JPH1046135A - Ultraviolet-intercepting agent - Google Patents

Ultraviolet-intercepting agent

Info

Publication number
JPH1046135A
JPH1046135A JP8224381A JP22438196A JPH1046135A JP H1046135 A JPH1046135 A JP H1046135A JP 8224381 A JP8224381 A JP 8224381A JP 22438196 A JP22438196 A JP 22438196A JP H1046135 A JPH1046135 A JP H1046135A
Authority
JP
Japan
Prior art keywords
ultraviolet
titanium
titanium phosphate
transparency
shielding agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8224381A
Other languages
Japanese (ja)
Inventor
Osamu Takagi
修 高木
Noriyuki Yamamoto
則幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP8224381A priority Critical patent/JPH1046135A/en
Publication of JPH1046135A publication Critical patent/JPH1046135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an inorganic ultraviolet-intercepting agent highly able to intercept ultraviolet rays and excellent in transparency by using titanium phosphate microparticles having a specified means particle diameter. SOLUTION: This agent comprises a titanium phosphate having a means particle diameter of 0.1μm or below, desirably a compound having a Ti/P atomic ratio of 0.5-1.5. Especially, titanium phosphate having a Ti/P atomic ratio of 0.8-1.0 possesses an excellent ability to intercept ultraviolet rays and excellent transparency and therefore is a desirable compound. When the titanium phosphate has a Ti/P atomic ratio smaller than 0.5 or larger than 1.5, there is the possibility of lowering the ability to intercept ultraviolet rays. Desirable examples of the titanium phosphates include Ti(OH)PO4 , TiPO4 and Ti(HPO4 )2 . This agent is excellent in both the ability to intercept ultraviolet rays and transparency, so that it is used as, for example, a modifier for ultraviolet- intercepting coatings used for, e.g., windowpanes of a high-rise building or an automobile or also as a cosmetic additive because of its safety and good spread on the skin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透明性が高く、紫
外線を遮蔽する特性に優れた無機系微粒子からなる紫外
線遮蔽剤に関するものであり、紫外線の照射により劣化
し易い材料に配合したり、又は成型体にコーティングし
たりすることにより、紫外線照射による材料又は成型体
の劣化を防止する機能を賦与する改質剤として有用であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet ray shielding agent comprising inorganic fine particles having high transparency and excellent ultraviolet ray shielding properties. Alternatively, it is useful as a modifier that imparts a function of preventing deterioration of a material or a molded body due to ultraviolet irradiation by coating the molded body.

【0002】[0002]

【従来技術】一般に、ある物質に光を照射すると、入射
光の一部は、物質により反射又は吸収され、その他の入
射光は物質を透過する。物質の紫外線遮蔽性は、その物
質の紫外線透過性が小さい性質を表すものである。紫外
線遮蔽剤には、有機系と無機系がある。一般に、有機系
紫外線遮蔽剤は紫外線吸収性が大きく、且つ紫外線反射
性が小さいものであり、有機系紫外線遮蔽剤の長所は、
可視光に対する透明性(以下、単に透明性と略す)が高
い点である。短所は、熱に弱く、有機系紫外線遮蔽剤を
樹脂に添加する時や、その後の樹脂加工時の加熱により
有機系紫外線遮蔽剤が分解したり(特開平8−4124
4号公報)、有機系紫外線遮蔽剤を練り込んだ樹脂の経
時変化が大きく、練り込んだ樹脂から有機系紫外線遮蔽
剤がブリードアウトしたりして、紫外線遮蔽性が低下す
る点である。上記短所を改善するために、紫外線吸収性
を有する特性基を結合させた共重合体が提案されている
が(特開平4−161415号公報、特開平6−880
65号公報等)、その改善効果は未だ不十分である。
2. Description of the Related Art Generally, when a certain substance is irradiated with light, a part of the incident light is reflected or absorbed by the substance, and the other incident light is transmitted through the substance. The ultraviolet shielding property of a substance indicates the property that the substance has low ultraviolet transmittance. There are organic and inorganic UV shielding agents. In general, organic UV-shielding agents have high UV-absorbing properties and low UV-reflecting properties.
It is high in transparency to visible light (hereinafter simply referred to as transparency). The disadvantage is that the organic ultraviolet shielding agent is weak to heat and may be decomposed by adding an organic ultraviolet shielding agent to the resin or by heating during the subsequent resin processing (Japanese Patent Laid-Open No. 8-4124).
No. 4), a resin into which the organic ultraviolet shielding agent has been kneaded has a large change with time, and the ultraviolet shielding property is reduced due to bleed out of the organic ultraviolet shielding agent from the kneaded resin. In order to improve the above disadvantages, copolymers in which a characteristic group having an ultraviolet absorbing property is bonded have been proposed (JP-A-4-161415, JP-A-6-880).
No. 65), the improvement effect is still insufficient.

