (H 2 + l 2 ) 1/2 } = co
s -1 {6.5 / (6.5 2 +1 2 ) 1/2 } = 8.7 [゜]
It is. When Equation 14 is solved for θ 2 , the following equation is obtained. θ 2 = sin −1 {P · h 2 / t 2 / (H 2 + l 2 ) 1/2 ψ−ψ (Equation 15) By substituting a numerical value into the above equation and obtaining θ 2 , the following is obtained. Become. θ 2 = sin -1 {1670 × 0.9 × 3.9 / 3866 / (6.5 2 +1 2) 1/2} -8.7 = 4.6 [ deg.] (Formula 16)

【0023】一方、各支線の根開きW1,W2は、次の各
式で求めることが出来る。 W1=l+h1・tanθ1…(式17) W2=l+H・tanθ2…(式18) これらの式にl=1、h1=2.6、θ1=0゜、H=
6.5、θ2=4.6゜を代入すれば、W1=1[m]、
2=1.52[m]となる。
On the other hand, the root differences W 1 and W 2 of each branch line can be obtained by the following equations. W 1 = 1 + h 1 · tan θ 1 (Equation 17) W 2 = 1 + H · tan θ 2 (Equation 18) In these equations, l = 1, h 1 = 2.6, θ 1 = 0 °, H =
By substituting 6.5 and θ 2 = 4.6 °, W 1 = 1 [m],
W 2 = 1.52 [m].

【0024】同様にして、下段支線の取付角θ1を、3
゜、4゜、5゜とした場合について根開き幅を算出し
た。結果は次表の通りである。
Similarly, the mounting angle θ 1 of the lower branch line is set to 3
根, 4 ゜, 5 ゜, the root opening width was calculated. The results are shown in the following table.

【0025】[0025]

【表1】 [Table 1]

【0026】同表から明かなように下段支線の取付角θ
1を4゜乃至5゜程度とした場合には、根開きW1,W2
を1.3[m]以内とすることができ、従来(3.03
m)の2分の1以下に抑えることが可能となる。
As is clear from the table, the mounting angle θ of the lower branch line is shown.
When 1 is set to about 4 to 5 degrees, the root opening W 1 , W 2
Can be set within 1.3 [m], and the conventional (3.03)
m) or less.

【0027】さらに、本実施例のようにアーム11,2
1を斜材13,23により支持した場合、斜材支持位置
B,Dおよび下段アーム取付位置Cに不平衡荷重が加わ
ることとなるが、これらの荷重による曲げモーメントが
電柱の設計強度以内となるか検討を行う。まず図2
(a)に示すように、斜材23の取付角度を45゜、ア
ーム支持位置Bに作用する不平衡荷重をP1とし、本構
造物を片持トラスとして考えると、A点まわりのモーメ
ントの釣合いから、次式が成立する。 P1・l=t1・cosθ1・l…(式19) 従って同式よりB点に作用する不平衡荷重P1は、次の
通りとなる。 P1=t1・cosθ1…(式20) 同様に、アーム基端部Cおよびアーム支持位置Dに作用
する荷重をそれぞれP2、P3として同図(b)に示す片
持トラスを考え、D点およびC点まわりのモーメントの
つり合いからP2およびP3を求めれば次の通りとなる。 P2=t2・(cosθ2+sinθ2)…(式21) P3=t2・cosθ2…(式22)
Further, as in this embodiment, the arms 11 and
When 1 is supported by the diagonal members 13 and 23, unbalanced loads are applied to the diagonal member support positions B and D and the lower arm mounting position C, but the bending moment due to these loads falls within the design strength of the utility pole. Consider whether or not. First, FIG.
(A), the mounting angle of 45 ° of the diagonal members 23, an unbalanced load acting on the arm support position B and P 1, given the present structure as cantilever truss, the moment around the point A From the balance, the following equation is established. P 1 · l = t 1 · cos θ 1 · l (Equation 19) Accordingly, from the equation, the unbalanced load P 1 acting on the point B is as follows. P 1 = t 1 · cos θ 1 (Equation 20) Similarly, consider the cantilever truss shown in FIG. 3B assuming that loads acting on the arm base end portion C and the arm supporting position D are P 2 and P 3 , respectively. , P 2 and P 3 are obtained from the balance of moments around points D and C as follows. P 2 = t 2 · (cos θ 2 + sin θ 2 ) (Equation 21) P 3 = t 2 · cos θ 2 (Equation 22)

