JPH1042274A - Abnormality monitoring method and device - Google Patents

Abnormality monitoring method and device

Info

Publication number
JPH1042274A
JPH1042274A JP19657396A JP19657396A JPH1042274A JP H1042274 A JPH1042274 A JP H1042274A JP 19657396 A JP19657396 A JP 19657396A JP 19657396 A JP19657396 A JP 19657396A JP H1042274 A JPH1042274 A JP H1042274A
Authority
JP
Japan
Prior art keywords
image
monitoring
luminance
abnormality
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19657396A
Other languages
Japanese (ja)
Inventor
Atsushi Nakahara
淳 中原
Takayoshi Yamamoto
隆義 山本
Yoshio Matsuo
宣雄 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP19657396A priority Critical patent/JPH1042274A/en
Publication of JPH1042274A publication Critical patent/JPH1042274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abnormality diagnostic method capable of attaining an appropriate processing result and correct judgement even in the case that the environmental change of illumination conditions and the intrusion of the shadow of an object, etc., is present. SOLUTION: After monitoring pictures inputted from a monitoring object area by a television camera or the like are smoothed and noise is eliminated, the histogram of a picture element number for respective luminance values is obtained, based on the luminance values for respective picture elements in the pictures and thus, the cumulative curve of the picture element number for the respective luminance values is obtained. An inflection point for the cumulative curve, the luminance of the inflection point and the average luminance of source pictures are obtained and the presence/absence of the environmental change are judged depending on whether or not the absolute value of the difference of the inflection point luminance and the average luminance is larger than the index value of the environmental change. Then, in the case of judging that the environmental change is present, the monitoring picture is luminance divided into two areas, difference pictures with a reference picture are obtained for the respective divided areas and respectively binarized, the ratio of the white or black of processing pictures is compared with a reference value and the presence/ absence of abnormality are judged. On the other hand, in the case of judging that no change of an environment is present, the difference picture of the reference picture and the monitoring picture is obtained and binarized, the ratio of white or black after a processing is compared with the reference value and the presence/absence of the abnormality are judged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異常監視方法およ
び装置に係り、特にボイラ発電設備、化学プラント設備
等の現場異常監視方法および装置であって、監視領域に
おける照明条件の変化などが発生した場合に運転員の現
場パトロールを誤りなく適正に補完することができる異
常監視方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for monitoring abnormalities, and more particularly to a method and an apparatus for monitoring abnormalities in a site such as a boiler power generation facility and a chemical plant facility, in which a change in lighting conditions or the like in a monitoring area occurs. The present invention relates to an abnormality monitoring method and apparatus capable of properly complementing an on-site patrol of an operator in an error case.

【0002】[0002]

【従来の技術】一般に、発電所、化学工場等の大型プラ
ントにおいては、運転用操作機および監視用各種計器を
使って、遠隔操作、中央操作により運転が行なわれてい
る。その際使用される従来の現場異常監視方法は、テレ
ビカメラやマイクロフォンにより送信された生信号(画
像・音響)をそのままモニタテレビやスピーカで再生
し、これを運転員が監視することによって行なわれてい
た。このような監視は、常時運転員が異常か否かの判断
を行なうため、運転員の負担が大きく、また運転員の熟
練を要するものであった。
2. Description of the Related Art Generally, in large plants such as power plants and chemical factories, operation is performed by remote operation and central operation using an operating device for operation and various instruments for monitoring. The conventional on-site abnormality monitoring method used at that time is that a raw signal (image / sound) transmitted from a television camera or a microphone is reproduced as it is on a monitor television or a speaker, and the operator monitors this. Was. Such monitoring has a heavy burden on the operator and requires skill of the operator since the operator always determines whether or not the abnormality is abnormal.

【0003】また、近年の画像処理技術、画像処理装置
の進展に伴い、テレビカメラからの画像を画像処理装置
にて機械的に処理して現場での異常の有無判定や異常の
早期発見に役立て、現場を巡回監視するパトローラの省
力化を計るプラントが増大しつつある。いわゆる人間の
視覚機能の代替システムの実用化を目指した監視システ
ムの導入が始まっている。
Further, with the recent development of image processing technology and image processing apparatuses, images from a television camera are mechanically processed by an image processing apparatus to be useful for determining the presence or absence of an abnormality on site and early detection of an abnormality. The number of plants that reduce the power of patrols that patrol and monitor the site is increasing. The introduction of surveillance systems aiming at the practical use of so-called alternative systems for human visual functions has begun.

【0004】図7に示すようにプラント現場には、監視
ロボット6が設置され、あらかじめ決められた監視ルー
トや監視ポイントにて、監視対象付近の画像データ、音
響データを監視ロボット6に搭載したテレビカメラ7や
マイクロフォン8により収集し、一般には、中央制御室
内に設置される異常判断装置9へ通信制御装置12を介
して当該データが送信される。
[0004] As shown in FIG. 7, a monitoring robot 6 is installed at a plant site, and a television having the monitoring robot 6 mounted on the monitoring robot 6 with image data and sound data near a monitoring target at a predetermined monitoring route or monitoring point. The data is collected by the camera 7 and the microphone 8, and the data is generally transmitted to the abnormality determination device 9 installed in the central control room via the communication control device 12.