【0003】一方、無機系紫外線遮蔽剤は、一般に紫外
線吸収性が小さく、且つ紫外線反射性が大きいものであ
り、耐ブリードアウト性や耐熱性に優れている、皮膚に
対する安全性が高い、有機系溶剤と接触しても安定であ
る、紫外線の照射を受けても分解しないので紫外線遮蔽
能が長期間持続する等の長所がある。しかし、無機系紫
外線遮蔽剤は、有機系紫外線遮蔽剤に比較して紫外線遮
蔽性が低いので、樹脂に配合して紫外線遮蔽性を十分に
発揮させる場合には、樹脂に多量に添加する必要がある
が、従来の無機系紫外線遮蔽剤は透明性が低いため、多
量に添加すると、樹脂本来の色調や透明性が大きく損な
われるという問題がある。
On the other hand, inorganic ultraviolet shielding agents generally have low ultraviolet absorption and high ultraviolet reflectance, are excellent in bleed-out resistance and heat resistance, are highly safe to skin, and are organic. It has the advantages that it is stable even when it comes in contact with a solvent and that it does not decompose even when irradiated with ultraviolet light, so that its ultraviolet shielding ability is maintained for a long time. However, inorganic ultraviolet shielding agents have low ultraviolet shielding properties compared to organic ultraviolet shielding agents. Therefore, in order to sufficiently exhibit ultraviolet shielding properties by blending with a resin, it is necessary to add a large amount to the resin. However, since conventional inorganic ultraviolet shielding agents have low transparency, if added in a large amount, there is a problem that the original color tone and transparency of the resin are greatly impaired.

【0004】無機系紫外線遮蔽剤の透明性を改善する技
術として、平均粒径が0.05μm以下の酸化亜鉛(特
開平6−297630号公報)や、ペイントシェイカー
を利用した紫外線遮蔽剤の分散方法〔化学と工業,69
(8),320 〜325,(1995)〕が提案されているが、その改善
効果はいずれも充分ではない。
As a technique for improving the transparency of an inorganic ultraviolet shielding agent, a method of dispersing an ultraviolet shielding agent using a zinc oxide having an average particle diameter of 0.05 μm or less (JP-A-6-297630) or a paint shaker. [Chemistry and Industry, 69
(8), 320-325, (1995)], but none of the improvement effects are sufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明は、紫外線遮蔽
性と共に透明性が高い無機系紫外線遮蔽剤を提供するこ
とを課題とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inorganic ultraviolet shielding agent having high transparency as well as ultraviolet shielding properties.

【0006】[0006]

【課題を解決するための手段】本発明者は鋭意検討した
結果、燐酸チタンの微粒子が紫外線遮蔽性と透明性の両
面で優れていることを見出し、本発明を完成するに至っ
た。即ち、本発明は、平均粒径が0.1μm以下の燐酸
チタンからなることを特徴とする紫外線遮蔽剤である。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that fine particles of titanium phosphate are excellent in both ultraviolet shielding properties and transparency, and have completed the present invention. That is, the present invention is an ultraviolet ray shielding agent comprising titanium phosphate having an average particle size of 0.1 μm or less.

【0007】[0007]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

○燐酸チタン 本発明における燐酸チタンは、陰イオン成分の主体が燐
酸イオンであり、陽イオン成分の主体がチタンイオンで
ある化合物であり、イオン交換性のプロトン又はヒドロ
キシイオンを有していても良く、本発明の効果を損なわ
ない範囲内で、これらのイオン交換性イオンとイオン交
換可能な陽イオン又は陰イオンを有していても良い。燐
酸チタンに担持され得る陽イオンの具体例として、ナト
リウムイオン、カリウムイオン等のアルカリイオン及び
カルシウムイオン、マグネシウムイオン等のアルカリ土
類金属イオン等があり、燐酸チタンに担持され得る陰イ
オンの具体例として、塩素、臭素等のハロゲンイオン及
び炭酸イオン等がある。
○ Titanium phosphate The titanium phosphate in the present invention is a compound in which the main component of the anionic component is a phosphate ion and the main component of the cation component is a titanium ion, and may have an ion-exchangeable proton or hydroxy ion. As long as the effects of the present invention are not impaired, these ion-exchangeable ions may have a cation or anion that can be ion-exchanged. Specific examples of cations that can be supported on titanium phosphate include alkali ions such as sodium ion and potassium ion and alkaline earth metal ions such as calcium ion and magnesium ion. Specific examples of anions that can be supported on titanium phosphate Examples include halogen ions such as chlorine and bromine, and carbonate ions.

【0008】本発明における好ましい燐酸チタンは、燐
に対するチタンの原子比が0.5〜1.5である化合物
であり、特に、燐に対するチタンの原子比が0.8〜
1.0である燐酸チタンは、紫外線遮蔽性と透明性が特
に優れ、好ましい化合物である。燐に対するチタンの原
子比が0.5より小さくなったり、1.5より大きくな
ると、紫外線遮蔽性が低下する恐れがある。
The preferred titanium phosphate in the present invention is a compound having an atomic ratio of titanium to phosphorus of 0.5 to 1.5, and particularly an atomic ratio of titanium to phosphorus of 0.8 to 1.5.
Titanium phosphate of 1.0 is a particularly preferred compound because it has particularly excellent ultraviolet shielding properties and transparency. If the atomic ratio of titanium to phosphorus is smaller than 0.5 or larger than 1.5, the ultraviolet shielding property may be reduced.