【0028】電柱を図3に示すように一端支持・他端固
定のはりとして考え、固定端Eの曲げモーメントME
求める。図4(a)に示すようにA点支持がないとした
場合のA点のたわみy1は、 y1=P1(H−l)3/3EI+P1(H−l)2・l/2EI+P3(h1−l )3/3EI+P3(h1−l)2・(h2+l)/2EI…(式23) である。一方、同図(b)に示すように自由端AにA点
の支持反力RAが、またC点に荷重P2がそれぞれ作用し
たときのA点のたわみy2は、 y2=RA3/3EI+P21 3/3EI+P21 22/2EI…(式24) となる。A点は支点であり、実際には変位しないから、
1=y2であり、式23および式24からRAを求めれ
ば次の通りとなる。 RA={P1(H−l)2(2H+l)−P21 2(2h1+3h2)+P3(h1− l)2(2h1+3h2+l)}/2H3…(式25) 従って固定端Eの曲げモーメントMEは、次の通りとな
る。 ME=P1(H−l)−P21+P3(h1−l)−RAH =P1(H−l)−P21+P3(h1−l)−{P1(H−l)2(2H+l )−P21 2(2h1+3h2)+P3(h1−l)2(2h1+3h2+l)}/2H 2 …(式26)
The pole is supported at one end and fixed at the other end as shown in FIG.
Considering a fixed beam, bending moment M of fixed end EETo
Ask. As shown in FIG. 4 (a), there is no point A support.
Deflection of point A in case y1Is y1= P1(H-1)Three/ 3EI + P1(H-1)Two・ 1 / 2EI + PThree(H1−l)Three/ 3EI + PThree(H1−l)Two・ (HTwo+1) / 2EI (Expression 23). On the other hand, as shown in FIG.
Support reaction force RABut the load P at point CTwoAct on each other
Deflection of point A whenTwoIs yTwo= RAHThree/ 3EI + PTwoh1 Three/ 3EI + PTwoh1 TwohTwo/ 2EI (Expression 24) Since point A is a fulcrum and does not actually displace,
y1= YTwoFrom Equations 23 and 24,ASought
Then, RA= {P1(H-1)Two(2H + 1) -PTwoh1 Two(2h1+ 3hTwo) + PThree(H1-L)Two(2h1+ 3hTwo+1)} / 2HThree... (Equation 25) Therefore, the bending moment M of the fixed end EEIs as follows
You. ME= P1(H-1) -PTwoh1+ PThree(H1−l) -RAH = P1(H-1) -PTwoh1+ PThree(H1−l) − {P1(H-1)Two(2H + 1) -PTwoh1 Two(2h1+ 3hTwo) + PThree(H1−l)Two(2h1+ 3hTwo+1)} / 2H Two … (Equation 26)

【0029】例えば電柱の地上高Hを6.5m、アーム
の長さlを1.0m、支線の耐引張強度t1,t2を38
66kg(65CR支線)、電柱の設計荷重を400k
gとし、下段支線の取付角θ1を5゜、上段支線の取付
角度θ2を2.2゜とした場合(前記表に示した第4の
算出例)を考える。電柱の設計モーメントMrは、 Mr=400×6.5=2600[kgm]…(式21) である。
For example, the height H of the pole above the ground is 6.5 m, the length l of the arm is 1.0 m, and the tensile strengths t 1 and t 2 of the branch wires are 38.
66kg (65CR branch line), design load of telephone pole is 400k
and g, considered lower branch of the mounting angle theta 1 to 5 °, when the upper branch of the mounting angle theta 2 2.2 ° (fourth calculation example shown in the table). Design moment M r of utility poles is M r = 400 × 6.5 = 2600 [kgm] ... ( Equation 21).

