JPH1042499A - Rotor of motor - Google Patents

Rotor of motor

Info

Publication number
JPH1042499A
JPH1042499A JP8221659A JP22165996A JPH1042499A JP H1042499 A JPH1042499 A JP H1042499A JP 8221659 A JP8221659 A JP 8221659A JP 22165996 A JP22165996 A JP 22165996A JP H1042499 A JPH1042499 A JP H1042499A
Authority
JP
Japan
Prior art keywords
rotor
magnet
stator
magnets
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8221659A
Other languages
Japanese (ja)
Other versions
JP3072504B2 (en
Inventor
Kenji Tanaka
剣治 田中
Mitsuhiko Sato
光彦 佐藤
Seiichi Kaneko
清一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Elec Co
Original Assignee
Aichi Elec Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16770254&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1042499(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aichi Elec Co filed Critical Aichi Elec Co
Priority to JP8221659A priority Critical patent/JP3072504B2/en
Publication of JPH1042499A publication Critical patent/JPH1042499A/en
Application granted granted Critical
Publication of JP3072504B2 publication Critical patent/JP3072504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Frames (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent vibrations and noises due to the torque ripple of cogging torque component, by forming a beveling notched part in the portion of a recessed part side edge part in a magnetic the portion of which is adjacent to the outer periphery of a rotor. SOLUTION: Nearly V-shaped magnets 3a-3d are so arranged that the recessed part side faces outside and magnetized in four poles setting the central part of each magnet as the magnetic pole center. To each of the magnets 3a, 3d, a beveling part 20 is formed in the portion of the recessed part side edge part 33 the portion of which is adjacent to the outer periphery of a rotor. When a rotor 1s is arranged in a stator 5, the stator magnetic flux entering the rotor core 2a from specific tooth parts 8a of the stator core 6 passes the conventional flow path shown by a sign 12, and further a flow path shown by a sign 14 is newly formed on account of the existence of the beveling parts 20. A magnetic path is dispersed, interposing the magnet 3a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機や空調機の圧縮
機駆動用電動機等に代表される永久磁石を装着した内転
型回転子に関し、特に回転子の鉄心の内部に磁石を埋め
込んで構成するいわゆるインテリアル・パーマネントマ
グネット・モータ(IPM)の回転子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adduction type rotor having a permanent magnet mounted thereon, such as a motor for driving a compressor of a refrigerator or an air conditioner, and more particularly, to a rotor in which a magnet is embedded inside an iron core. And a rotor of a so-called interior permanent magnet motor (IPM).

【0002】[0002]

【従来の技術】上記電動機の回転子として、図10に示
す構成のものが知られており、例えば特開平6−339
241号公報に開示されている。図10に示す回転子1
eは、円柱状の鉄心2eの中心に設けた軸孔に軸4を嵌
入し、この軸4と平行に磁石と略相似形の複数の収容孔
を設けて、この収容孔に磁石3u,3v,3w,3xを
それぞれ挿入して構成されている。
2. Description of the Related Art As a rotor of the above-mentioned electric motor, one having a construction shown in FIG. 10 is known.
No. 241. Rotor 1 shown in FIG.
e, a shaft 4 is fitted into a shaft hole provided at the center of a cylindrical iron core 2e, and a plurality of housing holes substantially similar to magnets are provided in parallel with the shaft 4, and magnets 3u, 3v are provided in the housing holes. , 3w, and 3x are inserted.

【0003】鉄心2eは、所定形状に打ち抜いた薄鉄板
を軸方向に多数積層して形成されており、各薄鉄板に設
けた打ち出し突起による凹凸部を軸方向に隣接する薄鉄
板相互で嵌合させて固定する周知のカシメクランプ手段
によって固定されている。この鉄心の構成は、後述する
固定子鉄心の場合についても同様である。磁石3u〜3
xは、フェライト磁石または希土類磁石よりなり、図示
する軸4に垂直な断面において略C字形をなし、回転子
の外側へ向けて凹状となるように鉄心2eの収容孔内へ
挿着されている。そして各磁石の中央を磁極中心として
隣接する磁石が互いに異極となるように着磁されるもの
であり、図10の場合4極の界磁を形成している。尚上
記磁石は、各極において凹凸の方向を揃えて多重に埋め
込むように構成してもよく、このような例としては平成
7年電気学会産業応用部門全国大会講演論文集第385
頁〜388頁(論文番号306)に開示されている。
[0003] The iron core 2e is formed by laminating a number of thin iron plates punched in a predetermined shape in the axial direction, and the concave and convex portions formed by the projections provided on each thin iron plate are fitted to each other in the axially adjacent thin iron plates. It is fixed by well-known caulking clamp means. The configuration of this iron core is the same as in the case of a stator core described later. Magnets 3u-3
x is made of a ferrite magnet or a rare earth magnet, has a substantially C shape in a cross section perpendicular to the axis 4 shown, and is inserted into the accommodation hole of the iron core 2e so as to be concave toward the outside of the rotor. . Adjacent magnets are magnetized such that the center of each magnet is the center of the magnetic pole so that they have different polarities. In the case of FIG. 10, a four-pole field is formed. The magnets may be configured so as to be buried multiple times with the direction of the concavities and convexities aligned in each pole. An example of such an example is the 1995 IEEJ National Conference on Industrial Applications, Proc.
Page 388 (article number 306).