【0009】本発明における好ましい燐酸チタンの具体
例として、以下の化合物がある。即ち、Ti(OH)P
4、TiPO4、Ti4623、TiP27、(Ti
O)227、Ti21.3(PO41.6、Ti(HP
42、Ti(HPO42・H2O、Ti(HPO42
0.5H2O、Ti(HPO42・2H2O等である。
Specific examples of preferred titanium phosphate in the present invention include the following compounds. That is, Ti (OH) P
O 4 , TiPO 4 , Ti 4 P 6 O 23 , TiP 2 O 7 , (Ti
O) 2 P 2 O 7 , Ti 2 O 1.3 (PO 4 ) 1.6 , Ti (HP
O 4 ) 2 , Ti (HPO 4 ) 2 .H 2 O, Ti (HPO 4 ) 2.
0.5H 2 O, Ti (HPO 4 ) is 2 · 2H 2 O or the like.

【0010】本発明における燐酸チタンの結晶性は、非
晶質或いは結晶性のどちらでも良く、結晶性の場合、
α、β、γ等の変態があるが、特に限定されない。
The crystallinity of the titanium phosphate in the present invention may be either amorphous or crystalline.
There are transformations such as α, β, and γ, but there is no particular limitation.

【0011】本発明における燐酸チタンの平均粒径は、
0.1μm以下である。もし、平均粒径が0.1μmよ
り大きいと、紫外線遮蔽剤の透明性が著しく損なわれ
る。好ましい平均粒径は、分散媒体中における紫外線遮
蔽剤の分散性等を考慮すると、0.02〜0.08μm
である。
The average particle size of the titanium phosphate in the present invention is as follows:
It is 0.1 μm or less. If the average particle size is larger than 0.1 μm, the transparency of the ultraviolet shielding agent is significantly impaired. A preferable average particle size is 0.02 to 0.08 μm in consideration of the dispersibility of the ultraviolet shielding agent in the dispersion medium.
It is.

【0012】本発明における燐酸チタンは公知の所謂湿
式法にて容易に合成することができ、チタンの好ましい
原料として、オキシ硫酸チタン、硫酸チタン、オキシ塩
化チタン、四塩化チタン、含水酸化チタン及び酸化チタ
ン等があり、燐酸の好ましい原料として、メタ燐酸、ピ
ロ燐酸、オルト燐酸、三燐酸、四燐酸等の燐酸、燐酸ナ
トリウム、燐酸カリウム及び燐酸アンモニウム等があ
る。
The titanium phosphate in the present invention can be easily synthesized by a known so-called wet method. Preferred raw materials for titanium include titanium oxysulfate, titanium sulfate, titanium oxychloride, titanium tetrachloride, hydrous titanium oxide and oxidized titanium. There are titanium and the like, and preferable raw materials of the phosphoric acid include phosphoric acid such as metaphosphoric acid, pyrophosphoric acid, orthophosphoric acid, triphosphoric acid and tetraphosphoric acid, sodium phosphate, potassium phosphate, and ammonium phosphate.

【0013】本発明における燐酸チタンは、上記のチタ
ン原料と燐酸原料を水中で反応させた後、周知の無機粉
体合成方法に従って、濾過、洗浄及び乾燥の各処理を行
うことにより容易に得られる。チタン原料と燐酸原料と
の好ましい仕込み割合は、原料混合物における燐に対す
るチタンの原子比が0.5〜1.5となる割合であり、
好ましい反応温度は室温〜120℃であり、好ましい反
応時間は10分〜4時間である。
The titanium phosphate in the present invention can be easily obtained by reacting the above-mentioned titanium raw material and the phosphoric acid raw material in water, followed by filtration, washing and drying in accordance with a well-known inorganic powder synthesis method. . The preferred charging ratio of the titanium raw material and the phosphoric acid raw material is a ratio in which the atomic ratio of titanium to phosphorus in the raw material mixture is 0.5 to 1.5,
The preferred reaction temperature is between room temperature and 120 ° C., and the preferred reaction time is between 10 minutes and 4 hours.

【0014】上記のようにして得られる燐酸チタンの平
均粒径及び燐に対するチタンの原子比は、原料仕込み
比、反応温度及び反応時間等で容易に制御できる。
The average particle size of the titanium phosphate obtained as described above and the atomic ratio of titanium to phosphorus can be easily controlled by the raw material charging ratio, reaction temperature, reaction time, and the like.