【0030】これに対しB,C,D点の各荷重P1
2,P3はそれぞれ、 P1=t1・cosθ1=3866×cos5゜=3851[kg]…(式21 ) P2=t2・(cosθ2+sinθ2)=3866×(cos2.2゜+sin 2.2゜)=4012[kg]…(式22) P3=t2・cosθ2=3866×cos2.2゜=3863[kg]…(式 23) となるから、電柱基端部EのモーメントMEは、式26
から次の通りとなる。 ME=P1(H−l)−P21+P3(h1−l)−{P1(H−l)2(2H+l )−P21 2(2h1+3h2)+P3(h1−l)2(2h1+3h2+l)}/2H 2 =3851×(6.5−1)−4012×3.3+3863×(3.3− 1)−{3851×(6.5−1)2×(2×6.5+1)−4012×3.32 ×(2×3.3+3×3.2)+3863×(3.3−1)2×(2×3.3+ 3×3.2+1)}/(2×6.52) =1742[kgm]…(式24) 従ってME<<Mrであり、実用上問題がないことがわか
る。
On the other hand, each load P at points B, C and D1,
PTwo, PThreeIs P1= T1・ Cos θ1= 3866 × cos5 ゜ = 3851 [kg] (Equation 21) PTwo= TTwo・ (Cos θTwo+ Sin θTwo) = 3866 × (cos 2.2 ゜ + sin 2.2 ゜) = 4012 [kg] (Equation 22) PThree= TTwo・ Cos θTwo= 3866 × cos2.2 ゜ = 3863 [kg] (Equation 23), the moment M of the pole end E of the utility pole is obtained.EEquation 26
Is as follows. ME= P1(H-1) -PTwoh1+ PThree(H1−l) − {P1(H-1)Two(2H + 1) -PTwoh1 Two(2h1+ 3hTwo) + PThree(H1−l)Two(2h1+ 3hTwo+1)} / 2H Two = 3851 × (6.5-1) -4012 × 3.3 + 3863 × (3.3-1)-{3851 × (6.5-1)Two× (2 × 6.5 + 1) −4012 × 3.3Two × (2 × 3.3 + 3 × 3.2) + 3863 × (3.3-1)Two× (2 × 3.3 + 3 × 3.2 + 1)} / (2 × 6.5Two) = 1742 [kgm] (Expression 24)E<< MrAnd there is no practical problem
You.

【0031】尚、本発明は前記実施例に限定されるもの
ではない。例えば、アームの長さや各支線の取付角度等
の具体的数値は一例として示したものであって、適宜変
更が可能である。また支線本数は必ずしも2本に限られ
るものではなく、3本以上設けることも出来る。また実
施例のようにアームを斜材により支持する構造とした場
合、電柱の口径や材質(設計強度)によっては、斜材支
持位置(B,D)を上方または下方にずらして前記曲げ
モーメントMEを加減することも可能である。また電柱
へのアームの固定方法はとくに問わない。例えば電柱周
囲に巻回したベルト(リング)を介してアームを電柱表
面に固定するようにしても良いし、電柱周面に適宜穴を
穿設し、この穴にアームを差し込んで固定する方式その
他であっても構わない。またアーム11,21は必ずし
も同一長さとする必要はない。
The present invention is not limited to the above embodiment. For example, specific numerical values such as the length of the arm and the mounting angle of each branch line are shown as examples, and can be changed as appropriate. The number of branch lines is not necessarily limited to two, and three or more branch lines can be provided. When the arm is supported by a diagonal member as in the embodiment, depending on the diameter and the material (design strength) of the telephone pole, the diagonal member support position (B, D) is shifted upward or downward to obtain the bending moment M. It is also possible to adjust E. The method of fixing the arm to the utility pole is not particularly limited. For example, the arm may be fixed to the surface of the utility pole via a belt (ring) wound around the utility pole, or a hole may be formed in the periphery of the utility pole, and the arm may be inserted into the hole and fixed. It does not matter. The arms 11 and 21 do not necessarily have to have the same length.