【0005】現場パトロールによる巡視点検では、パト
ローラの視覚、聴覚によりプラント機器からの種々な流
体のリーク(漏洩)などを発見する割合は、全体発生件
数の約90%をしめるといわれ、画像処理/音響処理に
よる判断の自動化とその信頼性が重要課題といえる。画
像処理による異常の発見は、基本的な手法として図8に
示すアルゴリズムのように、(a)あらかじめ正常な状
態における各監視ポイントの画像を取込み、これを記憶
しておき(これを基準画像(メモリ(2))と呼ぶ)、
(b)ついで監視対象物についての異常の有無、監視中
に監視ロボットに搭載したテレビカメラにより取り込ん
だ画像(メモリ(1))と前記基準画像との差分(これ
を差画像(メモリ(1)−メモリ(2))と呼ぶ)をベ
ースデータとし、その監視ポイントでの光学系の環境条
件、異常現象の程度(これは、実際に対象設備や機器・
配管等において異常条件を発生させることはできないの
で油漏れなどを模擬する)により、上記差画像をある程
度の輝度のしきい値を試行錯誤しながら、取り込んだ画
像に対して、正常時、異常時の差を明確に区別すべく最
適なしきい値を設定する。すなわち、差画像において当
該しきい値により輝度差の大きい部分は白色に、当該し
きい値より輝度差の小さい部分は、黒色とする処理(こ
れを2値化処理と呼ぶ)を行ない、ついで白色の画素の
画素数の累積値を求めるヒストグラム処理を行ない、白
色の画素の数の多少に応じて異常の有無の判断を実行す
る。
[0005] In the patrol inspection by the on-site patrol, it is said that the rate of discovering various fluid leaks (leakage) from plant equipment by the patrol's vision and hearing is about 90% of the total number of occurrences. Automated decision making by sound processing and its reliability are important issues. As a basic method of finding an abnormality by image processing, as in the algorithm shown in FIG. 8, (a) an image of each monitoring point in a normal state is previously captured and stored (this is referred to as a reference image ( Memory (2))),
(B) Next, the presence or absence of abnormality in the monitored object, and the difference between the image (memory (1)) captured by the television camera mounted on the monitoring robot during monitoring and the reference image (this is referred to as a difference image (memory (1)) -Memory (2))) as the base data, the environmental conditions of the optical system at the monitoring point, and the degree of abnormal phenomena (this is actually
Abnormal conditions cannot be generated in piping, etc., so simulate oil leaks, etc.). The optimal threshold is set to clearly distinguish the difference between. That is, in the difference image, a portion having a large difference in luminance due to the threshold is white, and a portion having a small difference in luminance is black (this is referred to as a binarization process). The histogram processing for calculating the accumulated value of the number of pixels is performed, and it is determined whether or not there is an abnormality according to the number of white pixels.

【0006】しかしながら、上記2値化処理の際の輝度
のしきい値の妥当性が問題となる。主な問題として以下
のことがあげられる。 (1)屋外では、日照変化などによる大幅な照度変化、
視野内における不規則な位置、大きさ、形の影などの外
乱、屋内でも蛍光灯などの照明条件の変化により、2値
化処理の結果が劇的に変化してしまう。 (2)当初、基準画像として読込み記憶した時点での視
野の中の被写体が位置ずれを生じていたり、監視ポイン
トの位置で監視ロボットが停止する際の位置再現性の程
度により、差画像での輝度値が変化し、2値化処理後の
白の画素が増加してしまう。 (3)したがって、上記いわゆる画像処理上の外乱につ
いては、あらかじめ条件設定が可能であり、万一これら
の外乱を回避できる場合があっても、監視項目や監視ポ
イントごとに基準画像を記憶しておかねばならず、大幅
のメモリを必要とする。
[0006] However, the validity of the threshold value of the luminance at the time of the above-mentioned binarization process becomes a problem. The main issues are as follows. (1) Significant changes in illuminance due to changes in sunlight, etc.
Due to disturbances such as irregular positions, sizes, and shadows in the field of view, and changes in lighting conditions such as fluorescent lights even indoors, the result of the binarization processing changes dramatically. (2) At first, the subject in the field of view at the time of reading and storing as the reference image is displaced or the degree of positional reproducibility when the monitoring robot stops at the position of the monitoring point depends on the difference image. The luminance value changes, and the number of white pixels after the binarization process increases. (3) Therefore, conditions for the so-called image processing disturbance can be set in advance, and even if these disturbances can be avoided, a reference image is stored for each monitoring item or monitoring point. It is expensive and requires a lot of memory.

【0007】さらに、図9に示すような水路、例えば川
の流れ1をテレビカメラにより監視し、川に流出した油
の流れを検知する例を示す。A1は、正常時の画像で、
A2は、これをメモリに保存したものでこれを基準画像
とする。B1は、油17の流れた監視時の画像である。
Cは、A2とB1の差画像であり当該差画像を2値化処
理し、しきい値の値によってD1、D2、D3となる。
[0009] Further, an example is shown in which a water flow as shown in FIG. 9, for example, a flow 1 of a river is monitored by a television camera, and a flow of oil flowing into the river is detected. A1 is a normal image,
A2 is stored in a memory and is used as a reference image. B1 is an image at the time of monitoring the flow of the oil 17.
C is a difference image between A2 and B1, which is subjected to a binarization process, and becomes D1, D2, and D3 according to the threshold value.

【0008】D1は、しきい値が低すぎた場合、D2
は、しきい値が妥当な場合、D3は、しきい値が高すぎ
た場合を示す。川の表面の輝度は、時々刻々と変化して
いるため、上記差画像は大幅に変化してしまう。図9に
示すように差画像/2値化処理結果の白い画素の数は、
図中のD1、D2、D3に典型的な例を示すが、異常事
象の油のみを抽出するには、上記2値化処理の際のしき
い値の決定により、白の割合つまり正常時の基準画像と
の画像変化としては2〜35%と変動してしまい最終段
階の判定しきい値を決めることが困難である。
[0008] If D1 is too low, D2 is
Indicates that the threshold is appropriate, and D3 indicates that the threshold is too high. Since the brightness of the surface of the river changes every moment, the difference image changes greatly. As shown in FIG. 9, the number of white pixels as a result of the difference image / binarization processing is
Typical examples are shown at D1, D2, and D3 in the figure. In order to extract only the oil of the abnormal event, the threshold value at the time of the above-mentioned binarization process is determined to determine the ratio of white, that is, the normal state. The image change from the reference image fluctuates from 2 to 35%, and it is difficult to determine the final determination threshold value.

【0009】また、図10に日照変化などの環境変化の
ある川の流れをテレビカメラにより油の流れを検知する
例を示す。A1は、正常時の画像で、A2は、これをメ
モリに保存したもので基準画像とする。B1は、影2が
存在し、かつ、油17の流れた監視時の画像である。C
は、A2とB1の差画像であり当該差画像を2値化処理
し、しきい値によってD4、D5となる。
FIG. 10 shows an example in which the flow of an oil is detected by a television camera in the flow of a river having an environmental change such as a change in sunshine. A1 is a normal image, and A2 is a reference image stored in a memory. B1 is an image at the time of monitoring in which the shadow 2 exists and the oil 17 flows. C
Is a difference image between A2 and B1. The difference image is binarized, and becomes D4 and D5 depending on the threshold value.