【0004】また上記回転子と異なる磁石形状のものと
して、図11に示すような回転子がある。図11に示す
回転子1dは、磁石3q,3r,3s,3tが軸4に垂
直な断面において略V字形をなし、回転子の外側へ向け
て凹状となるように鉄心2dの収容孔内へ挿着されてお
り、他は図10に示した回転子同様の構成となってい
る。尚、この磁石3q〜3tの各V字は、各極において
板状磁石を2個用いて形成するようにしてもよい。
[0004] As a magnet having a different shape from the above-mentioned rotor, there is a rotor as shown in FIG. In the rotor 1d shown in FIG. 11, the magnets 3q, 3r, 3s, 3t are substantially V-shaped in a cross section perpendicular to the axis 4, and are inserted into the receiving hole of the iron core 2d so as to be concave toward the outside of the rotor. The other components are the same as those of the rotor shown in FIG. Each V-shaped magnet 3q to 3t may be formed by using two plate-like magnets at each pole.

【0005】上記回転子は、三相巻線を有する固定子内
に配置されて永久磁石型の同期電動機を構成し、インバ
ータを介して固定子巻線を励磁することによって回転を
行うようになっている。図12は、図11の回転子1d
を用いた場合の電動機の構成を示したものであり、ステ
ータのスロット数が24、モータの極数が4の場合を示
している。固定子5の鉄心6の内周部には多数の歯部8
が存在して、この各歯部の間にはスロット7が設けてあ
り、このスロットには模式的に図示する巻線9が絶縁物
を介して装着されている。回転子1dは、N,Sで図示
するように着磁されて4極の界磁を形成しており、固定
子鉄心6の内周部との間に所定の空隙を介して対向する
ように軸4によって回動自在に支持されている。
The rotor is arranged in a stator having three-phase windings to form a permanent magnet type synchronous motor, and rotates by exciting the stator windings via an inverter. ing. FIG. 12 shows the rotor 1d of FIG.
5 shows a configuration of an electric motor in which the number of slots of the stator is 24 and the number of poles of the motor is 4. A large number of teeth 8 are provided on the inner periphery of the iron core 6 of the stator 5.
And a slot 7 is provided between the teeth, and a winding 9 schematically shown is mounted in this slot via an insulator. The rotor 1d is magnetized as shown by N and S to form a four-pole field, and is opposed to the inner peripheral portion of the stator core 6 via a predetermined gap. It is rotatably supported by a shaft 4.

【0006】このような電動機の場合、逆突極性を特徴
としているため、低速域においては、これにより生じる
リラクタンストルクと磁石により生じる主磁束トルクの
双方の最大トルクポイントで駆動するいわゆる最大トル
ク制御を行い、一方高速域においては、主磁束トルクを
リラクタンストルクにて補ういわゆる進み位相制御を行
うのが有効であり、前述の圧縮機等の駆動に用いられて
いる。
[0006] Such a motor is characterized by a reverse saliency, so that in a low-speed range, a so-called maximum torque control in which the motor is driven at the maximum torque points of both the reluctance torque generated thereby and the main magnetic flux torque generated by the magnet is performed. On the other hand, in the high-speed range, it is effective to perform so-called advance phase control for supplementing the main magnetic flux torque with the reluctance torque, and is used for driving the above-described compressor and the like.

【0007】即ち、一般に電動機のトルクTは、主磁束
トルクをT1、リラクタンストルクをT2、コギングト
ルクをTcとすると、
That is, in general, the torque T of the electric motor is as follows, where T1 is the main magnetic flux torque, T2 is the reluctance torque, and Tc is the cogging torque.

【数1】 であり、磁石による磁束量をΦ、q軸電流をIq、d軸
電流をId、q軸インダクタンスをLq、d軸インダク
タンスをLdとすれば、
(Equation 1) If the amount of magnetic flux by the magnet is Φ, the q-axis current is Iq, the d-axis current is Id, the q-axis inductance is Lq, and the d-axis inductance is Ld,

【数2】 (Equation 2)

【数3】 で表される。(Equation 3) It is represented by

【0008】また、一般に電動機の固定子に対してなさ
れる台形波120゜通電は、U−V,U−W,V−W,
V−U,W−U,W−Vの6つの通電パターンより成
り、各々の通電区間は電気角60゜となっている。従っ
て、ある特定の巻線に電気角60゜の通電がなされる
間、その特定の巻線による電磁力と磁石による磁束との
関係が最高のトルクを生じる関係となるように通電制御
されるようになっている。
In general, the trapezoidal wave 120 ° energization applied to the stator of the motor is performed by UV, UW, VW,
It consists of six conduction patterns VU, WU, and WV, and each conduction section has an electrical angle of 60 °. Therefore, while a certain winding is energized at an electrical angle of 60 °, energization is controlled so that the relationship between the electromagnetic force of the specific winding and the magnetic flux of the magnet is a relationship that produces the highest torque. It has become.

【0009】図6は、固定子に対して例えばU−V通電
を行い、主磁束トルクT1が最大となる位置を0゜と
し、U−V通電を継続しつつ回転子を回転させていった
場合に生じる回転子の進み角θに対するトルク変化の傾
向を示している。進み角θは電気角を表しており、また
このθの進み方向は電動機の運転時における回転子の回
転方向と反対の方向となっている。電気角180゜の範
囲で主磁束トルクT1とリラクタンストルクT2は図示
するような変化を示し、これらの合成である電動機のト
ルクTは、数1におけるコギングトルクTcを無視すれ
ば図中の曲線Tのような傾向を示す。
FIG. 6 shows that the stator is energized by, for example, UV, the position where the main magnetic flux torque T1 becomes maximum is set to 0 °, and the rotor is rotated while energizing the UV. The tendency of the torque change with respect to the rotor advance angle θ that occurs in the case is shown. The lead angle θ represents an electrical angle, and the lead direction of θ is opposite to the rotation direction of the rotor during operation of the electric motor. The main magnetic flux torque T1 and the reluctance torque T2 show changes as shown in the range of the electric angle of 180 °, and the torque T of the electric motor, which is a composite of these, becomes the curve T It shows such a tendency.