【0032】さらに前記実施例では引留支線を例にとり
説明したが、図5に示す線路カーブ箇所(片支線)や両
端架線条数に差がある場合その他に適用しても同様に良
好な効果を得ることが出来る。また下段の斜材13が例
えば通行の邪魔になるおそれがある場合には、該斜材を
図6に示すように上方に設置することも可能である。さ
らに図7に示すように第一支線12を、アーム(11)
を介することなく、電柱に取付けることも可能である。
支持モーメントM1は小さくなるものの、見かけ上地際
を上昇させる前記効果を得ることが出来るからである。
Further, in the above-described embodiment, the description has been made by taking the stranded branch line as an example. However, the same advantageous effects can be obtained even when the present invention is applied to a case where there is a difference in the line curve (single branch line) or the number of the overhead lines as shown in FIG. Can be obtained. Further, when there is a possibility that the lower diagonal member 13 may obstruct traffic, for example, the diagonal member can be installed above as shown in FIG. Further, as shown in FIG. 7, the first branch line 12 is connected to the arm (11).
It is also possible to attach to a utility pole without going through.
This is because, although the supporting moment M 1 is reduced, the above-described effect of raising the apparent height above the ground can be obtained.

【0033】[0033]

【発明の効果】以上説明したように本発明に係る電柱の
支持方法によれば、電柱に取付けられる支線の根開き幅
を一層小さくすることが出来る。
As described above, according to the method for supporting a utility pole according to the present invention, it is possible to further reduce the opening width of a branch line attached to the utility pole.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電柱支持方法の一例を示す図であ
る。
FIG. 1 is a view showing an example of a utility pole supporting method according to the present invention.

【図2】アームによる支持部を片持トラスに置き換えた
図である。
FIG. 2 is a diagram in which a support part by an arm is replaced by a cantilever truss.

【図3】本支持方法を用いた電柱に作用する荷重を示す
図である。
FIG. 3 is a diagram showing a load acting on a utility pole using the present supporting method.

【図4】電柱基端部に作用するモーメントを求めるため
の図である。
FIG. 4 is a diagram for determining a moment acting on a base end of a utility pole.

【図5】線路カーブ箇所における支線の取付け例を示す
斜視図である。
FIG. 5 is a perspective view showing an example of attaching a branch line at a track curve point.

【図6】本発明に係る電柱支持方法の変形例を示す図で
ある。
FIG. 6 is a view showing a modification of the utility pole supporting method according to the present invention.

【図7】本発明に係る電柱支持方法の別の変形例を示す
図である。
FIG. 7 is a view showing another modification of the utility pole supporting method according to the present invention.

【図8】本発明者が先に提案した電柱支持方法の一例を
示す図である。
FIG. 8 is a diagram showing an example of a utility pole supporting method proposed by the present inventors previously.

【図9】従来の電柱支持方法の一例を示す図である。FIG. 9 is a diagram showing an example of a conventional utility pole supporting method.

【図10】電柱の支持原理を示す図である。FIG. 10 is a diagram showing the principle of supporting a utility pole.