【0010】D4は、しきい値が低すぎた場合、D5
は、しきい値が高すぎた場合を示す。図10に示すよう
に影などによりさらに川の表面の輝度が時々刻々と変化
するため、上記差画像は大幅に変動してしまう。図10
に示すように差画像/2値化処理の結果の白い画素の数
は、図中のD4、D5に典型的な例を示すが異常事象の
油のみを抽出するには、上記2値化処理の際のしきい値
の決定により、白の割合、つまり、基準画像との変動が
大きくなり、最終段階の判定しきい値を決めることが困
難である。
D4 is D5 if the threshold is too low.
Indicates that the threshold is too high. As shown in FIG. 10, since the brightness of the river surface changes every moment due to a shadow or the like, the difference image fluctuates greatly. FIG.
As shown in the figure, the number of white pixels as a result of the difference image / binarization process is a typical example of D4 and D5 in the figure. When the threshold value is determined in this case, the ratio of white, that is, the variation from the reference image increases, and it is difficult to determine the final determination threshold value.

【0011】一方、差画像/2値化処理の手法以外の手
法として油もれのない正常な場合と油漏れのある異常な
場合とをニューラルネットワークにより学習させておく
方法も適用できるが、検知画像が当該学習画像と比較し
てかなりかけ離れた時は、当該ニューラルネットワーク
からの判定の出力値があいまいな値となることが生じ
る。これはニューラルネットワークの分野においては、
汎化能力として厄介な課題を有しており、その有効性に
は限界があり、その予測は現状では困難である。
On the other hand, as a method other than the difference image / binarization processing method, a method in which a normal case without oil leakage and an abnormal case with oil leakage are learned by a neural network can be applied. If the image is far apart from the learning image, the output value of the determination from the neural network may be ambiguous. This is in the field of neural networks
It has a difficult task as a generalization ability, and its effectiveness is limited, and its prediction is difficult at present.

【0012】[0012]

【発明が解決しようとする課題】上記した従来技術にお
いては、監視対象物または監視対象領域に対する照明条
件や、物体の影の侵入などの環境の変化に対する対策が
十分でなく、誤った処理結果を発生する場合があった。
本発明は、照明条件や物体の影の侵入などの環境条件の
変化があった場合にも適正な処理結果と正しい判断をす
ることのできる異常監視方法および装置を得ることを目
的とするものである。
In the above-mentioned prior art, there are insufficient measures against lighting conditions for the monitoring target or the monitoring target area and environmental changes such as intrusion of a shadow of the object, and an erroneous processing result is not obtained. Occurred in some cases.
It is an object of the present invention to provide an abnormality monitoring method and apparatus capable of correctly determining a processing result and a correct determination even when there is a change in an environmental condition such as a lighting condition or a shadow of an object. is there.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
本願で特許請求する発明は以下のとおりである。 (1)監視対象領域についての正常状態時の基準画像と
監視時の監視画像との差画像に基づき異常の有無を検知
する異常診断方法において、前記監視画像の各輝度に対
する画素数の累積曲線を求め、該累積曲線についての変
局点の輝度と原画像の平均輝度との差の絶対値に基づ
き、監視対象区域の照度変化や影の侵入などの環境変化
の有無を判断し、環境変化がある場合は、前記監視画像
を環境変化の程度により複数区域に分割するとともに、
分割された区域ごとに基準画像との差画像を求め、これ
に基づいて監視対象区域の異常の有無を判断し、環境変
化がない場合は、前記基準画像と監視画像の差画像に基
づいて異常の有無を判断することを特徴とする異常監視
方法。
The invention claimed in this application to achieve the above object is as follows. (1) In an abnormality diagnosis method for detecting the presence or absence of an abnormality based on a difference image between a reference image in a normal state and a monitoring image during monitoring of a monitoring target area, a cumulative curve of the number of pixels for each luminance of the monitoring image is calculated. Based on the absolute value of the difference between the luminance of the inflection point for the cumulative curve and the average luminance of the original image, it is determined whether there is any environmental change such as a change in illuminance of the monitored area or intrusion of a shadow. In some cases, the monitoring image is divided into a plurality of areas according to the degree of environmental change,
A difference image from the reference image is obtained for each of the divided areas, and based on the difference image, the presence or absence of abnormality in the monitoring target area is determined.If there is no environmental change, an abnormality is determined based on the difference image between the reference image and the monitoring image. An abnormality monitoring method characterized by determining the presence or absence of a fault.

【0014】(2)監視対象領域についての正常状態時
に入力した基準画像と監視時に入力した監視画像との差
画像に基づき異常発生の有無を検出する異常監視方法に
おいて、前記監視画像の各輝度ごとの画素数を求める工
程と、これに基づき当該輝度ごとの画素数の累積値を算
出する工程と、算出した上記累積値に基づき各輝度に対
する画素数の累積曲線を求める工程と、上記累積曲線に
ついての変局点の輝度と原画像の平均輝度とを求め、両
輝度の差の絶対値が環境変化の指標値のしきい値より大
きい場合は環境変化あり、しきい値より小さい場合は変
化なしと判断する工程と、環境変化がないときは前記基
準画像と監視画像との差画像を求め、これを2値化処理
し、基準値と比較して異常の有無を判断する工程と、環
境変化があるときは監視画像について求めた各輝度値と
その輝度値に対応する画素数のヒストグラムに対し、分
割した場合のクラス間分散が最大となるような分割輝度
にて、上記監視画像を2つの領域に分割する工程と、つ
いで分割された領域ごとに前記基準画像との差画像を求
め、それぞれを2値化処理してこれを基準値と比較し、
いずれかが基準値を超える場合は異常ありと判断する工
程とを備えたことを特徴とする異常監視方法。
(2) In an abnormality monitoring method for detecting the presence or absence of an abnormality based on a difference image between a reference image input in a normal state and a monitoring image input during monitoring of a monitoring target area, each brightness of the monitoring image is The step of calculating the number of pixels of, the step of calculating the cumulative value of the number of pixels for each luminance based on this, the step of calculating the cumulative curve of the number of pixels for each luminance based on the calculated cumulative value, The luminance at the inflection point and the average luminance of the original image are obtained. If the absolute value of the difference between the two luminances is greater than the threshold value of the index value of the environmental change, there is an environmental change. Determining a difference image between the reference image and the monitor image when there is no environmental change, binarizing the difference image and comparing it with a reference value to determine whether there is an abnormality; When there is For each luminance value obtained for the monitoring image and a histogram of the number of pixels corresponding to the luminance value, the monitoring image is divided into two regions at a division luminance that maximizes the inter-class variance when divided. A difference image from the reference image is obtained for each of the divided regions, and each is binarized and compared with a reference value.
A step of determining that there is an abnormality if any of them exceeds a reference value.