【0015】○使用方法 本発明の紫外線遮蔽剤は、種々の材料に適用でき、具体
的には、樹脂に配合する、紙に漉く、硝子にコーティン
グする、液体に分散させる及び塗料等のコーティング剤
に配合する等の方法で使用することができる。本発明の
紫外線遮蔽剤を適用できる材料として、ナイロン、ポリ
エステル、ポリオレフィン、ポリ塩化ビニル、ABS、
ポリカーボネート、ポリウレタン及びシリコンゴム等の
樹脂;和紙及び樹脂製繊維を結合剤とする合成紙等の
紙;窓硝子、光学機器硝子、コンタクトレンズ及び繊維
状硝子等の硝子;水、エチルアルコール、アセトン、ト
ルエン、エチルエーテル、エチレングリコール及び各種
有機溶剤等の液体がある。本発明の紫外線遮蔽剤の好ま
しい配合割合は、配合する材料の種類及び用途により適
宜調整すれば良く、紫外線遮蔽剤を配合した材料の全重
量を基準として、通常0.01〜10重量%である。
Method of Use The ultraviolet shielding agent of the present invention can be applied to various materials, and specifically, coating agents such as resin, compounding on paper, coating on glass, dispersing in liquid, and paint. Can be used. Materials to which the ultraviolet shielding agent of the present invention can be applied include nylon, polyester, polyolefin, polyvinyl chloride, ABS,
Resins such as polycarbonate, polyurethane and silicone rubber; paper such as Japanese paper and synthetic paper using resin fibers as binders; glass such as window glass, optical equipment glass, contact lenses and fibrous glass; water, ethyl alcohol, acetone, There are liquids such as toluene, ethyl ether, ethylene glycol and various organic solvents. The preferred blending ratio of the ultraviolet shielding agent of the present invention may be appropriately adjusted depending on the type and use of the material to be blended, and is usually 0.01 to 10% by weight based on the total weight of the material blended with the ultraviolet shielding agent. .

【0016】○用途 本発明の紫外線遮蔽剤は、化粧料、日焼け止めクリー
ム、塗料、樹脂改質剤、繊維改質剤、フィルム被覆剤、
カラー紙被覆剤、壁紙被覆剤、レンズ被覆剤、サングラ
ス被覆剤、有機顔料被覆剤、試薬瓶被覆剤及び印画紙表
面被覆剤等として特に有用である。
Uses The ultraviolet screening agent of the present invention includes cosmetics, sunscreen creams, paints, resin modifiers, fiber modifiers, film coating agents,
It is particularly useful as a color paper coating, a wallpaper coating, a lens coating, a sunglass coating, an organic pigment coating, a reagent bottle coating, and a photographic paper surface coating.

【0017】[0017]

【実施例】以下、本発明を実施例により具体的に説明す
る。先ず、2種のリン酸チタンを合成した。尚、合成し
たリン酸チタンの平均粒径は走査型電子顕微鏡観察によ
り測定し、リン酸チタンにおける燐に対するチタンの原
子比は以下のようにして測定した。即ち、フッ酸でリン
酸チタンを溶解させ、ICP発光分析法でチタン及び燐
のモル濃度を測定し、チタンのモル濃度を燐のモル濃度
で除して、燐に対するチタンの原子比を算出した。
The present invention will be described below in more detail with reference to examples. First, two types of titanium phosphate were synthesized. The average particle size of the synthesized titanium phosphate was measured by scanning electron microscope observation, and the atomic ratio of titanium to phosphorus in the titanium phosphate was measured as follows. That is, titanium phosphate was dissolved with hydrofluoric acid, the molar concentrations of titanium and phosphorus were measured by ICP emission spectrometry, and the molar ratio of titanium was divided by the molar concentration of phosphorus to calculate the atomic ratio of titanium to phosphorus. .

【0018】[0018]

【実施例1】オキシ硫酸チタン(TiOSO4・nH2O n=1 〜
2 )82.26g、85%燐酸(H3PO4 )214.62
g及びイオン交換水400gを混合攪拌させた後、イオ
ン交換水を添加して全量を800gにして、これを1リ
ットルのポリエチレン製瓶に入れて、40℃に保温しな
がら、30分間振とう攪拌した。その後、反応生成物を
濾過し、濾液の電気伝導度が100μS/cm以下になる
までイオン交換水で洗浄をした。洗浄を終えた濾過物を
100℃で乾燥した後、小型粉砕器(イウチ株式会社
製)で軽く粉砕し、燐酸チタンAを得た。燐酸チタンA
は平均粒径が0.06μmであり、燐に対するチタンの
原子比が1.0であった。燐酸チタンAを紫外線遮蔽剤
Aとする。
Example 1 Titanium oxysulfate (TiOSO 4 .nH 2 O n = 1 to
2) 82.26 g, 85% phosphoric acid (H 3 PO 4 ) 214.62
g and 400 g of ion-exchanged water are mixed and stirred, and ion-exchanged water is added to make the total amount 800 g. This is put in a 1-liter polyethylene bottle, and shaken for 30 minutes while keeping the temperature at 40 ° C. did. Thereafter, the reaction product was filtered and washed with ion-exchanged water until the electric conductivity of the filtrate became 100 μS / cm or less. After the washed filtrate was dried at 100 ° C., it was lightly pulverized with a small pulverizer (produced by Iuchi Corporation) to obtain titanium phosphate A. Titanium phosphate A
Had an average particle size of 0.06 μm and an atomic ratio of titanium to phosphorus of 1.0. Titanium phosphate A is used as ultraviolet ray shielding agent A.

【0019】[0019]

【実施例2】実施例1において反応温度を40℃に代え
て120℃とし、反応時間を30分に代えて120分と
した以外は実施例1と同様にして、燐酸チタンBを得
た。燐酸チタンBは平均粒径が0.06μmであり、燐
に対するチタンの原子比が0.9であった。燐酸チタン
Bを紫外線遮蔽剤Bとする。
Example 2 Titanium phosphate B was obtained in the same manner as in Example 1 except that the reaction temperature was changed to 120 ° C. instead of 40 ° C., and the reaction time was changed to 120 minutes instead of 30 minutes. Titanium phosphate B had an average particle size of 0.06 μm and an atomic ratio of titanium to phosphorus of 0.9. Titanium phosphate B is used as ultraviolet shielding agent B.