【符号の説明】[Explanation of symbols]

1 電柱 4 電線 11,21 アーム 12 第一支線(下段支線) 22 第二支線(上段支線) 13,23 斜材 DESCRIPTION OF SYMBOLS 1 Utility pole 4 Electric wire 11, 21 Arm 12 First branch line (lower branch line) 22 Second branch line (upper branch line) 13, 23 Diagonal material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電柱に作用する不平均張力に対抗可能な支
線を、所定の取付角度をもって電柱と地面との間に張設
する電柱の支持方法において、 前記不平均張力の作用方向と反対側かつ電柱の中間部位
置に、電柱から略水平に張り出すアームを設け、該アー
ムを介し第一の支線を電柱に取付ける一方、 前記不平均張力の作用方向と反対側かつ電柱の上部位置
に、電柱から略水平に張り出すアームを設け、該アーム
を介し第二の支線を電柱に取付けることを特徴とする電
柱の支持方法。
1. A method of supporting a utility pole in which a branch line capable of countering the non-average tension acting on the utility pole is stretched between the utility pole and the ground at a predetermined mounting angle, wherein a side opposite to a direction in which the non-average tension acts. And, at an intermediate position of the utility pole, an arm extending substantially horizontally from the utility pole is provided, and the first branch line is attached to the utility pole via the arm, and at the opposite side to the direction of action of the non-average tension and at the upper position of the utility pole, A method of supporting a utility pole, comprising: providing an arm extending substantially horizontally from a utility pole, and attaching a second branch line to the utility pole via the arm.
JP22065196A 1996-08-01 1996-08-01 Support method of utility pole Withdrawn JPH1046872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22065196A JPH1046872A (en) 1996-08-01 1996-08-01 Support method of utility pole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22065196A JPH1046872A (en) 1996-08-01 1996-08-01 Support method of utility pole

Publications (1)

Publication Number Publication Date
JPH1046872A true JPH1046872A (en) 1998-02-17

Family

ID=16754317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22065196A Withdrawn JPH1046872A (en) 1996-08-01 1996-08-01 Support method of utility pole

Country Status (1)

Country Link
JP (1) JPH1046872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416555B2 (en) 2007-02-28 2016-08-16 Seccional Brasil SA Structure for supporting electric power transmission lines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416555B2 (en) 2007-02-28 2016-08-16 Seccional Brasil SA Structure for supporting electric power transmission lines

Similar Documents

Publication Publication Date Title
US5448861A (en) Method and apparatus for securing parts of a building to each other and to a foundation
US4686325A (en) Catenary sag adjustment using added weights
KR102246171B1 (en) Photovoltaic power generation system and its construction method
JPH1046872A (en) Support method of utility pole
JPH09317242A (en) Electric pole supporting method
EP2388878B1 (en) Transmission line tower
JPH0898379A (en) Snow enduring device for lateral for electric pole
JP2012255299A (en) Branch line supporting columnar structure
KR20080100976A (en) Temporary bridge with truss type substructure and construction method using the same
KR200253553Y1 (en) Under reinforcement structure of temporary bridge using a wire tension bolt
RU2256049C2 (en) Power transmission pile and assemblage method thereof
RU49072U1 (en) ELECTRIC TRANSMISSION INTERMEDIATE SUPPORT
JP2021102887A (en) Pedestrian road boundary block
JP2005146772A (en) Roof supporting structural body unit, large space roof structure and construction methods of them
KR200169464Y1 (en) Non-branch line steel pipe electric pole for electric power distribution
CN218715632U (en) Concrete communication tower with holes and grounding structure
RU2002133575A (en) ELECTRIC TRANSMISSION SUPPORT AND INSTALLATION METHOD
RU2302502C1 (en) Support structure for overhead high-voltage and super-voltage transmission line
JPH07207619A (en) Main tower of long bridge provided with laterally extended beam and side cable
JP2003213619A (en) Foundation superstructure integral bridge
JP2931831B2 (en) Avalanche prevention tree with cable
CN219972945U (en) Bridge cable anchor structure
CN216893746U (en) Lodging-resistant concrete pole
JP4247175B2 (en) Seismic reinforcement structure for existing buildings
KR20240016631A (en) Reinforcement device for electric pole

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007