【0015】(3)監視対象領域についての正常状態時
の基準画像と監視時の監視画像との差画像に基づき異常
の有無を検知する異常監視装置において、前記監視画像
の各輝度ごとの画素数を求める手段と、当該各輝度ごと
の画素数の累積値を算出する手段と、上記算出した累積
値に基づき、各輝度に対する画素数の累積曲線を求める
手段と、上記累積曲線についての変局点の輝度と原画像
の平均輝度を求め両輝度の差の絶対値に基づき監視対象
領域の環境変化の有無を判断する手段と、環境変化がな
い場合は前記基準画像と監視画像の差画像に基づき異常
の有無を判断する手段と、環境変化がある場合は前記監
視画像を輝度別に2つに分割した場合のクラス間分散が
最大となるような分割輝度により2つの領域に分割する
手段と、分割された領域ごとに基準画像との差画像を求
め、これに基づいて監視対象領域の異常の有無を判断す
る手段とを備えたことを特徴とする異常監視装置。
(3) In an abnormality monitoring apparatus for detecting the presence or absence of an abnormality based on a difference image between a reference image in a normal state and a monitoring image at the time of monitoring, the number of pixels for each luminance of the monitoring image Means for calculating the cumulative value of the number of pixels for each luminance, means for calculating the cumulative curve of the number of pixels for each luminance based on the calculated cumulative value, and an inflection point for the cumulative curve. Means for determining the average luminance of the luminance and the original image and determining the presence or absence of an environmental change in the monitoring target area based on the absolute value of the difference between the two luminances, based on the difference image between the reference image and the monitored image if there is no environmental change Means for judging the presence or absence of an abnormality; means for dividing the monitoring image into two areas according to luminance so as to maximize variance between classes when there is an environmental change; Is Obtaining a difference image between the reference image for each area, the abnormality monitoring device characterized by comprising a means for determining the presence or absence of an abnormality in the monitored area based on this.

【0016】本発明においては、監視対象の画像につい
て、画像処理上へ及ぼす外乱に対して画像を複数の領域
に分割して処理することにより、その後の判断のための
画像処理の検知分解能が向上し、監視システムにおける
誤判断を大幅に低減できる。
In the present invention, the detection resolution of the image processing for the subsequent judgment is improved by dividing the image to be monitored into a plurality of regions with respect to the disturbance exerted on the image processing and processing the image. In addition, erroneous determination in the monitoring system can be significantly reduced.

【0017】[0017]

【発明の実施の形態】本発明の実施例を図1により詳細
に説明する。図1は本発明による画像処理による異常診
断アルゴリズムを示す。カメラにより画像の取込みを行
なう(カメラ入力)が、この1画面は多数の画素から構
成されている。たとえばテレビでは、縦方向が256
列、横方向が256行に、つまり256×256=65
536個の画素から構成され、1画素は複数の段階に分
けられた輝度信号を出力する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to FIG. FIG. 1 shows an abnormality diagnosis algorithm by image processing according to the present invention. An image is captured by a camera (camera input). One screen is composed of a large number of pixels. For example, on a television, the vertical direction is 256
Columns, horizontal direction are 256 rows, that is, 256 × 256 = 65
It is composed of 536 pixels, and one pixel outputs a luminance signal divided into a plurality of stages.

【0018】通常、輝度信号は、0〜255までの25
6の段階に分けられる。つぎに画像のノイズの多少や大
小に応じて平滑化処理を行ない、以降の画像処理操作の
ための前処理を実行する。平滑化処理とは、各画素につ
いて、その画素の輝度を、周囲の画素の各輝度との和を
画素数で割算して求めた平均輝度に置き換える処理を行
なうことをいい、これによりノイズを除去する。つぎの
工程は、ヒストグラム処理である。図2にヒストグラム
作成の例を示す。すなわち、図2上方に示す画像(A)
は縦、横各5列の25個の画素それぞれに、0〜5の範
囲の輝度をもっており、これに基づき図2の下方に示す
ように、輝度を横軸、画素数を縦軸にとり、各輝度ごと
の画素数を示した平滑化処理の画像のヒストグラムを得
る。
Normally, the luminance signal is 25 from 0 to 255.
There are six stages. Next, a smoothing process is performed in accordance with the degree or magnitude of noise in the image, and preprocessing for subsequent image processing operations is performed. Smoothing processing refers to performing, for each pixel, a process of replacing the brightness of the pixel with the average brightness obtained by dividing the sum of each brightness of surrounding pixels by the number of pixels, thereby reducing noise. Remove. The next step is histogram processing. FIG. 2 shows an example of creating a histogram. That is, the image (A) shown in the upper part of FIG.
Has luminance in the range of 0 to 5 for each of the 25 pixels in each of the vertical and horizontal 5 columns. Based on this, as shown in the lower part of FIG. 2, the luminance is plotted on the horizontal axis and the number of pixels is plotted on the vertical axis. A histogram of the image of the smoothing process indicating the number of pixels for each luminance is obtained.

【0019】すなわち、ヒストグラムとは、各輝度値に
対して画像中におけるその輝度値を持った画素数(頻
度)を求めたものである。一般に、横軸に輝度値、縦軸
に画素数(頻度)をとった棒グラフで表現される。ヒス
トグラムは、その画像がどのような輝度値を持った画素
からなりたっているかの情報を集約したものである。
That is, the histogram is obtained by calculating the number (frequency) of pixels having the luminance value in the image for each luminance value. Generally, it is represented by a bar graph in which the horizontal axis represents the luminance value and the vertical axis represents the number of pixels (frequency). The histogram is a collection of information on what luminance values the image has from the pixels.

【0020】つぎの工程は、このようにして求めた当該
ヒストグラムから累積曲線を求める。累積曲線は、ヒス
トグラムの各輝度の画素数を累積することによって得
る。すなわち、図11(a)の図面に示すように輝度i
1 、i2 、i3 、i4 、i 5 の画素数が、それぞれ
1 、p2 、p3 、p4 、p5 である元のヒストグラム
から図11(b)の図のように輝度i2 の累積値はp2
+p1 であり、輝度i3の累積値はp3 にp1 +p2
累積して求め、このようにして求めた累積値の描く線が
累積曲線となる。図3に累積曲線の例を示す。
The next step is the step
A cumulative curve is obtained from the histogram. The cumulative curve is His
It is obtained by accumulating the number of pixels for each luminance of the
You. That is, as shown in the drawing of FIG.
1, ITwo, IThree, IFour, I FiveThe number of pixels of each
p1, PTwo, PThree, PFour, PFiveThe original histogram that is
From the luminance i as shown in FIG.TwoIs the accumulated value of pTwo
+ P1And the luminance iThreeIs the accumulated value of pThreeTo p1+ PTwoTo
The line that the cumulative value obtained in this way is drawn
It becomes a cumulative curve. FIG. 3 shows an example of the cumulative curve.

【0021】つぎの工程では、当該累積曲線の変局点お
よび原画像の平均輝度を求める。この平均輝度と変局点
との距離によって、影などの照明、照度による環境状況
の変化の有無を判断する。図4に平均輝度と変局点の関
係を示す。すなわち、図4の左側上部の影のない画像の
破線で囲んだ四角形の領域の輝度値対画素数の累積曲線
が左下部に示され、右側上部の影のある画像の破線内の
領域の輝度値対画素数の累積曲線を右下部に示す。図4
において1は監視対象となる川、2は影、3は累積曲線
の変局点、4は平均輝度、5は後述する環境変化の指標
値である。平均輝度4は、以下により定義する。
In the next step, the inflection point of the cumulative curve and the average luminance of the original image are obtained. Based on the distance between the average luminance and the inflection point, it is determined whether or not there is a change in the environmental condition due to illumination such as a shadow or illuminance. FIG. 4 shows the relationship between the average luminance and the inflection point. That is, the cumulative curve of the luminance value versus the number of pixels of the rectangular area surrounded by the dashed line of the image without shadow at the upper left of FIG. 4 is shown at the lower left, and the luminance of the area within the dashed line of the image with shadow at the upper right is shown in FIG. The cumulative curve of value versus number of pixels is shown in the lower right. FIG.
, 1 is a river to be monitored, 2 is a shadow, 3 is an inflection point of a cumulative curve, 4 is an average luminance, and 5 is an index value of an environmental change described later. Average luminance 4 is defined as follows.

【0022】・平均輝度(s)の算出Calculation of average luminance (s)

【0023】[0023]

【数1】 (Equation 1)

【0024】m: 輝度 p: 輝度mの画素数 z: 全画素数 L: 最高輝度値 また、変局点は以下により定義する。M: luminance p: number of pixels of luminance m z: total number of pixels L: maximum luminance value The inflection point is defined as follows.

【0025】・変局点(d)の検出 1次微分Detection of inflection point (d) First derivative

【0026】[0026]

【数2】 dI(m)=I(m+1)−I(m) ……(式2) m : 輝度 I(m) : 輝度mの累積画素数 dI(m): 輝度mの1次微分 2次微分 d2 I(m)=dI(m+1)−dI(m) ……(式3) d2 I(m): 輝度mの2次微分 変局点探索 累積曲線の勾配dT (m)がある「しきい値」より大き
く、かつ2次微分d 2 I(m)のうちの最小値のところ
の輝度を変局点とする。
DI (m) = I (m + 1) −I (m) (Equation 2) m: luminance I (m): cumulative number of pixels of luminance m dI (m): first derivative of luminance m 2 Next derivative dTwoI (m) = dI (m + 1) −dI (m) (Equation 3) dTwoI (m): Second derivative of luminance m Inflection point search Cumulative curve gradient dT(M) greater than a certain "threshold"
And the second derivative d TwoAt the minimum value of I (m)
Is the inflection point.

【0027】 dI(m)>δであり、 ……(式4) δ: 1次微分のしきい値 D=min(d2 I(m)) ……(式5) *:d2 I(m)が最小となるm(輝度)、すなわち変
局点Dの輝度を探索する。(式4)のδは、当該監視し
ようとする対象物に依存させて決定する。
DI (m)> δ,... (Equation 4) δ: Threshold of the first derivative D = min (d 2 I (m)) (Equation 5) *: d 2 I ( A search is made for m (luminance) that minimizes m), that is, the luminance of the inflection point D. Δ in (Equation 4) is determined depending on the object to be monitored.

【0028】影などの照明、照度による環境状況の変化
の有無を判断する指標値として、変局点Dの輝度と平均
輝度(s)との関係(偏差量の絶対値g)を以下に示
す。 g=|(s)−(D(m))| ……(式6) g :環境変化の指標値 (s) :平均輝度 (D(m)):変局点の輝度 ・環境変化のない場合 g < α ……(式7) α: 環境変化の指標値のしきい値 ・環境変化のある場合 g > α ……(式8) α: 環境変化の指標値のしきい値 αは当該監視しようとする対象物に依存させて決定す
る。
The relationship between the luminance at the inflection point D and the average luminance (s) (absolute value g of the deviation amount) is shown below as an index value for judging the presence or absence of a change in environmental conditions due to illumination such as shadows and illuminance. . g = | (s) − (D (m)) | (Equation 6) g: index value of environmental change (s): average luminance (D (m)): luminance of inflection point • no environmental change Case g <α (Equation 7) α: Threshold value of environmental change index value ・ If there is environmental change g> α (Equation 8) α: Threshold value of environmental change index value α It is determined depending on the object to be monitored.

【0029】ここで、g<α、すなわち環境変化のない
ときは、取込み画像の全領域を対象エリアとする。つぎ
の工程は、g>α、すなわち環境変化のあるとき、領域
分割を行なう。領域分割は、画像のヒストグラムから統
計的な意味で最適な分割のしきい値を決定し、このしき
い値により、領域を分割する。しきい値決定のフローを
図5に示す。
Here, when g <α, that is, when there is no environmental change, the entire area of the captured image is set as the target area. In the next step, region division is performed when g> α, that is, when there is an environmental change. In the area division, a threshold for optimal division in a statistical sense is determined from a histogram of an image, and the area is divided based on the threshold. FIG. 5 shows a flow of the threshold value determination.

【0030】しきい値決定の原理は、以下に定義する。 σB 2 =ω1(M1 −MT )2+ω2(M2 −MT )2 ……(式9) σW 2 =ω1 σ1 2+ω2 σ2 2 ……(式10) ただし、 ω1( ): クラス1の画素数 ω2( ): クラス2の画素数 M1 : クラス1の平均輝度 M2 : クラス2の平均輝度 MT : 全画素の平均輝度 σ1 : クラス1の分散 σ2 : クラス2の分散 とする。なお、クラス1、2は輝度別に分類した画素集
団のことをいう。
The principle of determining the threshold is defined below. σ B 2 = ω 1 (M 1 -M T) 2 + ω 2 (M 2 -M T) 2 ...... ( Equation 9) σ W 2 = ω 1 σ 1 2 + ω 2 σ 2 2 ...... ( Equation 10) However, omega 1 (): number of pixels omega 2 class 1 (): number of pixels class 2 M 1: average of class 1 brightness M 2: average of class 2 luminance M T: average brightness of all pixels sigma 1: class 1 variance σ 2 : class 2 variance. Classes 1 and 2 refer to pixel groups classified according to luminance.

【0031】輝度値を{β:最小値から、L:最大値}
とし、しきい値Kは、画素を輝度〔β、K〕と〔K+
1、L〕の2クラスC0 、C1 に分割するものとする。
式(9)は、クラス間分散(σB 2)を示す。また、式
(10)は、クラス内分散(σW 2)を示す。求めるしき
い値は、2つのクラスの平均値の分散、すなわちクラス
間分散と各クラスの分散、すなわちクラス内分散の比を
最大にすることによりしきい値Kを決定する。
The luminance value is changed from {β: minimum value to L: maximum value}.
And the threshold value K is determined based on the luminance [β, K] and [K +
1, L] into two classes C 0 and C 1 .
Equation (9) shows the inter-class variance (σ B 2 ). Equation (10) shows the intra-class variance (σ W 2 ). The threshold value to be determined determines the threshold value K by maximizing the ratio of the variance of the average value of the two classes, that is, the variance between the classes and the variance of each class, that is, the variance within the class.

【0032】ここで、σB 2 /σW 2 を最大にするには
σB 2 を最大にすればよい。すなわち、K:しきい値を
変化させて、σB 2 を最大にするK:しきい値を求めれ
ばよい。最小輝度βは、当該監視しようとする対象物に
依存させて決定する。βは監視しようとする異常、すな
わち、ここでは油リークの輝度異常とする。先記のしき
い値Kは、得られる2値化画像と元の濃淡画像との平均
2乗誤差を最小にするものであることが示される。
Here, to maximize σ B 2 / σ W 2 , σ B 2 may be maximized. That is, K: a threshold value may be obtained by changing the threshold value to maximize σ B 2 . The minimum brightness β is determined depending on the object to be monitored. β is the abnormality to be monitored, that is, the luminance abnormality of the oil leak here. It is shown that the above-described threshold K minimizes the mean square error between the obtained binarized image and the original grayscale image.

【0033】図6に輝度値と画素数のヒストグラムにつ
いて、しきい値Kによる領域分割の例を示す。当該図の
ように、分割する領域が2つの場合は、しきい値以上の
輝度を持つ画素を日向の領域、しきい値以下の輝度を持
つ画素を影の領域として分割することができる。つぎ
に、当該領域(ここでは日向と影の領域)ごとにそれぞ
れ2値化処理をする。
FIG. 6 shows an example of the area division by the threshold value K for the histogram of the luminance value and the number of pixels. As shown in the figure, when there are two regions to be divided, it is possible to divide a pixel having a luminance equal to or higher than the threshold value into a sunny region and a pixel having a luminance equal to or lower than the threshold value into a shadow region. Next, a binarization process is performed for each of the regions (here, the region of the sun and the region of the shadow).

【0034】このしきい値による領域分割を先に示した
図10における、川に油が流れ、かつ入力画像の右下方
に影が投影された場合に適用した実施例を図12に示
す。図12において、監視時に入力された画像(監視画
像)Bは日向の領域B1 ´と影の領域B2 ´に分割され
る。基準画像A´と領域B1 ´画像との差画像がC1
1 の2値化処理画像がD1 となる。つぎに、基準画像
A´と領域B2 ´画像との差画像がC2 となる。差画像
2 において左上半部C2 aは比較的輝度差が小さく、
右下半部C2 bは比較的輝度差が大きいが、しきい値を
適正に選んで2値化処理すると、C2 の2値化処理画像
はD2 となる。
FIG. 12 shows an embodiment applied to the case where oil flows in a river and a shadow is projected on the lower right of the input image in FIG. In FIG. 12, an image (monitoring image) B input at the time of monitoring is divided into a sunny area B 1 ′ and a shadow area B 2 ′. The difference image between the reference image A ′ and the region B 1 ′ image is C 1 ,
The binarized image of C 1 is D 1 . Next, the difference image between the reference image A ′ and the area B 2 ′ image is C 2 . Difference upper left half C 2 a in the image C 2 is relatively a luminance difference is small,
The lower right half C 2 b has a relatively large luminance difference, but if the threshold value is properly selected and binarized, the binarized image of C 2 becomes D 2 .

【0035】ここで、D1 画像は白の割合が0%、D2
の画像は白の割合が15%である。図1において、異常
の有無を判断するしきい値が、例えば10%とすると、
上記ケースは異常ありと判断され、警報が発せられるこ
とになる。正常時の基準画像と監視時の画像との差画像
を2値化処理するときのそれぞれのしきい値について
は、当該監視しようとする対象物に依存させて決定す
る。分割された領域ごとに当該2値化画像の白い画素の
数に最終判断のしきい値を設定し、分割されたいずれか
の領域について、このしきい値を超える場合は、異常あ
りとし、超えない場合は正常と判断する。
Here, the D 1 image has a white ratio of 0% and the D 2 image has
The image has a white ratio of 15%. In FIG. 1, assuming that a threshold for determining the presence or absence of an abnormality is, for example, 10%,
The above case is determined to be abnormal and an alarm is issued. Each threshold value when binarizing the difference image between the normal reference image and the monitoring image is determined depending on the object to be monitored. A threshold value for the final judgment is set for the number of white pixels of the binary image for each of the divided areas. If any of the divided areas exceeds this threshold, it is determined that there is an abnormality, and If not, it is determined to be normal.

【0036】以上のことから従来では、影などの日照変
化、照度変化が部分的にある環境で差画像/2値化処理
を行なうと、環境変化領域を油の領域と誤って判断する
が、本実施例では、差画像/2値化処理を行なうまえに
領域分割を行ない対象エリアを限定することによって、
誤判断することなく、正しく対応可能となる。
From the above, conventionally, if the difference image / binarization processing is performed in an environment where there is a partial change in sunshine or illuminance such as a shadow, the environment change area is erroneously determined to be an oil area. In the present embodiment, by performing area division and limiting the target area before performing the difference image / binarization processing,
It is possible to respond correctly without erroneous judgment.

【0037】[0037]

【発明の効果】本発明によれば、監視対象領域における
照明状況の変化や、他の物体による影の領域内侵入など
の環境変化が発生した場合においても、誤判断すること
なく、適切に異常の発生の有無を検出することができ
る。
According to the present invention, even in the case where a change in the lighting condition in the monitoring target area or an environmental change such as the intrusion of a shadow into the area by another object occurs, the abnormality can be appropriately detected without erroneous determination. Can be detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における異常監視方法のアルゴ
リズムを示す図。
FIG. 1 is a diagram showing an algorithm of an abnormality monitoring method according to an embodiment of the present invention.

【図2】画像に対する輝度値対画素数のヒストグラムの
作成要領を示す図。
FIG. 2 is a diagram showing a procedure for creating a histogram of a luminance value versus the number of pixels for an image.

【図3】図2に示したヒストグラムから求めた、輝度値
対画素数の累積曲線を示す実施例図。
FIG. 3 is an embodiment diagram showing a cumulative curve of a luminance value versus the number of pixels obtained from the histogram shown in FIG. 2;

【図4】輝度値対画素数の累積曲線における変局点を平
均輝度の関係を示す実施例図。
FIG. 4 is an example diagram showing a relationship between an inflection point and an average luminance in a cumulative curve of luminance value versus number of pixels.

【図5】本発明の実施例における監視画像の領域分割フ
ロー図。
FIG. 5 is a flowchart of a region division of a monitoring image according to the embodiment of the present invention.

【図6】領域分割の実施例図。FIG. 6 is a view showing an embodiment of area division.

【図7】従来技術になる異常監視装置を示す図。FIG. 7 is a diagram showing an abnormality monitoring device according to the related art.

【図8】従来技術になる異常監視方法のフロー図。FIG. 8 is a flowchart of an abnormality monitoring method according to the related art.

【図9】従来技術による異常監視方法の説明図。FIG. 9 is an explanatory diagram of an abnormality monitoring method according to the related art.

【図10】従来技術による環境変化時の異常監視方法の
説明図。
FIG. 10 is an explanatory diagram of an abnormality monitoring method when an environment changes according to the related art.

【図11】本発明においての対象画像の輝度対画素数の
ヒストグラムの作成要領説明図。
FIG. 11 is an explanatory diagram showing a procedure for creating a histogram of luminance versus the number of pixels of a target image according to the present invention.

【図12】監視対象画像の領域分割時の処理方法を示す
実施例図。
FIG. 12 is an embodiment diagram showing a processing method at the time of region division of a monitoring target image.

【符号の説明】[Explanation of symbols]

1…川(の流れ)、2…影、3…変局点、4…平均輝
度、5…g(環境変化の指標値)、6…監視ロボット、
7…テレビカメラ、8…マイクロフォン、9…異常判断
装置、10…マン・マシン・インターフェイス、11…
ロボット制御装置、12…通信制御装置、13…ロボッ
ト走行軸、14…センサ部(カメラ部)旋回軸、15…
センサ部上下軸、16…モニタ。
1 ... river (flow), 2 ... shadow, 3 ... inflection point, 4 ... average luminance, 5 ... g (index value of environmental change), 6 ... surveillance robot,
7 ... TV camera, 8 ... Microphone, 9 ... Abnormality judging device, 10 ... Man-machine interface, 11 ...
Robot controller, 12: Communication controller, 13: Robot traveling axis, 14: Sensor part (camera part) turning axis, 15 ...
Sensor unit vertical axis, 16 monitor.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 監視対象領域についての正常状態時の基
準画像と監視時の監視画像との差画像に基づき異常の有
無を検知する異常診断方法において、前記監視画像の各
輝度に対する画素数の累積曲線を求め、該累積曲線につ
いての変局点の輝度と原画像の平均輝度との差の絶対値
に基づき、監視対象区域の照度変化や影の侵入などの環
境変化の有無を判断し、環境変化がある場合は、前記監
視画像を環境変化の程度により複数区域に分割するとと
もに、分割された区域ごとに基準画像との差画像を求
め、これに基づいて監視対象区域の異常の有無を判断
し、環境変化がない場合は、前記基準画像と監視画像の
差画像に基づいて異常の有無を判断することを特徴とす
る異常監視方法。
In an abnormality diagnosis method for detecting the presence or absence of an abnormality based on a difference image between a reference image in a normal state and a monitoring image at the time of monitoring of a monitoring target area, the accumulation of the number of pixels for each luminance of the monitoring image is performed. A curve is obtained, and based on the absolute value of the difference between the luminance of the inflection point for the cumulative curve and the average luminance of the original image, it is determined whether or not there is an environmental change such as a change in illuminance of the monitored area or intrusion of a shadow in the monitored area. If there is a change, the surveillance image is divided into a plurality of areas according to the degree of environmental change, and a difference image from the reference image is obtained for each of the divided areas. And determining whether there is an abnormality based on a difference image between the reference image and the monitoring image when there is no environmental change.
【請求項2】 監視対象領域についての正常状態時に入
力した基準画像と監視時に入力した監視画像との差画像
に基づき異常発生の有無を検出する異常監視方法におい
て、前記監視画像の各輝度ごとの画素数を求める工程
と、これに基づき当該輝度ごとの画素数の累積値を算出
する工程と、算出した上記累積値に基づき各輝度に対す
る画素数の累積曲線を求める工程と、上記累積曲線につ
いての変局点の輝度と原画像の平均輝度とを求め、両輝
度の差の絶対値が環境変化の指標値のしきい値より大き
い場合は環境変化あり、しきい値より小さい場合は変化
なしと判断する工程と、環境変化がないときは前記基準
画像と監視画像との差画像を求め、これを2値化処理
し、基準値と比較して異常の有無を判断する工程と、環
境変化があるときは監視画像について求めた各輝度値と
その輝度値に対応する画素数のヒストグラムに対し、分
割した場合のクラス間分散が最大となるような分割輝度
にて、上記監視画像を2つの領域に分割する工程と、つ
いで分割された領域ごとに前記基準画像との差画像を求
め、それぞれを2値化処理してこれを基準値と比較し、
いずれかが基準値を超える場合は異常ありと判断する工
程とを備えたことを特徴とする異常監視方法。
2. An abnormality monitoring method for detecting the presence or absence of an abnormality based on a difference image between a reference image input in a normal state of a monitoring target area and a monitoring image input at the time of monitoring. A step of calculating the number of pixels, a step of calculating a cumulative value of the number of pixels for each of the luminances based thereon, a step of calculating a cumulative curve of the number of pixels for each luminance based on the calculated cumulative value, The luminance at the inflection point and the average luminance of the original image are obtained. If the absolute value of the difference between the two luminances is larger than the threshold value of the index value of the environmental change, there is an environmental change. Determining a difference image between the reference image and the monitoring image when there is no environmental change, binarizing the difference image and comparing it with a reference value to determine whether there is an abnormality; Sometimes monitoring Dividing the monitoring image into two regions at a divisional luminance that maximizes the inter-class variance when divided for each luminance value obtained for the image and a histogram of the number of pixels corresponding to the luminance value Then, a difference image from the reference image is obtained for each of the divided areas, and each is binarized and compared with a reference value.
A step of determining that there is an abnormality if any of them exceeds a reference value.
【請求項3】 監視対象領域についての正常状態時の基
準画像と監視時の監視画像との差画像に基づき異常の有
無を検知する異常監視装置において、前記監視画像の各
輝度ごとの画素数を求める手段と、当該各輝度ごとの画
素数の累積値を算出する手段と、上記算出した累積値に
基づき、各輝度に対する画素数の累積曲線を求める手段
と、上記累積曲線についての変局点の輝度と原画像の平
均輝度を求め両輝度の差の絶対値に基づき監視対象領域
の環境変化の有無を判断する手段と、環境変化がない場
合は前記基準画像と監視画像の差画像に基づき異常の有
無を判断する手段と、環境変化がある場合は前記監視画
像を輝度別に2つに分割した場合のクラス間分散が最大
となるような分割輝度により2つの領域に分割する手段
と、分割された領域ごとに基準画像との差画像を求め、
これに基づいて監視対象領域の異常の有無を判断する手
段とを備えたことを特徴とする異常監視装置。
3. An abnormality monitoring device for detecting the presence or absence of an abnormality based on a difference image between a reference image in a normal state and a monitoring image at the time of monitoring of a monitoring target area, wherein the number of pixels for each luminance of the monitoring image is determined. Means for calculating, a means for calculating a cumulative value of the number of pixels for each of the luminances, a means for calculating a cumulative curve of the number of pixels for each of the luminances based on the calculated cumulative value, and an inflection point of the cumulative curve. Means for determining the luminance and the average luminance of the original image to determine the presence or absence of an environmental change in the monitoring target area based on the absolute value of the difference between the two luminances, and when there is no environmental change, abnormal based on the difference image between the reference image and the monitored image Means for judging presence / absence of the image, and means for dividing the monitoring image into two regions by a division luminance such that the inter-class variance is maximized when the monitoring image is divided into two parts by luminance when there is an environmental change. Area Find the difference image from the reference image for each
Means for judging the presence or absence of an abnormality in the monitoring target area based on the information.
JP19657396A 1996-07-25 1996-07-25 Abnormality monitoring method and device Pending JPH1042274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19657396A JPH1042274A (en) 1996-07-25 1996-07-25 Abnormality monitoring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19657396A JPH1042274A (en) 1996-07-25 1996-07-25 Abnormality monitoring method and device

Publications (1)

Publication Number Publication Date
JPH1042274A true JPH1042274A (en) 1998-02-13

Family

ID=16359996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19657396A Pending JPH1042274A (en) 1996-07-25 1996-07-25 Abnormality monitoring method and device

Country Status (1)

Country Link
JP (1) JPH1042274A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087986A1 (en) * 2008-01-10 2009-07-16 Nec Corporation Information providing system, information providing device, information providing method, and program
JP2016206881A (en) * 2015-04-21 2016-12-08 本田技研工業株式会社 Lane detection device and method thereof, and lane display device and method thereof
KR20200021720A (en) * 2018-08-21 2020-03-02 한국철도기술연구원 Apparatus and method for recognizing crack in sturcutre
CN113358154A (en) * 2021-06-03 2021-09-07 广东工业大学 Agricultural machinery equipment fault monitoring and tracing system and method
US11188047B2 (en) 2016-06-08 2021-11-30 Exxonmobil Research And Engineering Company Automatic visual and acoustic analytics for event detection
CN117129638A (en) * 2023-10-26 2023-11-28 江西怡杉环保股份有限公司 Regional air environment quality monitoring method and system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087986A1 (en) * 2008-01-10 2009-07-16 Nec Corporation Information providing system, information providing device, information providing method, and program
JP2016206881A (en) * 2015-04-21 2016-12-08 本田技研工業株式会社 Lane detection device and method thereof, and lane display device and method thereof
US11188047B2 (en) 2016-06-08 2021-11-30 Exxonmobil Research And Engineering Company Automatic visual and acoustic analytics for event detection
KR20200021720A (en) * 2018-08-21 2020-03-02 한국철도기술연구원 Apparatus and method for recognizing crack in sturcutre
CN113358154A (en) * 2021-06-03 2021-09-07 广东工业大学 Agricultural machinery equipment fault monitoring and tracing system and method
CN117129638A (en) * 2023-10-26 2023-11-28 江西怡杉环保股份有限公司 Regional air environment quality monitoring method and system
CN117129638B (en) * 2023-10-26 2024-01-12 江西怡杉环保股份有限公司 Regional air environment quality monitoring method and system

Similar Documents

Publication Publication Date Title
US7751647B2 (en) System and method for detecting an invalid camera in video surveillance
JP3486229B2 (en) Image change detection device
CN110728212B (en) Road well lid monitoring device and monitoring method based on computer vision
JP3377659B2 (en) Object detection device and object detection method
JPH1042274A (en) Abnormality monitoring method and device
CN116668859B (en) GIS equipment computer lab environment monitoring device
JP2020071698A (en) Fire detection device, fire detection method, and fire monitoring system
CN111274872B (en) Video monitoring dynamic irregular multi-supervision area discrimination method based on template matching
JPH06119454A (en) Method and device for detecting abnormality
JP5710230B2 (en) Monitoring system and monitoring method
CN116033119A (en) High-low voltage line strong discharge monitoring system and method based on video image recognition
JPH07333171A (en) Leak detection method and device
JPH11284982A (en) Monitoring device and method
JP3056053B2 (en) Monitoring method
JP2011061651A (en) Suspicious object detection system
JP3295482B2 (en) Moving object detection method and apparatus
JPH07129776A (en) Method and device for monitoring abnormality
JP6482892B2 (en) Monitoring system
JPH10289317A (en) Density conversion device for input image
JPH0764950A (en) Monitoring device and monitoring method
JP2001117633A (en) Plant-monitoring method
JP3195537B2 (en) Monitoring device and monitoring method using the device
JP3138381B2 (en) Monitoring device
JP3185402B2 (en) Image processing intruder detection device
CN114037959B (en) Method and device for detecting dangerous situation in monitoring picture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Effective date: 20041005

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050215

Free format text: JAPANESE INTERMEDIATE CODE: A02