【0020】[0020]

【使用例1】軟質塩化ビニルに実施例1で得た紫外線遮
蔽剤Aを、配合後の全重量を基準として、0.1重量%
添加し、ロール成型機により150℃で加熱混練後、熱
プレス機で厚さ0.5mmの成型体Aを得た。
[Use example 1] 0.1% by weight based on the total weight after blending the ultraviolet ray shielding agent A obtained in Example 1 with soft vinyl chloride
The mixture was heated and kneaded at 150 ° C. by a roll forming machine, and a molded body A having a thickness of 0.5 mm was obtained by a hot press machine.

【0021】[0021]

【使用例2】紫外線遮蔽剤Aに代えて紫外線遮蔽剤Bを
用いた以外は使用例1と同様にして成型体Bを得た。
Use Example 2 A molded product B was obtained in the same manner as in Use Example 1 except that the ultraviolet ray shielding agent B was used instead of the ultraviolet ray shielding agent A.

【0022】[0022]

【比較使用例1】紫外線遮蔽剤Aに代えて、平均粒径
0.2μmのα−燐酸チタン〔燐に対するチタンの原子
比:0.5〕からなる紫外線遮蔽剤Cを用いた以外は使
用例1と同様にして成型体Cを得た。
[Comparative Use Example 1] Use example except that UV-shielding agent C consisting of α-titanium phosphate (atomic ratio of titanium to phosphorus: 0.5) having an average particle size of 0.2 μm was used in place of UV-shielding agent A Molded product C was obtained in the same manner as in 1.

【0023】[0023]

【比較使用例2】紫外線遮蔽剤Aに代えて、平均粒径
0.05μmの二酸化チタン(日本アエロジル株式会社
製P25)からなる紫外線遮蔽剤Dを用いた以外は使用
例1と同様にして成型体Dを得た。
[Comparative Use Example 2] Molding was performed in the same manner as in Use Example 1 except that the ultraviolet shielding agent A was replaced with an ultraviolet shielding agent D made of titanium dioxide (P25 manufactured by Nippon Aerosil Co., Ltd.) having an average particle size of 0.05 μm. Obtained body D.

【0024】[0024]

【比較使用例3】紫外線遮蔽剤Aに代えて、平均粒径約
0.1μmの酸化亜鉛(三井金属鉱業株式会社製商品名
ZNOUVE)からなる紫外線遮蔽剤Eを用いた以外は
使用例1と同様にして成型体Eを得た。
Comparative Example 3 The procedure of Example 1 was repeated except that the ultraviolet ray shielding agent A was replaced with an ultraviolet ray shielding agent E made of zinc oxide (trade name: ZNOUVE manufactured by Mitsui Kinzoku Mining Co., Ltd.) having an average particle size of about 0.1 μm. A molded product E was obtained in the same manner.

【0025】次に、上記のようにして得た成形体A〜E
について、以下の方法により、紫外線遮蔽性及び耐侯性
を評価した。 ○紫外線遮蔽性の評価 吸光度の測定 分光光度計(株式会社島津製作所製商品名UV−24
0)を用いて波長300nmの紫外線に対する吸光度(O
300nm)を測定した。尚、軟質塩化ビニルの影響を相
殺するために、実施例1で成型用に用いたものと同種の
軟質塩化ビニルを対照とした。
Next, the molded articles A to E obtained as described above
Was evaluated for ultraviolet shielding properties and weather resistance by the following methods. -Evaluation of ultraviolet shielding properties Measurement of absorbance Spectrophotometer (trade name: UV-24 manufactured by Shimadzu Corporation)
0), the absorbance (O
D 300 nm). In order to offset the influence of soft vinyl chloride, the same kind of soft vinyl chloride as that used for molding in Example 1 was used as a control.

【0026】透明性の測定 濁度計(日本電色工業株式会社製商品名Σ80NDH 型)を
用いて、上記で得た成型体A〜Dについて、濁度(HA
ZE)を測定した。
Measurement of Transparency Using a turbidimeter (trade name: 80NDH type, manufactured by Nippon Denshoku Industries Co., Ltd.), the turbidity (HA
ZE) was measured.

【0027】透明性に対する吸光度の比の算出 上記にて測定した吸光度(OD300nm )を、上記で
測定した濁度(HAZE)で除した比(OD300nm /H
AZE。以下、標準化紫外線遮蔽性と略す)を算出し
た。透明性を有する樹脂Rに紫外線遮蔽性物質Xを練り
込むと、樹脂Rの紫外線遮蔽性は濁度と共に前記紫外線
遮蔽性物質の配合割合と正比例する傾向があり、その結
果樹脂Rの紫外線遮蔽性は濁度と正比例する関係があ
る。従って、他の紫外線遮蔽性物質と対比して紫外線遮
蔽性を評価する際、その物質の濁度を同じにしておく必
要がある。ここでは、上記のように吸光度を濁度で割る
ことにより、濁度の影響を相殺しており、この比(OD
300nm /HAZE)が大きい程、濁度の割に紫外線遮蔽
性が大きく、言い換えれば紫外線遮蔽性の割に濁度が小
さい(透明性が高い)と言える。下記表1に成形体A〜
Dについての標準化紫外線遮蔽性を示した。
Calculation of the ratio of the absorbance to the transparency The absorbance (OD300 nm) measured above was divided by the turbidity (HAZE) measured above (OD300 nm / H).
AZE. Hereinafter, abbreviated as standardized ultraviolet shielding property) was calculated. When the ultraviolet ray shielding material X is kneaded into the transparent resin R, the ultraviolet ray shielding property of the resin R tends to be directly proportional to the mixing ratio of the ultraviolet ray shielding substance together with the turbidity. Is directly proportional to turbidity. Therefore, when evaluating the ultraviolet shielding property in comparison with another ultraviolet shielding substance, it is necessary to keep the turbidity of the substance the same. Here, the influence of the turbidity is offset by dividing the absorbance by the turbidity as described above, and this ratio (OD
It can be said that as the value of (300 nm / HAZE) is larger, the turbidity is higher than the turbidity. In other words, the turbidity is lower (the transparency is higher) relative to the opacity. Table 1 below shows the molded articles A to
D shows the standardized ultraviolet shielding property.

【0028】[0028]

【表1】 ────────────────── サンプル OD300nm /HAZE ────────────────── 成形体A 0.083 成形体B 0.081 成形体C 0.055 成形体D 0.057 成形体E 0.053 ──────────────────[Table 1] ────────────────── Sample OD300nm / HAZE ────────────────── Molded product A 0.083 Molded body B 0.081 Molded body C 0.055 Molded body D 0.057 Molded body E 0.053

【0029】上記表1の結果から、同程度の濁度で塩化
ビニル樹脂に紫外線遮蔽剤を配合した場合、本発明の紫
外線遮蔽剤を配合した成形体Aと成形体Bは、本発明の
紫外線遮蔽剤より平均粒径が大きいものを配合した成形
体C及び二酸化チタン又は酸化亜鉛からなる従来の紫外
線遮蔽剤を配合した成形体(D,E)に対して、約50
%大きい紫外線遮蔽性を有することがわかる。
From the results shown in Table 1 above, when an ultraviolet ray shielding agent is blended with a vinyl chloride resin at the same turbidity, the molded article A and the molded article B containing the ultraviolet ray shielding agent of the present invention are the same as those of the present invention. The molded product C containing an average particle size larger than that of the shielding agent and the molded product (D, E) containing a conventional ultraviolet shielding agent made of titanium dioxide or zinc oxide were about 50%.
It can be seen that the film has an ultraviolet shielding property that is larger by%.

【0030】尚、吸光度を測定したときと同じ分光光度
計を用いて、成形体Aについて透過スペクトルを測定
し、その結果を図1に示した(対照として、成形体Aの
樹脂成分である軟質塩化ビニル樹脂を用いた)。又、拡
散反射計を用いて、燐酸チタンAについて拡散反射スペ
クトルを測定し、その結果を図2に示した。図1のスペ
クトルから、波長300nm付近の紫外線領域では透過
光が少ないことがわかるが、このことは、言い換えれば
波長300nm付近の紫外線領域では、紫外線の吸収又
は反射が起きていることを示している。一方、図2のス
ペクトルから、波長380nm以下の紫外線領域では反
射光が急激に減少することがわかる。従って、図2の結
果を考慮すると、図1のスペクトルにおける波長300
nm付近のピークは紫外線の吸収によるものであること
がわかる。
The transmission spectrum of the molded article A was measured using the same spectrophotometer as that used for measuring the absorbance, and the results are shown in FIG. A vinyl chloride resin was used). The diffuse reflectance spectrum of titanium phosphate A was measured using a diffuse reflectometer, and the results are shown in FIG. From the spectrum of FIG. 1, it can be seen that there is little transmitted light in the ultraviolet region near the wavelength of 300 nm, which means that ultraviolet light absorption or reflection occurs in the ultraviolet region near the wavelength of 300 nm. . On the other hand, it can be seen from the spectrum of FIG. 2 that the reflected light sharply decreases in the ultraviolet region having a wavelength of 380 nm or less. Therefore, considering the result of FIG. 2, the wavelength 300 in the spectrum of FIG.
It can be seen that the peak near nm is due to absorption of ultraviolet light.

【0031】○耐候性の評価 耐侯性試験装置(アトラス株式会社製商品名UVCO
N)を用いて、相対湿度90%、温度60℃で4Hr加
熱する工程と紫外線を4Hr照射する工程からなるサイ
クルを12回繰り返す強制劣化試験を行った後、上記の
紫外線遮蔽性の評価方法と同様にして標準化紫外線遮蔽
性を算出した。その結果を下記表2に示した。
Evaluation of weather resistance Weather resistance tester (trade name UVCO manufactured by Atlas Co., Ltd.)
Using N), a forced deterioration test in which a cycle consisting of heating for 4 hours at a relative humidity of 90% and a temperature of 60 ° C. and irradiating ultraviolet rays for 4 hours is repeated 12 times is performed, and then the above-described method for evaluating ultraviolet shielding properties is performed. Similarly, the standardized ultraviolet shielding property was calculated. The results are shown in Table 2 below.

【0032】[0032]

【表2】 ────────────────── サンプル OD300nm /HAZE ────────────────── 成形体A 0.080 成形体B 0.083 成形体C 0.055 成形体D 0.053 成形体E 0.033 ──────────────────[Table 2] ────────────────── Sample OD300nm / HAZE ────────────────── Molded product A 0.080 Molded body B 0.083 Molded body C 0.055 Molded body D 0.053 Molded body E 0.033

【0033】上記表1と表2を比較すると明らかなよう
に、成形体Aと成形体Bは、共に強制劣化試験の前後に
おいて、殆ど標準化紫外線遮蔽性に変化がなく、耐侯性
に優れていることがわかる。
As is clear from the comparison between Tables 1 and 2, both of the molded products A and B have almost no change in the standardized ultraviolet shielding property before and after the forced deterioration test and are excellent in weather resistance. You can see that.

【0034】○粉末X線回折 紫外線遮蔽剤A〜Dについて、下記表3に示した条件で
粉末X線回折を行った。その結果を図3に示した。
X Powder X-ray Diffraction The powder X-ray diffraction of the ultraviolet shielding agents A to D was performed under the conditions shown in Table 3 below. The result is shown in FIG.

【0035】[0035]

【表3】 [Table 3]

【0036】図3のX線回折図から以下のことがわか
る。即ち、紫外線遮蔽剤Aは殆ど回折ピークがないの
で、非晶質性燐酸チタンであり、紫外線遮蔽剤Bは2θ
が8.4°,17.2°及び27.0°の位置にブロー
ドなピークを有する結晶性燐酸チタンであり、紫外線遮
蔽剤Cは結晶性のα燐酸チタンであり、紫外線遮蔽剤D
は結晶性の二酸化チタンである。
The following can be seen from the X-ray diffraction diagram of FIG. That is, since the ultraviolet ray shielding agent A has almost no diffraction peak, it is amorphous titanium phosphate, and the ultraviolet ray shielding agent B is 2θ.
Is crystalline titanium phosphate having broad peaks at 8.4 °, 17.2 °, and 27.0 °, and ultraviolet ray shielding agent C is crystalline α-titanium phosphate, and ultraviolet ray shielding agent D
Is crystalline titanium dioxide.

【0037】[0037]

【発明の効果】本発明の紫外線遮蔽剤は、透明性が高い
微粒子である、紫外線遮蔽性が大きい、耐熱性に優れ
る、及び耐候性が高いという種々の特徴を兼ね備えてい
る。従って、本発明の紫外線遮蔽剤は樹脂に添加して加
熱成形した後も熱による劣化が殆ど無く、成形後の樹脂
は、樹脂本来の色調や透明性を損なうことなく、日光に
長時間曝されても紫外線遮蔽性を持続することができ
る。本発明の紫外線遮蔽剤は、例えば、透明性が必要で
過酷な条件で使用される場所、例えば高層建築物や自動
車の窓ガラス等に使用する紫外線遮蔽性塗料用改質剤と
して有用であり、又生体への安全性が高いことや肌への
伸びが良いことから化粧料の配合剤としても優れた効果
を発揮する。
The ultraviolet shielding agent of the present invention has various characteristics such as fine particles having high transparency, high ultraviolet shielding property, excellent heat resistance, and high weather resistance. Therefore, the ultraviolet shielding agent of the present invention is hardly deteriorated by heat even after being added to the resin and molded by heating, and the molded resin is exposed to sunlight for a long time without impairing the original color tone and transparency of the resin. Even so, the ultraviolet shielding property can be maintained. The ultraviolet shielding agent of the present invention is, for example, useful as a modifier for an ultraviolet shielding coating used in places where transparency is required and used under severe conditions, for example, high-rise buildings or window glasses of automobiles, Also, since it is highly safe for living organisms and has good elongation to the skin, it exerts an excellent effect as a compounding agent for cosmetics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】使用例1で作製した成形体Aの透過スペクトル
図である。
FIG. 1 is a transmission spectrum diagram of a molded article A produced in use example 1.

【図2】実施例1で調製した燐酸チタンAの拡散反射ス
ペクトル図である。
FIG. 2 is a diagram showing a diffuse reflection spectrum of titanium phosphate A prepared in Example 1.

【図3】紫外線遮蔽剤A(実施例1)、紫外線遮蔽剤B
(実施例2)、紫外線遮蔽剤C(比較例1)及び紫外線
遮蔽剤D(比較例2)に関するX線回折図である。
FIG. 3 shows an ultraviolet shielding agent A (Example 1) and an ultraviolet shielding agent B
(Example 2) It is an X-ray-diffraction figure about ultraviolet-ray shielding agent C (comparative example 1) and ultraviolet-ray shielding agent D (comparative example 2).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】平均粒径が0.1μm以下の燐酸チタンか
らなることを特徴とする紫外線遮蔽剤。
1. An ultraviolet shielding agent comprising titanium phosphate having an average particle size of 0.1 μm or less.
【請求項2】燐酸チタンにおける燐に対するチタンの原
子比が0.5〜1.5であることを特徴とする請求項1
記載の紫外線遮蔽剤。
2. The method according to claim 1, wherein the atomic ratio of titanium to phosphorus in the titanium phosphate is 0.5 to 1.5.
The ultraviolet shielding agent according to the above.
JP8224381A 1996-08-07 1996-08-07 Ultraviolet-intercepting agent Pending JPH1046135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8224381A JPH1046135A (en) 1996-08-07 1996-08-07 Ultraviolet-intercepting agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8224381A JPH1046135A (en) 1996-08-07 1996-08-07 Ultraviolet-intercepting agent

Publications (1)

Publication Number Publication Date
JPH1046135A true JPH1046135A (en) 1998-02-17

Family

ID=16812866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8224381A Pending JPH1046135A (en) 1996-08-07 1996-08-07 Ultraviolet-intercepting agent

Country Status (1)

Country Link
JP (1) JPH1046135A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502108A (en) * 2000-07-06 2004-01-22 サン−ゴバン グラス フランス Fixing devices for thin-film wall elements
WO2019189665A1 (en) * 2018-03-30 2019-10-03 株式会社フジミインコーポレーテッド White pigment for cosmetics, and cosmetic
JP2020079284A (en) * 2017-03-30 2020-05-28 株式会社フジミインコーポレーテッド White pigment for cosmetics comprising titanium phosphate powder
JPWO2020059190A1 (en) * 2018-09-20 2021-08-30 株式会社フジミインコーポレーテッド White pigments for cosmetics, cosmetics
WO2022075447A1 (en) * 2020-10-08 2022-04-14 株式会社フジミインコーポレーテッド Soft focus filler, cosmetic

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502108A (en) * 2000-07-06 2004-01-22 サン−ゴバン グラス フランス Fixing devices for thin-film wall elements
JP2020079284A (en) * 2017-03-30 2020-05-28 株式会社フジミインコーポレーテッド White pigment for cosmetics comprising titanium phosphate powder
US11345596B2 (en) 2017-03-30 2022-05-31 Fujimi Incorporated Titanium phosphate powder, production method therefor, and white pigment for cosmetics
WO2019189665A1 (en) * 2018-03-30 2019-10-03 株式会社フジミインコーポレーテッド White pigment for cosmetics, and cosmetic
JPWO2019189665A1 (en) * 2018-03-30 2020-08-20 株式会社フジミインコーポレーテッド White pigment for cosmetics, cosmetics
CN111936109A (en) * 2018-03-30 2020-11-13 福吉米株式会社 White pigment for cosmetic and cosmetic
JPWO2020059190A1 (en) * 2018-09-20 2021-08-30 株式会社フジミインコーポレーテッド White pigments for cosmetics, cosmetics
US11638681B2 (en) 2018-09-20 2023-05-02 Fujimi Incorporated White pigment for cosmetics, and cosmetic
WO2022075447A1 (en) * 2020-10-08 2022-04-14 株式会社フジミインコーポレーテッド Soft focus filler, cosmetic

Similar Documents

Publication Publication Date Title
DE60029870T2 (en) Cerium oxide-doped metal oxide, process for its preparation and plastic and cosmetic compositions containing these oxides
DE69520049T2 (en) COATING WITH ANTI-REFLECTIVE AND ANTI-FOG PROPERTIES
DE69005926T2 (en) Process for coating titanium dioxide pigments.
DE69505955T2 (en) RESISTANT TO DISCOLORATION SILANIZED TITANIUM DIOXIDE PIGMENTS WHEN WORKED IN POLYMERS
JP3484011B2 (en) UV protection agents and their use
WO2007141342A1 (en) Pigment and polymeric materials matted therewith
AU681712B2 (en) Durable pigmentary titanium dioxide and methods of producing the same
KR20070039111A (en) Method for post-treating titanium dioxide pigments
EP0008101A1 (en) Method for preparing highly weather-resistant titanium dioxide pigments and their use
EP1386948B1 (en) Pigments treated with organosulfonic compounds
JPH1046135A (en) Ultraviolet-intercepting agent
DE2009135A1 (en) Titanium dioxide with improved resistance
JP5181408B2 (en) Surface-coated titanium dioxide pigment and its use
DE2009160A1 (en) Titanium dioxide with improved resistance
JP3848458B2 (en) Method for producing UV blocker
KR20170126998A (en) Composite pigments comprising aluminum hydroxide and a process for their preparation
DE69302993T2 (en) Coated titanium dioxide
DE60011478T2 (en) Titanium dioxide pigment and process for its preparation
US2357101A (en) Titanium pigments and process for producing the same
AU2004260643B2 (en) Particulate inorganic solids treated with organophosphinic compounds
US3503772A (en) Sio2-zno treated tio2 pigments for paper laminates
EP2917286A1 (en) Pigment with photocatalytic activity, method for the production thereof and coating agent
JPS63215520A (en) Neutral titania and production thereof
JP3866076B2 (en) Cerium phosphate-titanium phosphate UV blocking agent and method for producing the same
DE3731733C2 (en)