【0010】[0010]

【発明が解決しようとする課題】図12において示す固
定子5の巻線9は例えばU−V通電した場合のU相及び
V相の巻線を示しており、図中電気記号で示すような方
向に電流が流れて固定子5にN,Sで示す磁極が形成さ
れているとすると、図12の場合、回転子1dは主磁束
トルクT1が最大となる位置、即ち図6における進み角
θ=0゜の状態を示している。図12の電動機の運転時
における回転子1dの回転方向は時計方向であり、例え
ば進み角θ=−90゜の位置は回転子1dが時計方向に
機械角で45゜回転した図13に示す位置となり、同様
に進み角θ=90゜の位置は反時計方向に機械角で45
゜回転した位置となる。
The windings 9 of the stator 5 shown in FIG. 12 show U-phase and V-phase windings when, for example, U-V is applied. Assuming that a current flows in the direction and magnetic poles indicated by N and S are formed in the stator 5, in the case of FIG. 12, the rotor 1d is at the position where the main magnetic flux torque T1 is maximum, that is, the lead angle θ in FIG. = 0 °. The rotation direction of the rotor 1d during the operation of the electric motor in FIG. 12 is clockwise. For example, the position of the lead angle θ = −90 ° is the position shown in FIG. 13 where the rotor 1d is rotated clockwise by 45 ° in mechanical angle. Similarly, the position of the advance angle θ = 90 ° is 45 degrees in mechanical angle in the counterclockwise direction.
゜ The position is rotated.

【0011】図12に示す電動機において通電状態を変
えずに回転子1dをθ=−90゜〜90゜の範囲で回転
させた場合、トルクTは図7の破線Bのような変化を示
す。この破線Bは図6の曲線Tと比較して非常にリップ
ルが大きくなっているが、この理由は固定子鉄心6のス
ロット7と歯部8の存在によるコギングトルクに起因し
ている。例えば図14に示す状態は進み角θ=10゜の
時を示し、このポイントにおいてはコギングトルク分が
加算されて電動機トルクが増加し、一方、図15に示す
状態はθ=20゜の時を示し、このポイントにおいては
反対にコギングトルク分が減算されて電動機トルクが減
少する。このようなトルクリップルを生じさせるコギン
グトルク成分は、磁石の磁束によるものは割合的に少な
く、主として固定子磁束によって生じるコギングトルク
成分が関与している。
When the rotor 1d is rotated in the range of θ = −90 ° to 90 ° in the motor shown in FIG. 12 without changing the energized state, the torque T changes as shown by a broken line B in FIG. The dashed line B has a much larger ripple than the curve T in FIG. 6 because of the cogging torque due to the presence of the slots 7 and the teeth 8 of the stator core 6. For example, the state shown in FIG. 14 shows the case where the lead angle θ = 10 °. At this point, the cogging torque is added to increase the motor torque, while the state shown in FIG. 15 shows the case where θ = 20 °. At this point, conversely, the cogging torque is subtracted and the motor torque decreases. The cogging torque component that causes such torque ripple is relatively small due to the magnetic flux of the magnet, and mainly involves the cogging torque component generated by the stator magnetic flux.

【0012】図14に示す進み角θ=10゜の状態と図
15に示すθ=20゜の状態を拡大してそれぞれ図16
及び図17に示す。図16及び図17において、巻線9
への通電によって生じる固定子磁束11は、固定子鉄心
6のN極の歯部8から空隙10を経由して回転子鉄心2
dへ入り、この回転子鉄心2d内を流れて再び空隙10
を経由して固定子鉄心6のS極の歯部8へ戻るように形
成される。ところが回転子鉄心内に埋め込まれた磁石3
q〜3tの部分は磁気抵抗が大きいため、特に磁石が回
転子外周部と近接する部分において固定子磁束は著しい
拘束を受けることになる。
FIG. 16 is an enlarged view of the state of the lead angle θ = 10 ° shown in FIG. 14 and the state of θ = 20 ° shown in FIG.
And FIG. 16 and 17, the winding 9
The stator magnetic flux 11 generated by energizing the rotor core 2 is transferred from the N pole teeth 8 of the stator core 6 through the air gap 10 to the rotor core 2.
d, flows through the rotor core 2d, and returns to the air gap 10d.
To return to the S-pole tooth portion 8 of the stator core 6 via However, magnet 3 embedded in rotor core
Since the magnetic resistance is large in the portions of q to 3t, the stator magnetic flux is significantly restricted particularly in the portion where the magnet is close to the outer periphery of the rotor.

【0013】即ち、図16のθ=10゜の状態におい
て、固定子鉄心6の特定の歯部8aから回転子鉄心2d
へ入る固定子磁束12は、そのほとんどが歯部8aに対
して反時計方向にやや離間して存在する回転子の極間部
の鉄心部分へ向けて流れることになる。この結果、この
部分に磁気的吸引力が作用して回転子1dはその回転方
向である時計方向へ力を受け、電動機のトルクが増加す
る。また図17のθ=20゜の状態においては、固定子
鉄心6の特定の歯部8bから回転子鉄心2dへ入る固定
子磁束13は、そのほとんどが歯部8bに対して時計方
向にやや離間して存在する回転子の極間部の鉄心部分へ
向けて流れることになる。この結果上記同様、この部分
に磁気的吸引力が作用して回転子1dはその反回転方向
である反時計方向へ力を受け、電動機のトルクが減少す
る。これら図16及び図17に示す現象は、各磁石3q
〜3tの回転子外周部と近接するすべての端部において
同様に生じており、また図10に示したような略C字形
の磁石3u〜3xを用いた回転子1eの場合においても
同様である。
That is, in the state of θ = 10 ° in FIG. 16, a specific tooth portion 8a of the stator core 6 moves from the rotor core 2d to the rotor core 2d.
Most of the stator magnetic flux 12 entering the rotor flows toward the iron core portion between the poles of the rotor, which is present at a slight distance in the counterclockwise direction from the tooth portion 8a. As a result, a magnetic attraction force acts on this portion, and the rotor 1d receives a force in the clockwise direction, which is the direction of rotation, and the torque of the electric motor increases. In the state of θ = 20 ° in FIG. 17, most of the stator magnetic flux 13 entering the rotor core 2d from the specific tooth portion 8b of the stator core 6 is slightly separated clockwise from the tooth portion 8b. As a result, the current flows toward the iron core between the poles of the existing rotor. As a result, as described above, magnetic attraction acts on this portion, and the rotor 1d receives a force in the counterclockwise direction, which is the anti-rotation direction, and the torque of the electric motor decreases. These phenomena shown in FIG. 16 and FIG.
The same occurs at all ends close to the outer peripheral portion of the rotor from 1 to 3t, and also in the case of the rotor 1e using the substantially C-shaped magnets 3u to 3x as shown in FIG. .

【0014】従来、上記のようなコギングトルク成分に
起因する著しいトルクリップルによって電動機の運転に
伴う振動、騒音が非常に大きなものとなっており、断面
がV字形やC字形をした磁石を凹部側が外側を向くよう
に鉄心内に配置した電動機において大きな問題となって
いた。
Conventionally, due to the remarkable torque ripple caused by the cogging torque component as described above, the vibration and noise accompanying the operation of the motor have been extremely large, and the magnet having a V-shaped or C-shaped cross section has a concave side. This has been a major problem with motors that are located inside the iron core so that they face outward.

【0015】[0015]

【課題を解決するための手段】本発明は、各極における
断面形状が略V字形または略C字形の磁石を凹部側が外
側を向くように鉄心内に埋め込んで構成する電動機の回
転子において、前記磁石における凹部側縁部の回転子外
周部に近接する部分に面取り状に切り欠いた部分を設け
る。この磁石は前記鉄心に設けられた磁石と略相似形の
収容孔に挿着されるため、前記切り欠いた部分は前記鉄
心によって埋められて構成される。
According to the present invention, there is provided a rotor for an electric motor comprising a magnet having a substantially V-shaped or substantially C-shaped cross section at each pole embedded in an iron core such that a concave side faces outward. A portion of the magnet, which is close to the outer periphery of the rotor at the side edge of the concave portion, is provided with a chamfered notch. Since this magnet is inserted into a housing hole having a substantially similar shape to the magnet provided in the iron core, the cutout portion is filled with the iron core.

【0016】また、前記磁石における凹部側縁部の切り
欠いた部分の大きさは、凸部側縁部に存在する面取りと
交差しない範囲とすることが望ましい。また、前記磁石
における凹部側縁部の切り欠いた部分を磁石両端に直線
状に設ける場合は、両端のものを同一直線上で切り欠く
ようにすると製造上都合がよい。さらに、断面形状が略
V字形または略C字形の磁石を各極において凹凸の方向
を揃えて多重に埋め込んで構成する回転子においても、
個々の磁石に対して本発明は同様に適用可能である。
It is desirable that the size of the cut-out portion of the side edge of the concave portion of the magnet is in a range that does not intersect with the chamfer existing on the side edge portion of the convex portion. In the case where the notched portion of the side edge of the concave portion of the magnet is provided in a straight line at both ends of the magnet, it is convenient to manufacture the two ends of the magnet by cutting them out on the same straight line. Further, in a rotor configured by embedment of a magnet having a substantially V-shaped or substantially C-shaped cross section in the same direction as that of the magnet in each pole in a multiplex manner,
The invention is equally applicable to individual magnets.

【0017】[0017]

【作用】固定子鉄心の歯部と回転子鉄心との間で流出入
を行う固定子磁束が、磁石が回転子外周部と近接する部
分において、磁石を挟んで2方向へ分散して流出入を行
うことにより、磁気的吸引力が分散されて回転子に作用
するコギングトルク成分が減少する。
[Function] The stator magnetic flux flowing in and out between the teeth of the stator core and the rotor core is dispersed in two directions with the magnet interposed therebetween in a portion where the magnet is close to the outer periphery of the rotor. Is performed, the magnetic attraction is dispersed, and the cogging torque component acting on the rotor is reduced.

【0018】[0018]

【実施例】本発明による回転子の第1の実施例を図1に
示す。この図は軸4に垂直な断面を示しており、略V字
形の磁石3a,3b,3c,3dが鉄心2aに設けられ
たこれら磁石と略相似形の収容孔に挿入されている。各
磁石3a〜3dは凹部側が外側を向くように配置されて
おり、各磁石の中央を磁極中心として4極に着磁されて
いる。またこれらの磁石3a〜3dは、その凹部側縁部
33の回転子外周部に近接する部分に面取り部20が設
けてある。尚、各磁石3a〜3dはV字形を一体形成し
たものでもよいが、各極において板状磁石を2個組み合
わせてV字を形成するようにしたものであってもよい。
FIG. 1 shows a first embodiment of a rotor according to the present invention. This figure shows a cross section perpendicular to the shaft 4, in which substantially V-shaped magnets 3a, 3b, 3c, 3d are inserted into receiving holes provided in the iron core 2a and substantially similar in shape to these magnets. Each of the magnets 3a to 3d is arranged so that the concave side faces outward, and is magnetized to four poles with the center of each magnet being the center of the magnetic pole. Each of the magnets 3a to 3d is provided with a chamfered portion 20 at a portion of the concave side edge 33 near the outer periphery of the rotor. Each of the magnets 3a to 3d may be formed integrally with a V-shape, but may be formed by combining two plate-shaped magnets at each pole to form a V-shape.

【0019】図1のように構成した回転子1aを図12
に示したものと同じ固定子5内へ配置して電動機を構成
し、回転子の進み角θ=10゜及びθ=20゜の場合に
おける固定子磁束の流れをそれぞれ図2及び図3に示
す。図2に示すθ=10゜の状態は従来例における図1
6の状態に対応しており、固定子鉄心6の特定の歯部8
aから回転子鉄心2aへ入る固定子磁束は、符号12で
示される従来の流路の他に面取り部20の存在によって
符号14で示される流路が新たに生じることになって、
磁石3aを挟んで磁路が分散されることになる。
The rotor 1a constructed as shown in FIG.
2 and FIG. 3 show the flow of the stator magnetic flux in the case where the motor is constructed by arranging it in the same stator 5 as shown in FIG. 2 and the rotor advance angles θ = 10 ° and θ = 20 °, respectively. . The state of θ = 10 ° shown in FIG.
6, corresponding to the specific tooth portion 8 of the stator core 6.
The stator magnetic flux entering the rotor core 2a from a causes a flow path indicated by reference numeral 14 to be newly generated due to the presence of the chamfered portion 20 in addition to the conventional flow path indicated by reference numeral 12.
The magnetic paths are dispersed across the magnet 3a.

【0020】また図3に示すθ=20゜の状態は従来例
における図17の状態と対応しており、固定子鉄心6の
特定の歯部8bから回転子鉄心2aへ入る固定子磁束
は、符号13で示される従来の流路の他に面取り部20
の存在によって符号15で示される流路が新たに生じる
ことになって、磁石3dを挟んで磁路が分散されること
になる。これら図2及び図3に示す現象は、回転子1a
の各磁石3a〜3dの回転子外周部と近接するすべての
端部において同様に生じており、この結果、固定子と回
転子間の固定子磁束による磁気的吸引力が回転子1aの
回転方向と反回転方向とに分散され、回転子1aに作用
するコギングトルク成分が減少する。
The state of θ = 20 ° shown in FIG. 3 corresponds to the state of FIG. 17 in the conventional example, and the stator magnetic flux entering the rotor core 2a from a specific tooth portion 8b of the stator core 6 is: In addition to the conventional flow path indicated by reference numeral 13,
, A flow path indicated by reference numeral 15 is newly generated, and the magnetic paths are dispersed with the magnet 3d interposed therebetween. These phenomena shown in FIG. 2 and FIG.
Of the magnets 3a to 3d at all ends close to the outer periphery of the rotor. As a result, the magnetic attraction force due to the stator magnetic flux between the stator and the rotor causes the rotation direction of the rotor 1a to rotate. And the cogging torque component acting on the rotor 1a is reduced.

【0021】上記回転子1aを用いた電動機において、
通電状態を一定にして回転子1aを進み角θ=−90゜
〜90゜の範囲で回転させてトルクを測定すると、図7
の実線Aのような変化となり、同一条件で測定した従来
例のトルクを示す破線Bと比較してリップルが緩和さ
れ、図6の曲線Tに近い形状が得られたことが判る。こ
れは例えば、固定子のスロット数が12個になった場合
であっても、コギング間隔が大きくなる点が異なるのみ
であって、同様の効果が得られるものである。
In the electric motor using the rotor 1a,
When the rotor 1a is rotated in the range of the advancing angle θ = −90 ° to 90 ° with the energized state kept constant, the torque is measured.
It can be seen that the ripple is alleviated as compared with the broken line B indicating the torque of the conventional example measured under the same conditions, and a shape close to the curve T in FIG. 6 is obtained. For example, even when the number of slots of the stator becomes twelve, the only difference is that the cogging interval increases, and the same effect can be obtained.

【0022】図4は本発明による回転子の第2の実施例
を示しており、図1に示した略V字形の磁石3a〜3d
に代えて、断面形状が略C字形の磁石3e,3f,3
g,3hを鉄心2bのこれら磁石と略相似形の収容孔に
挿入して構成した例を示している。この回転子1bにお
いても、各磁石3e〜3hの外側へ向いた凹部側縁部3
5の回転子外周部に近接する部分に面取り部21が設け
てあり、図1の回転子1a同様の作用、効果が得られる
ようになっている。
FIG. 4 shows a second embodiment of the rotor according to the present invention, in which the substantially V-shaped magnets 3a to 3d shown in FIG.
Instead of the magnets 3e, 3f, 3 having a substantially C-shaped cross section
An example is shown in which g and 3h are inserted into receiving holes of the iron core 2b which are substantially similar in shape to the magnets. Also in this rotor 1b, the concave side edges 3 facing the outside of each of the magnets 3e to 3h.
5 is provided with a chamfered portion 21 at a portion close to the outer periphery of the rotor, so that the same operation and effect as those of the rotor 1a of FIG. 1 can be obtained.

【0023】尚、図1及び図4に示す回転子1a及び1
bにおいて、各磁石の面取り部20,21は必ずしも直
線状に設ける必要はなく、緩やかなR面取り等であって
もよく、要するに磁石の凹部側縁部を形成する線を端部
において面取り状に切り欠き、この切り欠いた部分に回
転子鉄心が存在するように、回転子鉄心における磁石を
挿入する収容孔が無理なく形成できる形状であればよ
い。
The rotors 1a and 1a shown in FIGS.
In b, the chamfered portions 20 and 21 of each magnet do not necessarily need to be provided in a straight line, but may be a gentle R chamfer, etc. In short, the lines forming the concave side edges of the magnets are chamfered at the ends. The cutout may have any shape as long as the receiving hole for inserting the magnet in the rotor core can be formed without difficulty so that the rotor core exists in the cutout portion.

【0024】また実施例に示すような略V字形や略C字
形の磁石は、図1及び図4に示すように、その凸部側縁
部34,36と回転子外周に沿った磁石の端部を形成す
る線18,19とは鋭角を形成するため、一般に凸部側
縁部34,36の端部には面取り部16,17が設けら
れる。従って本発明における磁石の凹部側縁部33,3
5の面取り部20,21を設ける範囲は、上記凸部側縁
部34,36の面取り部16,17と交差しない範囲と
することが望ましく、これにより磁石の縁部に鋭角部が
生じることがなく、磁石の欠け等が防止できる。
As shown in FIGS. 1 and 4, the substantially V-shaped or substantially C-shaped magnets as shown in the embodiment have the convex side edges 34, 36 and the end of the magnet along the outer periphery of the rotor. In order to form an acute angle with the lines 18 and 19 forming the portions, chamfered portions 16 and 17 are generally provided at the ends of the convex side edges 34 and 36. Therefore, the concave side edges 33, 3 of the magnet according to the present invention.
It is desirable that the area where the chamfered portions 20 and 21 are provided does not intersect with the chamfered portions 16 and 17 of the convex side edges 34 and 36, thereby causing an acute angle portion at the edge of the magnet. In addition, the chipping of the magnet can be prevented.

【0025】また上記面取り部20,21の面取り角度
は、固定子磁束をスムーズに回転子鉄心へ誘導できる範
囲であれば特に制約を設ける必要はないが、面取り部2
0,21を図示するような直線状に設ける場合は、磁石
の両端のものを同一直線上で切り欠くように形成すれば
磁石の製造を容易にし、且つ磁石材料も削減できる効果
がある。この理由をC字形磁石を例にとって図8及び図
9に基づいて説明する。
The chamfer angle of the chamfers 20 and 21 is not particularly limited as long as the stator magnetic flux can be smoothly guided to the rotor core.
In the case where 0 and 21 are provided in a straight line as shown in the figure, if both ends of the magnet are cut out on the same straight line, the magnet can be easily manufactured and the magnet material can be reduced. The reason for this will be described with reference to FIGS. 8 and 9 taking a C-shaped magnet as an example.

【0026】図8は焼結磁石の成型過程を示す断面図で
あり、(a)は本発明による磁石の場合、(b)は従来
の磁石の場合をそれぞれ示している。図10に示した従
来の回転子1eに使用される磁石3u〜3xを製造する
ためには、図8(b)に示すように、個々の製品形状に
基づいて設計された金型24,25,26,28を用い
て磁石材料30を磁場中成型するようになっている。こ
の場合一般に、下型28には成型時の荷重を安定させて
磁石材料30の密度を均一化するために、平坦な受け面
38が必要な構成となっている。成型された磁石材料3
0は炉に入れられて焼成され、この過程で収縮を生じる
ものの、概ね図9(b)に示すような破線部32も含め
た磁石3uの原形が得られる。図8(b)に示した金型
の受け面38に対応する部分は、図9(b)の直線部4
0となって焼成されるため、従来の磁石3uを形成する
ためには、焼成品を研削加工して破線部32を取り除い
て磁石3uの最終形状を得るようにしている。
FIGS. 8A and 8B are cross-sectional views showing a molding process of the sintered magnet, wherein FIG. 8A shows the case of the magnet according to the present invention, and FIG. 8B shows the case of the conventional magnet. In order to manufacture the magnets 3u to 3x used in the conventional rotor 1e shown in FIG. 10, as shown in FIG. 8B, dies 24, 25 designed based on individual product shapes. , 26, 28 are used to mold the magnet material 30 in a magnetic field. In this case, the lower mold 28 generally has a configuration in which a flat receiving surface 38 is required in order to stabilize the load during molding and make the density of the magnet material 30 uniform. Molded magnet material 3
0 is baked in a furnace, and shrinks in this process, but the original shape of the magnet 3u including the broken line portion 32 is generally obtained as shown in FIG. 9B. The portion corresponding to the receiving surface 38 of the mold shown in FIG.
In order to form the conventional magnet 3u, the fired product is ground to remove the broken line portion 32 so as to obtain the final shape of the magnet 3u.

【0027】これに対して図4に示す本発明による回転
子1bに使用される磁石3e〜3hを製造するために
は、図8(a)に示すような平坦な受け面37を有する
下型27が用いられ、この型により成型された磁石材料
29は焼成後図9(a)に示す破線部31も含めた形状
となり、金型の受け面37に対応する部分は直線部39
となって焼成される。この直線部39は磁石3eの凹部
側縁部の面取り部21と対応しておりこの結果、磁石3
eを得るための研削加工部分は破線部31のみとなり、
従来品と比べて歩留まりが向上するのみならず、研削時
間も大幅に短縮されるといった長所を備えている。従っ
て、上記の工程で本発明による磁石3e〜3hを形成す
る場合、凹部側縁部の面取り部21は、必然的に磁石の
両端で同一直線上に存在することになる。
On the other hand, in order to manufacture the magnets 3e to 3h used in the rotor 1b according to the present invention shown in FIG. 4, a lower die having a flat receiving surface 37 as shown in FIG. After firing, the magnet material 29 formed by this mold has a shape including a broken line portion 31 shown in FIG. 9A, and a portion corresponding to the receiving surface 37 of the mold is a straight portion 39.
And fired. The straight portion 39 corresponds to the chamfered portion 21 on the concave side edge of the magnet 3e.
The grinding portion for obtaining e is only the broken line portion 31,
It has the advantages of not only improving the yield compared to conventional products, but also significantly reducing the grinding time. Therefore, when the magnets 3e to 3h according to the present invention are formed in the above-described steps, the chamfered portions 21 on the side edges of the concave portions necessarily exist on the same straight line at both ends of the magnet.

【0028】図5は本発明による回転子の第3の実施例
を示しており、図4に示したような断面形状が略C字形
の磁石を各極で凹凸の方向を揃えて2重構造としたもの
である。この回転子1cにおいても、各磁石3i,3
j,3k,3l,3m,3n,3o,3pの外側へ向い
た凹部側縁部の回転子外周部に近接する部分には面取り
部22及び23が設けてあり、図1の回転子1aにおい
て説明したような作用、効果が同様に得られるものであ
る。尚、各極における磁石をさらに多重構造とした場合
においても同一要領で構成すればよく、さらに略V字形
の磁石を多重構造としたものについても同様である。
FIG. 5 shows a third embodiment of the rotor according to the present invention, in which a magnet having a substantially C-shaped cross section as shown in FIG. It is what it was. Also in this rotor 1c, each magnet 3i, 3
J, 3k, 31, 3m, 3n, 3o, and 3p are provided with chamfered portions 22 and 23 at the portions near the outer periphery of the rotor at the side edges of the concave portions facing the outside. In the rotor 1a of FIG. The operations and effects as described above can be similarly obtained. It should be noted that even when the magnets at each pole have a multi-layer structure, they may be configured in the same manner, and the same applies to a magnet having a substantially V-shaped magnet having a multi-layer structure.

【0029】[0029]

【発明の効果】本発明によれば、固定子鉄心の歯部と回
転子鉄心との間で流出入を行う固定子磁束が、磁石が回
転子外周部と近接する部分において特定の方向へ偏るこ
となく分散して流出入を行うようになり、磁気的吸引力
が分散されて回転子に作用するコギングトルク成分が減
少する。この結果トルクリップルが緩和されて、電動機
の運転に伴う振動、騒音を大幅に低減することができ
る。
According to the present invention, the stator magnetic flux flowing in and out between the teeth of the stator core and the rotor core is biased in a specific direction at a portion where the magnet is close to the outer periphery of the rotor. As a result, the magnetic attraction force is dispersed and the cogging torque component acting on the rotor is reduced. As a result, the torque ripple is reduced, and the vibration and noise accompanying the operation of the electric motor can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による回転子の第1の実施例を示す平面
断面図。
FIG. 1 is a cross-sectional plan view showing a first embodiment of a rotor according to the present invention.

【図2】図1の回転子を用いた電動機の要部拡大説明
図。
FIG. 2 is an enlarged explanatory view of a main part of an electric motor using the rotor of FIG. 1;

【図3】図1の回転子を用いた電動機の要部拡大説明
図。
FIG. 3 is an enlarged explanatory view of a main part of an electric motor using the rotor of FIG. 1;

【図4】本発明による回転子の第2の実施例を示す平面
断面図。
FIG. 4 is a cross-sectional plan view showing a second embodiment of the rotor according to the present invention.

【図5】本発明による回転子の第3の実施例を示す平面
断面図。
FIG. 5 is a sectional plan view showing a third embodiment of the rotor according to the present invention.

【図6】回転子位置に対する電動機のトルクの変化を示
す説明図。
FIG. 6 is an explanatory diagram showing a change in torque of the electric motor with respect to a rotor position.

【図7】本発明による回転子と従来の回転子の双方にお
ける回転子位置に対する電動機のトルクの変化を示す特
性図。
FIG. 7 is a characteristic diagram showing a change in torque of an electric motor with respect to a rotor position in both a rotor according to the present invention and a conventional rotor.

【図8】磁石の成型過程を説明する断面図であり、
(a)は本発明の例を示し、(b)は従来例を示す。
FIG. 8 is a cross-sectional view illustrating a molding process of the magnet.
(A) shows an example of the present invention, and (b) shows a conventional example.

【図9】磁石の研削を説明する断面図であり、(a)は
本発明の例を示し、(b)は従来例を示す。
9A and 9B are cross-sectional views illustrating grinding of a magnet. FIG. 9A illustrates an example of the present invention, and FIG. 9B illustrates a conventional example.

【図10】従来例を示す回転子の平面断面図。FIG. 10 is a plan sectional view of a rotor showing a conventional example.

【図11】別の従来例を示す回転子の平面断面図。FIG. 11 is a plan sectional view of a rotor showing another conventional example.

【図12】図11の回転子を用いた電動機の平面断面
図。
FIG. 12 is a plan sectional view of an electric motor using the rotor of FIG. 11;

【図13】図12の電動機における回転子進み角が異な
る例を示す平面断面図。
13 is a cross-sectional plan view showing an example in which the rotor advancing angle in the electric motor of FIG. 12 is different.

【図14】図12の電動機における回転子進み角が異な
る例を示す平面断面図。
14 is a cross-sectional plan view showing an example in which the rotor lead angle of the electric motor in FIG. 12 is different.

【図15】図12の電動機における回転子進み角が異な
る例を示す平面断面図。
FIG. 15 is a cross-sectional plan view showing an example in which the rotor advancing angle in the electric motor of FIG. 12 is different.

【図16】図14の要部拡大説明図。FIG. 16 is an enlarged explanatory view of a main part of FIG. 14;

【図17】図15の要部拡大説明図。FIG. 17 is an enlarged explanatory view of a main part of FIG. 15;

【符号の説明】[Explanation of symbols]

1a〜1e 回転子 2a〜2e 回転子鉄心 3a〜3x 磁石 4 軸 5 固定子 6 固定子鉄心 7 スロット 8 歯部 9 巻線 10 空隙 20,21,22,23 面取り部 33,35 磁石の凹部側縁部 34,36 磁石の凸部側縁部 1a to 1e Rotor 2a to 2e Rotor core 3a to 3x Magnet 4 Axis 5 Stator 6 Stator core 7 Slot 8 Tooth 9 Winding 10 Air gap 20, 21, 22, 23 Chamfer 33, 35 Magnet recess 33 Edges 34, 36 Edges on the convex side of the magnet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 各極における断面形状が略V字形または
略C字形の磁石を凹部側が外側を向くように鉄心内に埋
め込んで構成する電動機の回転子において、前記磁石に
おける凹部側縁部の回転子外周部に近接する部分に面取
り状に切り欠いた部分を設け、この切り欠いた部分が前
記鉄心によって埋められていることを特徴とする電動機
の回転子。
In a rotor of an electric motor, a magnet having a substantially V-shaped or substantially C-shaped cross section at each pole is embedded in an iron core such that a concave side faces outward, rotation of a concave side edge of the magnet. A rotor for an electric motor, wherein a cut-out portion is provided in a portion close to an outer peripheral portion of the armature in a chamfered shape, and the cut-out portion is filled with the iron core.
【請求項2】 前記磁石における凹部側縁部の切り欠い
た部分は、凸部側縁部の面取りと交差しない範囲とした
ことを特徴とする請求項1に記載の電動機の回転子。
2. The rotor for an electric motor according to claim 1, wherein a cut-out portion of the concave side edge of the magnet does not intersect with a chamfer of the convex side edge.
【請求項3】 前記磁石における凹部側縁部の切り欠い
た部分は、磁石両端に直線状に設けるとともに、両端の
ものが同一直線上で切り欠いてあることを特徴とする請
求項1または2に記載の電動機の回転子。
3. The magnet according to claim 1, wherein the notched portion of the side of the concave portion of the magnet is linearly provided at both ends of the magnet, and both ends are cut out on the same straight line. A rotor for an electric motor according to claim 1.
【請求項4】 前記磁石は、各極において凹凸の方向を
揃えて多重に埋め込まれていることを特徴とする請求項
1または2または3に記載の電動機の回転子。
4. The rotor for an electric motor according to claim 1, wherein the magnets are buried in multiple layers with the direction of the concavo-convex in each pole aligned.
JP8221659A 1996-07-18 1996-07-18 Motor rotor Expired - Fee Related JP3072504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8221659A JP3072504B2 (en) 1996-07-18 1996-07-18 Motor rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8221659A JP3072504B2 (en) 1996-07-18 1996-07-18 Motor rotor

Publications (2)

Publication Number Publication Date
JPH1042499A true JPH1042499A (en) 1998-02-13
JP3072504B2 JP3072504B2 (en) 2000-07-31

Family

ID=16770254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8221659A Expired - Fee Related JP3072504B2 (en) 1996-07-18 1996-07-18 Motor rotor

Country Status (1)

Country Link
JP (1) JP3072504B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128522A1 (en) * 2000-02-25 2001-08-29 Nissan Motor Co., Ltd. Permanent magnet rotor for synchronous motor
EP1282214A2 (en) * 2001-07-31 2003-02-05 Nissan Motor Co., Ltd. Permanent magnet motor/generator
CN103746529A (en) * 2013-12-27 2014-04-23 联合汽车电子有限公司 Permanent-magnet synchronous motor, stator and rotor
JP2014241705A (en) * 2013-06-12 2014-12-25 株式会社ジェイテクト Magnet embedded rotor
US20160111944A1 (en) * 2013-05-01 2016-04-21 Nissan Motor Co., Ltd. Magnet insertion method into rotor core

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128522A1 (en) * 2000-02-25 2001-08-29 Nissan Motor Co., Ltd. Permanent magnet rotor for synchronous motor
US6441524B2 (en) 2000-02-25 2002-08-27 Nissan Motor Co., Ltd. Rotor for synchronous motor
EP1282214A2 (en) * 2001-07-31 2003-02-05 Nissan Motor Co., Ltd. Permanent magnet motor/generator
EP1282214A3 (en) * 2001-07-31 2004-10-20 Nissan Motor Co., Ltd. Permanent magnet motor/generator
US6885122B2 (en) 2001-07-31 2005-04-26 Nissan Motor Co., Ltd. Permanent magnet motor/generator
US20160111944A1 (en) * 2013-05-01 2016-04-21 Nissan Motor Co., Ltd. Magnet insertion method into rotor core
US9929628B2 (en) * 2013-05-01 2018-03-27 Nissan Motor Co., Ltd. Magnet insertion method into rotor core
JP2014241705A (en) * 2013-06-12 2014-12-25 株式会社ジェイテクト Magnet embedded rotor
CN103746529A (en) * 2013-12-27 2014-04-23 联合汽车电子有限公司 Permanent-magnet synchronous motor, stator and rotor

Also Published As

Publication number Publication date
JP3072504B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
EP2378632B1 (en) Permanent magnet type rotary electric machine
US7923881B2 (en) Interior permanent magnet motor and rotor
EP0923186B1 (en) Permanent magnet rotor type electric motor
JP4466681B2 (en) Rotating electric machine rotor and rotating electric machine
KR101904922B1 (en) Line start synchronous reluctance motor and rotor of it
JPH11103546A (en) Permanent magnet motor
WO2003058794A1 (en) Doubly salient machine with angled permanent magnets in stator teeth
JP3659055B2 (en) Electric motor rotor
JP2000197325A (en) Reluctance motor
JP2000333389A (en) Permanent magnet motor
JPH11243653A (en) Permanent magnet motor
US6803690B2 (en) Electric motor excited by permanent magnets
JP3747107B2 (en) Electric motor
JP3703907B2 (en) Brushless DC motor
EP0183792B1 (en) Magnetically assisted stepping motor
JP3832535B2 (en) Permanent magnet motor
EP1953901A1 (en) Motor and device using the same
JP2002209349A (en) Rotor of permanent magnet type rotating electric machine
JP2003309953A (en) Permanent magnet rotor for inner rotor type rotary electric machine
JP2000102202A (en) Rotor for permanent-magnet type electric motor
JP2007097290A (en) Permanent magnet type reluctance dynamo-electric machine
JP2000245087A (en) Permanent magnet motor
JP4248778B2 (en) Permanent magnet motor rotor
JP3072504B2 (en) Motor rotor
JP2004135375A (en) Rotor structure of coaxial motor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees