JPH1045200A - Oil feeding equipment provided with automatic filling and stop function - Google Patents

Oil feeding equipment provided with automatic filling and stop function

Info

Publication number
JPH1045200A
JPH1045200A JP21920996A JP21920996A JPH1045200A JP H1045200 A JPH1045200 A JP H1045200A JP 21920996 A JP21920996 A JP 21920996A JP 21920996 A JP21920996 A JP 21920996A JP H1045200 A JPH1045200 A JP H1045200A
Authority
JP
Japan
Prior art keywords
flow rate
control valve
full
tank
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21920996A
Other languages
Japanese (ja)
Other versions
JP3728026B2 (en
Inventor
Masaji Hashimoto
正次 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tominaga Manufacturing Co
Original Assignee
Tominaga Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tominaga Manufacturing Co filed Critical Tominaga Manufacturing Co
Priority to JP21920996A priority Critical patent/JP3728026B2/en
Publication of JPH1045200A publication Critical patent/JPH1045200A/en
Application granted granted Critical
Publication of JP3728026B2 publication Critical patent/JP3728026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an oil feeding equipment having the automatic filling and stop function free from any overflow even when the fuel is fed from one pump to a large number of oil feeding nozzles. SOLUTION: In an oil feeding equipment having the automatic filling and stop function which is provided with a pump P to force feed the fuel oil L to a plurality of oil feeding passages 1 in a branched manner, and a flow rate regulating valve V provided in each oil feeding passage 1, and stops the oil feed when a fuel oil tank is full by throttling the opening of the flow rate regulating valve V as the fuel level in the tank to be fed approaches the full condition, the opening of the flow rate regulating valve V is increased when the flow rate of the fuel oil L to be discharged from an oil feed nozzle 15 is smaller than the minimum set value though the flow rate regulating valve V is opened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、満タンが近づくに
従い流量が小さくなるように設定して、油面を検知した
ときに給油を停止するようにした自動満タン停止機能を
備えた給油装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refueling apparatus having an automatic full tank stop function in which the flow is set to decrease as the tank becomes full and the refueling is stopped when an oil level is detected. It is about.

【0002】[0002]

【従来の技術】この種の給油装置は、一般に、給油ノズ
ルに油面または泡を検知して検知信号を出力する油面検
知手段を備えている(たとえば、特公平6−98999
号公報、特開平7−137799号公報参照)。この種
の給油ノズルの一例を図5に示す。
2. Description of the Related Art This type of lubricating apparatus is generally provided with an oil level detecting means for detecting an oil level or bubbles at an oiling nozzle and outputting a detection signal (for example, Japanese Patent Publication No. 6-98999).
JP-A-7-137799). FIG. 5 shows an example of this type of refueling nozzle.

【0003】図5において、給油ノズル15内の第1流
路16には、主弁17および副弁18が設けられ、これ
らの弁17,18はスプリング19により閉方向に付勢
されている。操作レバー21が支軸22を中心に矢印方
向に回動すると、前記スプリング19のバネ力に抗して
弁軸20が右側へ摺動して、前記主弁17および副弁1
8が順に開弁し、第1流路16と第2流路23とが連通
する。前記弁軸20には摺動自在に逆止弁25が装着さ
れている。該逆止弁25は第2スプリング26により第
2流路23を閉塞する方向に付勢されており、燃料油の
圧力で開弁すると共に、該開弁時に狭搾部38を形成す
る。狭搾部38に燃料油が流れると、ベンチュリー効果
によって空気補給路27には負圧が発生する。
[0003] In FIG. 5, a main valve 17 and a sub-valve 18 are provided in a first flow path 16 in a refueling nozzle 15, and these valves 17 and 18 are urged in a closing direction by a spring 19. When the operating lever 21 rotates about the support shaft 22 in the direction of the arrow, the valve shaft 20 slides to the right against the spring force of the spring 19, and the main valve 17 and the sub-valve 1
8 are opened in order, and the first flow path 16 and the second flow path 23 communicate with each other. A check valve 25 is slidably mounted on the valve shaft 20. The check valve 25 is urged by the second spring 26 in a direction to close the second flow path 23, and is opened by the pressure of the fuel oil, and forms a squeezed portion 38 when the valve is opened. When the fuel oil flows through the squeezing section 38, a negative pressure is generated in the air supply path 27 by the Venturi effect.

【0004】前記空気補給路27は、ダイヤフラム室2
8の負圧室31に連通している。ダイヤフラム室28
は、第3スプリング32によって上方に押圧されたダイ
ヤフラム29と、該ダイヤフラム29により負圧室31
に対して区画された大気圧室30とを備えている。ダイ
ヤフラム29には遮光片33が固定され、該遮光片33
を光電検出器(油面検知手段)34が検出する。
The air supply path 27 is provided in the diaphragm chamber 2
8 communicates with the negative pressure chamber 31. Diaphragm chamber 28
Is a diaphragm 29 pressed upward by a third spring 32 and a negative pressure chamber 31
And an atmospheric pressure chamber 30 partitioned from the atmospheric pressure chamber 30. A light shielding piece 33 is fixed to the diaphragm 29.
Is detected by the photoelectric detector (oil level detecting means) 34.

【0005】前記第2流路23には、第3流路24を介
して給油ノズル15のスパウト35内の流路が連通して
いる。スパウト35内には、空気補給管36が挿入され
ている。該空気補給管36は一方の開口部37がスパウ
ト35の先端付近で大気に開口し、他方が負圧室31に
連通している。したがって、狭搾部38において負圧が
発生すると、空気が開口部37、空気補給管36、負圧
室31および空気補給路27を介して狭搾部38に補給
される。
[0005] The second flow path 23 communicates with a flow path in a spout 35 of the refueling nozzle 15 via a third flow path 24. An air supply pipe 36 is inserted into the spout 35. One opening 37 of the air supply pipe 36 opens to the atmosphere near the tip of the spout 35, and the other communicates with the negative pressure chamber 31. Therefore, when a negative pressure is generated in the squeezed portion 38, air is supplied to the squeezed portion 38 via the opening 37, the air supply pipe 36, the negative pressure chamber 31 and the air supply path 27.

【0006】一方、給油を行うことにより給油タンク内
の油面が上昇すると、燃料油が泡立った泡や油面によっ
て開口部37が閉塞される。このように、開口部37が
閉塞されると、前記負圧室31には空気が補給されない
ので、ダイヤフラム29および遮光片33が下方に移動
し、これを光電検出器34が検知する。
[0006] On the other hand, when the oil level in the oil tank rises due to refueling, the opening 37 is closed by the foam or the oil level of the fuel oil. When the opening 37 is closed as described above, since the air is not supplied to the negative pressure chamber 31, the diaphragm 29 and the light shielding piece 33 move downward, and the photoelectric detector 34 detects this.

【0007】このように、泡や油面が検知されると、検
知信号が出力され、給油ノズル15に連通する送油経路
の流量調節弁が絞られ、図2に示すように、給油量を徐
々に減少させる。前記検知後、泡立ち納まり時間T0が
経過すると、流量を減らして再度給油を行うのである
が、給油を再開した後、満タン判定時間T1よりも前
に、次の検知信号が出力されると、図5の開口部37が
泡で閉塞されたのではなく、油面で閉塞されたものであ
るとみなして、給油を完全に停止する。これにより、満
タン給油を行うことができる。
[0007] As described above, when a bubble or oil level is detected, a detection signal is output, the flow control valve in the oil supply path communicating with the oil supply nozzle 15 is throttled, and as shown in FIG. Decrease gradually. After the detection, when the foaming settling time T0 has elapsed, the flow rate is reduced and refueling is performed again.However, after refueling is restarted and before the full tank determination time T1, the next detection signal is output. The refueling is completely stopped, assuming that the opening 37 in FIG. 5 is not closed by the foam but by the oil level. Thereby, a full tank refueling can be performed.

【0008】[0008]

【発明が解決しようとする課題】ところで、この種の給
油装置では、満タン近くになると、給油精度向上のた
め、元来、流速が極限まで遅くなるようにしている。一
方、油中ポンプのように、1台のポンプで多数の給油ノ
ズルに給油を行えるようにすると、多数の給油ノズルを
同時に使用した場合には、更に流量が小さくなる。この
ように、流量が小さくなると、図5の開口部37が油面
で閉塞されても、狭搾部38には負圧が発生しないの
で、遮光片33が移動しないから、光電検出器34は油
面検知をできなくなる。そのため、オーバーフローの生
じるおそれがある。
By the way, in this type of refueling apparatus, when the tank is almost full, the flow velocity is originally reduced to the limit in order to improve the refueling accuracy. On the other hand, if a single pump can supply oil to a large number of oil supply nozzles, such as a submersible pump, the flow rate will be further reduced when a large number of oil supply nozzles are used simultaneously. As described above, when the flow rate is reduced, even if the opening 37 in FIG. 5 is closed with the oil level, no negative pressure is generated in the narrowing portion 38, and the light shielding piece 33 does not move. Oil level detection becomes impossible. Therefore, an overflow may occur.

【0009】したがって、本発明の目的は、1台のポン
プから多数の給油ノズルに燃料を供給しても、オーバー
フローの生じるおそれのない自動満タン停止機能を備え
た給油装置を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a refueling apparatus having an automatic full tank stop function that does not cause overflow even if fuel is supplied from a single pump to a number of refueling nozzles. .

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、流量調節弁が開いているにもかかわら
ず、給油ノズルから吐出される燃料油の流量が設定最小
流量よりも小さい場合には、前記流量調節弁の開度を大
きくするようにしたものである。
In order to achieve the above object, the present invention provides a fuel cell system in which the flow rate of fuel oil discharged from a refueling nozzle is smaller than a set minimum flow rate even when a flow control valve is open. In such a case, the opening of the flow control valve is increased.

【0011】本発明によれば、燃料油の流量が設定最小
流量よりも小さくなると、流量調節弁の開度が大きくな
るので、満タンが近づいた際にも、流量をある程度大き
く保てるから、1台のポンプから同時に多数の給油ノズ
ルに燃料を圧送しても、油面を検知することができる。
According to the present invention, when the flow rate of the fuel oil becomes smaller than the set minimum flow rate, the opening degree of the flow control valve becomes large. Even if the fuel is simultaneously pumped from a number of pumps to a number of fueling nozzles, the oil level can be detected.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態を図面に
したがって説明する。図1は第1実施形態を示す。図1
において、ポンプPは、たとえば地下タンクに浸漬され
た油中ポンプであり、1台のポンプPから複数の送油経
路1に分岐して複数の計量ユニット2に燃料油Lを圧送
する。各送油経路1には流量調節弁Vが設けられてい
る。流量調節弁Vは、たとえば1つのダイヤフラム式の
大弁v1と、2つの直動式の小弁(電磁弁)v2,v3
とを1つの弁箱内に備えたもので構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment. FIG.
, The pump P is, for example, a submersible pump immersed in an underground tank, and branches from one pump P to a plurality of oil feed paths 1 to pump the fuel oil L to a plurality of metering units 2. Each oil supply path 1 is provided with a flow control valve V. The flow control valve V includes, for example, one large diaphragm valve v1 and two small direct-acting valves (electromagnetic valves) v2 and v3.
Are provided in one valve box.

【0013】各送油経路1には流量計F/Mが介挿され
ており、給油ノズル15から吐出される燃料油Lの給油
量は流量計F/Mに接続したパルス発信器3からのパル
ス信号pに基づいて検出され、パルス信号pのパルスが
計数回路4で計数されて表示器5で表示される。なお、
前記流量計F/Mおよびパルス発信器3は、燃料油Lの
流量を検知する流量検知手段を構成している。前記パル
ス発信器3からのパルス信号pは流量判定回路6にも入
力される。
A flow meter F / M is interposed in each oil feed path 1, and the amount of fuel oil L discharged from the fuel supply nozzle 15 is supplied from a pulse transmitter 3 connected to the flow meter F / M. Detected based on the pulse signal p, the pulses of the pulse signal p are counted by the counting circuit 4 and displayed on the display 5. In addition,
The flow meter F / M and the pulse transmitter 3 constitute flow rate detecting means for detecting the flow rate of the fuel oil L. The pulse signal p from the pulse transmitter 3 is also input to the flow rate determination circuit 6.

【0014】流量判定回路6は、パルス発信器3からの
パルス信号pを受けて、流量Qを設定最小流量QMIN
比較し、現在の流量Qが設定最小流量QMIN よりも小さ
いときに過小信号sを弁制御回路7および警報器8に出
力する。前記設定最小流量QMIN は、図5の狭搾部38
に負圧が発生して光電検出器34が作動する値に設定さ
れている。なお、図1の警報器8は、過小信号sを受け
たときに点滅ないしブザーを鳴らして警報を発するもの
である。
The flow rate judging circuit 6 receives the pulse signal p from the pulse transmitter 3, compares the flow rate Q with the set minimum flow rate Q MIN, and determines that the current flow rate Q is smaller than the set minimum flow rate Q MIN. The signal s is output to the valve control circuit 7 and the alarm 8. The set minimum flow rate Q MIN is determined by the squeezed portion 38 in FIG.
Is set to a value at which a negative pressure occurs and the photoelectric detector 34 operates. The alarm device 8 shown in FIG. 1 emits an alarm by blinking or sounding a buzzer when the under signal s is received.

【0015】弁制御回路7は、開閉信号aを出力するこ
とにより流量調節弁Vの3つの弁v1〜v3を開閉制御
するもので、満タンが近づくと満タン制御回路9からの
開度信号bに基づいて流量調節弁Vを制御する。
The valve control circuit 7 controls the opening and closing of the three valves v1 to v3 of the flow control valve V by outputting an opening / closing signal a. The flow control valve V is controlled based on b.

【0016】満タン制御回路9は、給油ノズル15の光
電検出器34からの検知信号cを受けて、以下に説明す
るように、弁制御回路7に流量調節弁Vの開度を絞らせ
る。図2の給油開始時t0〜t1では、開度が最大に設
定されており、3つの弁v1〜v3が開く。その後、油
面を検知する度に、開度が小さくなるように設定されて
おり、t2〜t3では、2つの小弁v2,v3のみが開
く中流となり、更に、t4〜t5では1つの小弁v3の
みが開く小流となる。すなわち、図1の弁制御回路7
は、満タンが近づくに従い、満タン制御回路9からの指
令を受けて流量調節弁Vの開度を絞る。
The full tank control circuit 9 receives the detection signal c from the photoelectric detector 34 of the refueling nozzle 15 and causes the valve control circuit 7 to narrow the opening of the flow control valve V as described below. At the refueling start time t0 to t1 in FIG. 2, the opening is set to the maximum, and the three valves v1 to v3 are opened. Thereafter, each time the oil level is detected, the opening degree is set to be small. At t2 to t3, only the two small valves v2 and v3 are in the middle flow to open, and at t4 to t5, one small valve is set. Only v3 becomes a small stream that opens. That is, the valve control circuit 7 of FIG.
Reduces the opening of the flow control valve V in response to a command from the full tank control circuit 9 as the full tank approaches.

【0017】一方、弁制御回路7は流量調節弁Vが開弁
しているにもかかわらず、流量判定回路6から過小信号
sを受けたときには、流量調節弁Vの流量制限を緩和す
る。すなわち、弁制御回路7は、小流または中流におい
て過小信号sを受けると、閉じていた弁v2,v3を開
弁して、それぞれ、中流または大流に流量調節弁Vを設
定する。
On the other hand, when the valve control circuit 7 receives the under signal s from the flow determination circuit 6 even though the flow control valve V is open, the flow control of the flow control valve V is relaxed. That is, when receiving the undercurrent signal s in the small flow or the middle flow, the valve control circuit 7 opens the closed valves v2 and v3, and sets the flow control valve V to the middle flow or the large flow, respectively.

【0018】なお、計数回路4は、計数値が整数になる
と(小数点以下2桁が00になると)丁度信号oを満タ
ン制御回路9に出力する。満タン制御回路9は小流時に
計数回路4からの丁度信号oを受けると弁制御回路7に
給油を停止させる。
Note that the counting circuit 4 outputs a signal o to the full tank control circuit 9 when the counted value becomes an integer (when two digits after the decimal point become 00). When the full tank control circuit 9 receives just the signal o from the counting circuit 4 at the time of a small flow, the valve control circuit 7 stops refueling.

【0019】つぎに、前記構成の主たる動作について説
明する。まず、給油ノズル15を図示しないハンガーか
ら取り外し、給油タンクにセットすると、弁制御回路7
が流量調節弁Vを全開にし、図2の時間t0〜t1のよ
うに大流で給油がなされる。その後、時間t1で、図1
の光電検出器34が泡を検出すると、検知信号cが出力
され、満タン制御回路9が開度信号bを出力して弁制御
回路7に中流で給油を行うように指令を出す。これによ
り弁制御回路7が一度流量調節弁Vを全閉にし、泡立ち
納まり時間T0が経過した後2つの小弁v1,v2を開
かせ、図2の時間t2〜t3のように、中流で給油がな
される。時間t3 において、図1の光電検出器34が泡
を検出すると検知信号cが満タン制御回路9に出力され
る。満タン制御回路9は検知信号cの回数をカウントし
ており、2回目の検知信号cを受けたことで、開度信号
bを出力して弁制御回路7に小流で給油を行うように指
令を出す。その後、こうした動作を繰り返す。図2の小
流で給油がなされている時間t4〜t5,時間t6〜t
7において、小流での給油後、満タン判定時間T1以内
に、再び図1の光電検出器34から検知信号cが出力さ
れた場合は、油面がノズルの先端に達したのであろうか
ら、満タンになったとみなして給油を停止する。
Next, the main operation of the above configuration will be described. First, when the refueling nozzle 15 is removed from a hanger (not shown) and set in the refueling tank, the valve control circuit 7
Fully opens the flow control valve V, and refueling is performed in a large flow as shown at times t0 to t1 in FIG. Then, at time t1, FIG.
When the photoelectric detector 34 detects bubbles, a detection signal c is output, and the full tank control circuit 9 outputs an opening degree signal b to instruct the valve control circuit 7 to refuel in the middle flow. As a result, the valve control circuit 7 once closes the flow control valve V completely and opens the two small valves v1 and v2 after the elapse of the bubble-filling time T0, and refuels in the middle flow as shown at time t2 to t3 in FIG. Is made. At time t3, when the photoelectric detector 34 of FIG. 1 detects a bubble, a detection signal c is output to the full control circuit 9. The full tank control circuit 9 counts the number of times of the detection signal c, and upon receiving the second detection signal c, outputs the opening degree signal b to supply the valve control circuit 7 with a small flow of oil. Issue a command. Thereafter, such an operation is repeated. Time t4 to t5 and time t6 to t during which refueling is performed in the small stream in FIG.
In 7, if the detection signal c is output again from the photoelectric detector 34 in FIG. 1 within the full tank determination time T1 after refueling with a small flow, the oil level may have reached the tip of the nozzle. Assuming that the tank is full, refueling is stopped.

【0020】ここで、1台のポンプPから多数の送油経
路1に給油を行っていると、流量Qが小さくなる。該流
量Qが設定最小流量QMIN よりも小さいと、流量判定回
路6から弁制御回路7に過小信号sが出力される。この
過小信号sを受けて、弁制御回路7は、たとえば、図2
の時間t4〜t5,時間t6〜t7では図1の2つの小
弁v1,v2を開弁する。それでも、流量Qが設定最小
流量QMIN よりも小さい場合には、全ての弁v1〜v3
を開く。したがって、流量Qが設定最小流量QMIN より
も小さくなるのを防止し得るから、油面を検知できるの
で、オーバーフローを防止し得る。
Here, when the oil is supplied from one pump P to many oil supply paths 1, the flow rate Q becomes small. When the flow rate Q is smaller than the set minimum flow rate Q MIN , the flow rate judgment circuit 6 outputs an under signal s to the valve control circuit 7. In response to the under signal s, the valve control circuit 7, for example,
During times t4 to t5 and times t6 to t7, the two small valves v1 and v2 in FIG. 1 are opened. Nevertheless, when the flow rate Q is smaller than the set minimum flow rate Q MIN, all valves v1~v3
open. Therefore, the flow rate Q can be prevented from becoming smaller than the set minimum flow rate Q MIN , and the oil level can be detected, so that overflow can be prevented.

【0021】ところで、全ての弁v1〜v3が開いてい
るにもかかわらず、流量Qが設定最小流量QMIN よりも
小さい場合が想定される。こうした場合に備えて、前記
弁制御回路7は、以下の図3のフローチャートに示す機
能を備えているのが好ましい。
[0021] By the way, in spite of all of the valve v1~v3 it is open, when the flow rate Q is smaller than the set minimum flow rate Q MIN is assumed. In preparation for such a case, it is preferable that the valve control circuit 7 has a function shown in a flowchart of FIG. 3 below.

【0022】弁制御回路7は、給油中に、図3のステッ
プS1で過小信号sが入力されると、ステップS2に進
み、流量調節弁Vが全開か否かを判断し、全開でなけれ
ばステップS3に進んで開度を大きくし、一方、全開で
あればステップS4に進んで流量調節弁Vを全閉にして
給油を停止する。
If the under control signal s is inputted in step S1 of FIG. 3 during refueling, the valve control circuit 7 proceeds to step S2, determines whether or not the flow control valve V is fully opened. Proceeding to step S3, the degree of opening is increased. On the other hand, if it is fully open, the flow proceeds to step S4, where the flow control valve V is fully closed to stop refueling.

【0023】こうすることで、流量調節弁Vが全開(所
定の開度の一例)であるにもかかわらず流量Qが設定最
小流量QMIN より小さい場合には、給油を停止すること
により、油面が検知ができなくても、オーバーフローを
防止できる。
By doing so, if the flow rate Q is smaller than the set minimum flow rate Q MIN even though the flow control valve V is fully open (an example of a predetermined opening degree), the oil supply is stopped, Even if the surface cannot be detected, overflow can be prevented.

【0024】ところで、図1の大弁v1がダイヤフラム
弁のようにパイロット弁により開閉動作する場合には、
大弁v1の動作遅れがあるので、流量が一定量となるま
でに時間を要するから、満タンであるにもかかわらず、
図2の満タン判定時間T1以内に液面を検知できない場
合が想定される。こうした場合に備えて、前記満タン制
御回路9は以下の図4のフローチャートに示す機能を備
えているのが好ましい。
When the large valve v1 in FIG. 1 is opened and closed by a pilot valve like a diaphragm valve,
Since there is a delay in the operation of the large valve v1, it takes time for the flow rate to reach a constant amount.
It is assumed that the liquid level cannot be detected within the full tank determination time T1 in FIG. In case of such a case, it is preferable that the filling control circuit 9 has a function shown in a flowchart of FIG.

【0025】給油が開始された後に、満タン制御回路9
は、ステップS11で検知信号cを受けると、ステップ
S12に進み全閉の開度信号bを出力し、ステップS1
3に進む。ステップS13では所定の泡立ち納まり時間
T0が経過した後、ステップS14で、開度を小さくさ
せて給油を再開し、やがて、ステップS15で検知信号
cを受けステップS16に進む。ステップS16では、
流量調節弁Vが全開か否かを判断し、全開でない場合は
ステップS17に進み、図1の第1満タン判定時間T1
以内に前記検知信号cが入力されたか否かを判断する。
間欠給油時間Tが第1満タン判定時間T1以内であれ
ば、満タンになったとみなして(検知したのが泡ではな
く液面であるとみなして)図4のステップS18に進ん
で給油を停止し、一方、間欠給油時間Tが第1満タン判
定時間T1よりも大きければステップS13に戻る。前
記ステップS16で流量調節弁Vが全開である場合はス
テップS20に進み、第1満タン判定時間T1よりも長
い第2満タン判定時間T2以内に前記検知信号cを受け
たか否かを判断する。間欠給油時間Tが第2満タン判定
時間T2以内であれば、満タンになったとみなして、ス
テップS21に進んで給油を停止し、一方、間欠給油時
間Tが第2満タン判定時間T2よりも長ければステップ
S13に戻る。
After the refueling is started, the full tank control circuit 9
Receives the detection signal c in step S11, proceeds to step S12, outputs a fully-closed opening signal b, and returns to step S1.
Proceed to 3. In step S13, after the predetermined foaming settling time T0 has elapsed, in step S14, the opening degree is reduced and the refueling is restarted. After that, the detection signal c is received in step S15, and the process proceeds to step S16. In step S16,
It is determined whether or not the flow control valve V is fully opened. If the valve is not fully opened, the process proceeds to step S17, and the first full tank determination time T1 in FIG.
It is determined whether or not the detection signal c has been input within the period.
If the intermittent refueling time T is within the first full tank determination time T1, it is regarded that the tank is full (assuming that the detected liquid level is not bubbles) and the process proceeds to step S18 in FIG. If the intermittent refueling time T is longer than the first full tank determination time T1, the process returns to step S13. If the flow control valve V is fully opened in step S16, the process proceeds to step S20, and it is determined whether or not the detection signal c has been received within the second full tank determination time T2 longer than the first full tank determination time T1. . If the intermittent refueling time T is within the second full tank determination time T2, it is considered that the tank is full, and the process proceeds to step S21 to stop refueling, while the intermittent refueling time T is longer than the second full tank determination time T2. If it is longer, the process returns to step S13.

【0026】このように、流量調節弁Vが全開である場
合には、第1満タン判定時間T1よりも長い第2満タン
判定時間T2を基準に、検知したものが泡か液面かを判
定すれば、パイロット式の大弁v1の開弁時の動作遅れ
があっても、満タンを検知して、オーバーフローを防止
することができる。
As described above, when the flow control valve V is fully opened, it is determined whether the detected object is a bubble or a liquid level based on the second full tank determination time T2 longer than the first full tank determination time T1. If it is determined, even if there is an operation delay when the pilot-type large valve v1 is opened, overflow can be detected by detecting the full tank.

【0027】ところで、図1のポンプPで1台の給油ノ
ズル15のみを使用する場合には、逆に流量Qが大きく
なり過ぎる場合がある。かかる場合に備えて、流量判定
回路6および弁制御回路7は以下の機能を備えているの
が好ましい。流量判定回路6は、許容流量の最大値Q
MAX と流量Qとを比較し、流量Qが最大値QMAX よりも
大きい場合には、弁制御回路7に過大信号を出力する。
弁制御回路7は、弁制御回路7を受けると流量調節弁V
の開度を小さくする。これにより、オーバーフローを防
止することができる。
When only one oil supply nozzle 15 is used in the pump P of FIG. 1, the flow rate Q may be too large. In preparation for such a case, the flow rate determination circuit 6 and the valve control circuit 7 preferably have the following functions. The flow rate determination circuit 6 determines the maximum value Q of the allowable flow rate.
Comparing the MAX and the flow rate Q, when the flow rate Q is greater than the maximum value Q MAX outputs an excessive signal to the valve control circuit 7.
When the valve control circuit 7 receives the valve control circuit 7, the flow control valve V
The degree of opening. Thereby, overflow can be prevented.

【0028】ところで、前記実施形態では、給油ノズル
15の光電検出器34によって油面を検出したが、本発
明は他の手段で油面を検出してもよい。たとえば、パル
ス発信器3からのパルス信号pを満タン制御回路9に出
力させ、パルス信号pがゼロになったときに満タンであ
ると判定する場合も本発明に含まれる。この場合、パル
ス信号pが検知信号cに相当する。また、本発明は給油
ノズル15の構造を図5のものに限定するものではな
く、特開平7−137799号のような構造のものであ
ってもよい。
In the above-described embodiment, the oil level is detected by the photoelectric detector 34 of the oil supply nozzle 15, but the present invention may be applied to the oil level by other means. For example, the present invention includes a case where the pulse signal p from the pulse transmitter 3 is output to the full tank control circuit 9 and it is determined that the tank is full when the pulse signal p becomes zero. In this case, the pulse signal p corresponds to the detection signal c. Further, the present invention is not limited to the structure of the refueling nozzle 15 shown in FIG. 5, but may have a structure as disclosed in Japanese Patent Application Laid-Open No. 7-137799.

【0029】また、前記実施形態では、流量調節弁Vが
3つの弁v1〜v3を持つものであったが、本発明では
流量調節弁Vがモータバルブのように無段階に開度を調
節できるものでもよい。また、ポンプPは油中式である
必要はなく、1台のポンプPから複数台の計量ユニット
に供給するものであれば、本発明の範囲に含まれる。
In the above embodiment, the flow control valve V has three valves v1 to v3. However, in the present invention, the flow control valve V can continuously adjust the opening like a motor valve. It may be something. Further, the pump P does not need to be of the oil-in-oil type, and is included in the scope of the present invention as long as one pump P supplies a plurality of measuring units.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
給油ノズルから吐出される燃料油の流量が設定最小流量
よりも小さい場合には、流量調節弁の開度を大きくする
ようにしたので、流量が小さすぎて油面を検知できずに
オーバーフローを生じるという事態を防止し得る。
As described above, according to the present invention,
When the flow rate of the fuel oil discharged from the refueling nozzle is smaller than the set minimum flow rate, the opening of the flow control valve is increased, so that the flow rate is too small to detect the oil level and overflow occurs. That situation can be prevented.

【0031】さらに、請求項3の発明によれば、流量調
節弁が所定の開度よりも大きいにもかかわらず、流量が
設定最小流量よりも小さい場合には、給油を停止するか
ら、油面が検知できなくても、オーバーフローを防止し
得る。
Further, according to the third aspect of the present invention, when the flow rate is smaller than the set minimum flow rate despite the fact that the flow rate control valve is larger than the predetermined opening, refueling is stopped. Even if is not detected, overflow can be prevented.

【0032】また、請求項4の発明によれば、パイロッ
ト式の弁の動作遅れがあっても、第1満タン判定時間よ
りも長い第2満タン判定時間により満タンを判定するか
ら、動作遅れに起因するオーバーフローを防止し得る。
According to the fourth aspect of the present invention, even if there is a delay in the operation of the pilot type valve, it is determined that the tank is full based on the second full tank determination time longer than the first full tank determination time. Overflow due to delay can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す自動満タン停止機能
を備えた給油装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a fuel supply device having an automatic full tank stop function according to an embodiment of the present invention.

【図2】流量の制御方法を示すグラフである。FIG. 2 is a graph showing a flow rate control method.

【図3】弁制御回路の付加的な機能を示すフローチャー
トである。
FIG. 3 is a flowchart showing additional functions of the valve control circuit.

【図4】満タン制御回路の付加的な機能を示すフローチ
ャートである。
FIG. 4 is a flowchart showing additional functions of a full tank control circuit.

【図5】給油ノズルの一例を示す断面図である。FIG. 5 is a sectional view showing an example of a fueling nozzle.

【符号の説明】[Explanation of symbols]

1:送油経路 3:パルス発信器(流量検知手段) 6:流量判定回路 7:弁制御回路 9:満タン制御回路 c:検知信号 s:過小信号 1: oil supply path 3: pulse transmitter (flow rate detection means) 6: flow rate determination circuit 7: valve control circuit 9: full tank control circuit c: detection signal s: under-signal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃料油を複数の送油経路に分岐して圧送
するポンプと、前記各送油経路に設けられた流量調節弁
とを備え、給油すべきタンク内が満タンに近づくに従
い、前記流量調節弁の開度を絞らせることで満タン時に
給油を停止するようにした自動満タン停止機能を備えた
給油装置であって、 前記流量調節弁が開いているにもかかわらず、給油ノズ
ルから吐出される燃料油の流量が設定最小流量よりも小
さい場合には、前記流量調節弁の開度を大きくするよう
にした自動満タン停止機能を備えた給油装置。
1. A pump for branching and feeding fuel oil to a plurality of oil feed paths, and a flow control valve provided in each of the oil feed paths, wherein a tank to be refueled approaches a full tank. A refueling apparatus having an automatic full stop function that stops refueling when the tank is full by reducing the opening of the flow control valve, and refueling despite the flow control valve is open When the flow rate of the fuel oil discharged from the nozzle is smaller than a set minimum flow rate, the fuel supply device having an automatic full tank stop function for increasing the opening of the flow control valve.
【請求項2】 燃料油を複数の送油経路に分岐して圧送
するポンプと、 前記各送油経路に設けられた流量調節弁と、 満タンが近づいたときに出力される検知信号を受けて前
記流量調節弁の開度を絞らせる満タン制御回路とを有す
る自動満タン停止機能を備えた給油装置であって、 前記送油経路を経て給油ノズルから吐出される燃料油の
流量を検知する流量検知手段と、 該流量検知手段からの流量を設定最小流量と比較し、現
在の流量が設定最小流量よりも小さいときに過小信号を
出力する流量判定回路と、 前記満タン制御回路からの指令を受けて満タンが近づく
に従い前記流量調節弁の開度を絞ると共に、前記流量判
定回路から過小信号が出力されたときに流量調節弁の流
量制限を緩和して流量を増加させる弁制御回路とを有す
る自動満タン停止機能を備えた給油装置。
2. A pump for branching and feeding fuel oil to a plurality of oil supply paths, a flow control valve provided in each of the oil supply paths, and a detection signal output when the tank is almost full. And a full tank control function for reducing the opening of the flow control valve by an automatic full tank stop function, and detects a flow rate of fuel oil discharged from an oil supply nozzle through the oil supply path. A flow rate detection circuit that compares the flow rate from the flow rate detection means with a set minimum flow rate and outputs an under signal when the current flow rate is smaller than the set minimum flow rate; and A valve control circuit that reduces the opening degree of the flow control valve as the tank becomes full in response to the command, and relaxes the flow restriction of the flow control valve to increase the flow rate when the underflow signal is output from the flow rate determination circuit. With automatic filling Refueling device equipped with a stop function.
【請求項3】 請求項2において、 前記弁制御回路は、前記流量調節弁の開度が所定の開度
以上であるにもかかわらず前記過小信号が入力された場
合には、給油を停止させる自動満タン停止機能を備えた
給油装置。
3. The valve control circuit according to claim 2, wherein the valve control circuit stops refueling when the under signal is input despite the opening degree of the flow control valve being equal to or more than a predetermined opening degree. Refueling device with automatic tank full stop function.
【請求項4】 請求項1の前記流量調節弁がパイロット
式の弁を有する場合において、 前記満タン制御回路は、前記流量調節弁のパイロット式
の弁が閉じている場合において所定の第1満タン判定時
間T1以内に検知信号を受けたときに満タンであると判
定して前記流量調節弁を閉止すると共に、該流量調節弁
のパイロット式の弁が開いている場合に、前記過小信号
が入力されたときには前記第1満タン判定時間T1より
も長い第2満タン判定時間T2により満タンか否かを判
定する自動満タン停止機能を備えた給油装置。
4. The flow control valve according to claim 1, wherein the flow control valve includes a pilot-type valve, and the full tank control circuit includes a predetermined first full control when the pilot valve of the flow control valve is closed. When the detection signal is received within the ton determination time T1, it is determined that the tank is full and the flow control valve is closed, and when the pilot valve of the flow control valve is open, the under- A refueling device having an automatic full tank stop function for determining whether or not the tank is full based on a second full tank determination time T2 longer than the first full tank determination time T1 when input.
JP21920996A 1996-07-31 1996-07-31 Oiling device with automatic full tank stop function Expired - Fee Related JP3728026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21920996A JP3728026B2 (en) 1996-07-31 1996-07-31 Oiling device with automatic full tank stop function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21920996A JP3728026B2 (en) 1996-07-31 1996-07-31 Oiling device with automatic full tank stop function

Publications (2)

Publication Number Publication Date
JPH1045200A true JPH1045200A (en) 1998-02-17
JP3728026B2 JP3728026B2 (en) 2005-12-21

Family

ID=16731924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21920996A Expired - Fee Related JP3728026B2 (en) 1996-07-31 1996-07-31 Oiling device with automatic full tank stop function

Country Status (1)

Country Link
JP (1) JP3728026B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054700A (en) * 2001-08-13 2003-02-26 Tokico Ltd Oil feeder
JP2007320636A (en) * 2006-06-02 2007-12-13 Tokiko Techno Kk Liquid feeder
JP2009126571A (en) * 2007-11-27 2009-06-11 Tokiko Techno Kk Fuel supply apparatus
WO2022254940A1 (en) * 2021-06-04 2022-12-08 株式会社タツノ Refueling nozzle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054700A (en) * 2001-08-13 2003-02-26 Tokico Ltd Oil feeder
JP2007320636A (en) * 2006-06-02 2007-12-13 Tokiko Techno Kk Liquid feeder
JP4628312B2 (en) * 2006-06-02 2011-02-09 トキコテクノ株式会社 Liquid supply device
JP2009126571A (en) * 2007-11-27 2009-06-11 Tokiko Techno Kk Fuel supply apparatus
WO2022254940A1 (en) * 2021-06-04 2022-12-08 株式会社タツノ Refueling nozzle

Also Published As

Publication number Publication date
JP3728026B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
US5114280A (en) Vacuum type sewage collecting system and vacuum valve controller for the same
US7578416B2 (en) Water purification apparatus
FR2636056A1 (en) DEVICE FOR AUTOMATICALLY CONTROLLING A HYDROCARBON LANCE BASED ON THE GAS CONTENT OF HYDROCARBON
JP2004288189A (en) Method for continuously measuring dynamic liquid consumption
JPH1045200A (en) Oil feeding equipment provided with automatic filling and stop function
CN102245497B (en) Alcohol receiving station
KR100742367B1 (en) Medicinal fluid mixing feeder
JPH06312799A (en) Oil feeder
US2093952A (en) Siphon-breaking means for liquid metering systems
US8229687B2 (en) System and method for measuring a level of a liquid in a container
JPS5811698A (en) Lubricating device
JPH0437911A (en) Water supply controller
JP2649576B2 (en) Engine oil consumption measurement device
JPH03212399A (en) Metering oil feeder
JPH0124683Y2 (en)
JPS6226997B2 (en)
JPH11183315A (en) Circulating water tank and its control method
JPH0834498A (en) Fuel-feeding device
JPH0551092A (en) Controlling device for fullness in oil feeding for oil feeder
JPH0764396B2 (en) Liquid supply device
WO1995026316A1 (en) Method and apparatus for blending liquids
US2509131A (en) Air charger for hydropneumatic systems
JPS62168896A (en) Method and device for controlling surface of liquid of filler
JPH01308797A (en) Method for refilling oil with automatic oil filling up device
JPH0236476B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050927

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees