JPH104208A - Surface light emission type semiconductor light emitting element - Google Patents

Surface light emission type semiconductor light emitting element

Info

Publication number
JPH104208A
JPH104208A JP17443496A JP17443496A JPH104208A JP H104208 A JPH104208 A JP H104208A JP 17443496 A JP17443496 A JP 17443496A JP 17443496 A JP17443496 A JP 17443496A JP H104208 A JPH104208 A JP H104208A
Authority
JP
Japan
Prior art keywords
light
metal electrode
emitting device
emitting
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17443496A
Other languages
Japanese (ja)
Inventor
Toshiyuki Takahashi
敏幸 高橋
Koichi Imanaka
行一 今仲
Koji Sano
浩二 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP17443496A priority Critical patent/JPH104208A/en
Publication of JPH104208A publication Critical patent/JPH104208A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Abstract

PROBLEM TO BE SOLVED: To provide a surface emission type semiconductor light emitting element with which the light, going toward the opposite side of the light taking-out surface, can be taken out to outside efficiently. SOLUTION: An n-GaAlAs lower clad layer 4, a p-GaAlAs active layer 3 and a p-GaAlAs layer 2 are epitaxially grown successively on an n-GaAs semiconductor substrate 5. A transparent electrode 8 consisting of ITO(indium/tin oxide) is formed on all over the lower surface of the n-GaAs semiconductor substrate 5 using a sputtering method and a sol-gel method, etc., and an n-side metal electrode 9 consisting of Au or Au/Cu is formed on the lower surface of the transparent electrode 8 by vapor deposition. When a current is allowed to flow between metal electrodes 1 and 9, a light is generated from the active layer 3, and a part of the light is directed to the n-side metal electrode 9 on the opposite side of a light taking-out surface. As the n-side metal electrode 9 has a flat surface, the light which is made incident on the n-side metal electrode 9 is efficiently reflected to a light taking-out region 6. Also, as the semiconductor substrate 5 and the n-side electrode 9 are formed by interposing with the transparent electrode 8, they are not alloyed by annealing. As a result, the reflection surface of the metal electrode 9 can be maintained flat without being roughened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】この発明は面発光型半導体発光素子に関す
る。
TECHNICAL FIELD The present invention relates to a surface emitting semiconductor light emitting device.

【0002】[0002]

【従来技術とその問題点】面発光型の半導体発光素子に
おいては,活性層で発生した光の一部は発光素子の上面
から出射し,他の一部は下面の方向に進む。この下面の
方向に進んだ光を上面方向に反射させるための構造の一
例が図9に示されている。
2. Description of the Related Art In a surface-emitting type semiconductor light-emitting device, part of light generated in an active layer is emitted from the upper surface of the light-emitting device, and the other part travels toward the lower surface. FIG. 9 shows an example of a structure for reflecting light traveling toward the lower surface toward the upper surface.

【0003】n−GaAs半導体基板65上にn−GaA
lAs下部クラッド層64,p−GaAlAs活性層63お
よびp−GaAlAs上部クラッド層62を,たとえば液
相エピタキシャル(LPE)法により順次成長させる。
p−GaAlAs上部クラッド層62の上面には,その中
心部および中心部から放射状にp側金属電極61が形成さ
れている。上部クラッド層62の上面のp側金属電極61を
除く領域が光取り出し領域68である。
An n-GaAs semiconductor substrate 65 has n-GaAs
The GaAs lower cladding layer 64, the p-GaAlAs active layer 63 and the p-GaAlAs upper cladding layer 62 are sequentially grown by, for example, a liquid phase epitaxial (LPE) method.
On the upper surface of the p-GaAlAs upper cladding layer 62, a p-side metal electrode 61 is formed radially from the center and the center. A region other than the p-side metal electrode 61 on the upper surface of the upper cladding layer 62 is a light extraction region 68.

【0004】n−GaAs半導体基板65の下面にはn側
金属電極66が網目状に形成され,n側金属電極66の下方
には一面に銀(Ag)ペースト67が設けられている。p側金
属電極61と上部クラッド層62との界面,およびn側金属
電極66とn−GaAs半導体基板65との界面はアニール
によって合金化し,オーミック接触している。
An n-side metal electrode 66 is formed in a mesh on the lower surface of the n-GaAs semiconductor substrate 65, and a silver (Ag) paste 67 is provided on the entire surface below the n-side metal electrode 66. The interface between the p-side metal electrode 61 and the upper cladding layer 62 and the interface between the n-side metal electrode 66 and the n-GaAs semiconductor substrate 65 are alloyed by annealing and are in ohmic contact.

【0005】p側金属電極61とn側金属電極66との間に
電流を流すと,活性層63が励起され光を発生する。発光
した光のうちのほぼ半分は光取り出し領域68から外部に
出射する。発生した光のうち光取り出し領域68と反対側
へ向う光は,下部クラッド層64および半導体基板65を透
過して,網目状に形成されたn側金属電極66またはその
下面に設けられた銀(Ag) ペースト67に入射する。
When a current flows between the p-side metal electrode 61 and the n-side metal electrode 66, the active layer 63 is excited to generate light. Almost half of the emitted light exits from the light extraction region 68 to the outside. Of the generated light, the light directed to the side opposite to the light extraction region 68 passes through the lower cladding layer 64 and the semiconductor substrate 65, and is formed on the n-side metal electrode 66 formed in a mesh shape or on the silver ( Ag) Injects into the paste 67.

【0006】n側金属電極66と半導体基板65との接合面
がアニールによって粗面化しているので,網目状に形成
されたn側金属電極66に入射する光は光取り出し領域68
に向けて効率よく反射されない。また,銀ペースト67に
入射する光の一部は光取り出し領域68に向けて反射され
る。しかしながら銀ペースト67はその表面の凹凸が大き
いので,効率よく光を反射することができない。
Since the bonding surface between the n-side metal electrode 66 and the semiconductor substrate 65 has been roughened by annealing, light incident on the mesh-shaped n-side metal electrode 66 is not reflected in the light extraction region 68.
It is not reflected efficiently toward. Further, a part of the light incident on the silver paste 67 is reflected toward the light extraction region 68. However, the silver paste 67 has large irregularities on its surface, and therefore cannot reflect light efficiently.

【0007】[0007]

【発明の開示】この発明は,光取り出し領域と反対側へ
向かう光を効率よく反射させる構造をもつ面発光型半導
体発光素子を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a surface-emitting type semiconductor light-emitting device having a structure for efficiently reflecting light traveling toward a side opposite to a light extraction region.

【0008】この発明による面発光型半導体発光素子
は,活性層を含む複数の半導体層が積層されてなる面発
光型半導体発光素子において,最下層の半導体層の下面
に透明導電膜が形成され,上記透明導電膜の下面に金属
電極が設けられ,上記透明導電膜と上記金属電極との境
界面が平坦に形成されていることを特徴とする。
A surface emitting semiconductor light emitting device according to the present invention is a surface emitting semiconductor light emitting device in which a plurality of semiconductor layers including an active layer are laminated, wherein a transparent conductive film is formed on the lower surface of the lowermost semiconductor layer. A metal electrode is provided on a lower surface of the transparent conductive film, and a boundary surface between the transparent conductive film and the metal electrode is formed to be flat.

【0009】この発明によると,発光素子の最下部に位
置する金属電極の活性層に対向する表面が平坦であるの
で,活性層からの光を発光素子の光取り出し面に向けて
効率よく反射することができる。しかも最下層の半導体
層とその下方の金属電極との間には透明導電膜が形成さ
れているので,アニールによって金属電極と半導体層と
が合金化することがない。このため,金属電極の活性層
に対向する表面が粗面化することがなく,平坦な状態を
維持することができる。
According to the present invention, the surface of the metal electrode located at the bottom of the light emitting element facing the active layer is flat, so that light from the active layer is efficiently reflected toward the light extraction surface of the light emitting element. be able to. Moreover, since the transparent conductive film is formed between the lowermost semiconductor layer and the metal electrode thereunder, the metal electrode and the semiconductor layer do not alloy with each other by annealing. For this reason, the surface of the metal electrode facing the active layer is not roughened, and a flat state can be maintained.

【0010】この発明の一実施態様においては,上記透
明導電膜が上記最下層の半導体層の下面の一部に形成さ
れる。活性層からの光および金属電極によって反射され
た光が透明導電膜を通過することによって生じる光の損
失を最小限に押さえることができるので,光取り出し効
率が一層高められる。
In one embodiment of the present invention, the transparent conductive film is formed on a part of the lower surface of the lowermost semiconductor layer. Since the light loss caused by the light from the active layer and the light reflected by the metal electrode passing through the transparent conductive film can be minimized, the light extraction efficiency is further improved.

【0011】この発明の他の実施態様では,結晶成長過
程で用いられる半導体基板が取り除かれる。活性層から
の光および金属電極によって反射された光が半導体基板
に吸収されることがなくなるので,光取り出し効率はさ
らに向上する。好ましくは,最下層の半導体層の透明導
電膜との接合部分に最下層の半導体層と同じ導電型の不
純物をドープする。最下層の半導体層と透明導電膜との
間の接触抵抗の増加を防ぐことができるので,発光素子
の発光効率を維持することができる。
In another embodiment of the present invention, the semiconductor substrate used in the crystal growth process is removed. Since the light from the active layer and the light reflected by the metal electrode are not absorbed by the semiconductor substrate, the light extraction efficiency is further improved. Preferably, an impurity of the same conductivity type as that of the lowermost semiconductor layer is doped into a junction between the lowermost semiconductor layer and the transparent conductive film. Since the contact resistance between the lowermost semiconductor layer and the transparent conductive film can be prevented from increasing, the luminous efficiency of the light emitting element can be maintained.

【0012】この発明のさらに他の実施態様において
は,上記活性層と発光素子の光取り出し面との間に電流
狭搾構造が設けられる。光取り出し面の真下に電流が集
中して流れるので,活性層が効率よく発光する。この電
流狭搾構造は,イオン注入法,拡散法またはその他の方
法によって作ることができる。
In still another embodiment of the present invention, a current constriction structure is provided between the active layer and the light extraction surface of the light emitting device. Since the current flows intensively just below the light extraction surface, the active layer emits light efficiently. The current constriction structure can be made by ion implantation, diffusion or other methods.

【0013】この発明の面発光型半導体発光素子は微小
発光径とすることが可能で,光取り出し効率の向上に伴
い光出力も大きくすることができるので,投光器,光学
検知装置,その他の光学機器に用いることによって,光
学性能の良好な各種光学装置を製作することができる。
The surface-emitting type semiconductor light-emitting device of the present invention can have a small light-emitting diameter, and the light output can be increased with the improvement of the light extraction efficiency. , Various optical devices having good optical performance can be manufactured.

【0014】[0014]

【実施例】【Example】

第1実施例 図1は,第1実施例による面発光型半導体発光素子を示
している。図1に示す面発光型半導体発光素子の構造
は,その製造工程を説明することによって明らかになる
ので,この面発光型半導体発光素子の製造工程について
説明する。
First Embodiment FIG. 1 shows a surface emitting semiconductor light emitting device according to a first embodiment. The structure of the surface-emitting type semiconductor light-emitting device shown in FIG. 1 will be clarified by describing its manufacturing process. Therefore, the manufacturing process of this surface-emitting type semiconductor light-emitting device will be described.

【0015】まず,LPE法(Liquid Phase Epitaxy:
液相成長法)などを用いることによって,n−GaAs
半導体基板5上に,n−GaAlAs下部クラッド層
4,p−GaAlAs活性層3およびp−GaAlAs
上部クラッド層2を順に成長させ,積層させる。
First, the LPE method (Liquid Phase Epitaxy:
By using liquid phase growth method) or the like, n-GaAs
On a semiconductor substrate 5, an n-GaAlAs lower cladding layer 4, a p-GaAlAs active layer 3, and a p-GaAlAs
The upper cladding layer 2 is grown and laminated in order.

【0016】次にp−GaAlAs上部クラッド層2の
上面の光取り出し領域6を形成すべき部分にAZレジス
ト(図示略)によるマスクを形成する。このマスクの上
面およびp−GaAlAs上部クラッド層2の上面の全
体に,たとえばCr/Auからなるp側金属電極1とな
るべき金属膜を蒸着する。
Next, a mask made of an AZ resist (not shown) is formed on a portion of the upper surface of the p-GaAlAs upper cladding layer 2 where the light extraction region 6 is to be formed. A metal film to be the p-side metal electrode 1 made of, for example, Cr / Au is deposited on the entire upper surface of the mask and the upper surface of the p-GaAlAs upper cladding layer 2.

【0017】その後,AZレジストをその上に蒸着され
た金属膜と一緒に取り除く。これにより,上部クラッド
層2の上面にp側金属電極1と光取り出し領域6とが形
成される。p側金属電極1は,電流を活性層3の全体に
広げて流すために,上部クラッド層2の上面の中心部分
と,その中心から4つの頂点に向けてのびるように形成
されている。
Thereafter, the AZ resist is removed together with the metal film deposited thereon. As a result, the p-side metal electrode 1 and the light extraction region 6 are formed on the upper surface of the upper cladding layer 2. The p-side metal electrode 1 is formed to extend from the center to four vertices from the center of the upper surface of the upper cladding layer 2 in order to spread and flow the current throughout the active layer 3.

【0018】次に半導体基板5の下面の全面に透明電極
8を,スパッタ法,ゾルゲル法などを用いて形成する。
透明電極8の材料にはITO(インジウム・スズ酸化
物)などの透明導電膜が用いられる。ITOは光の透過
率が90%以上であり,かつ電気的導電性も良好な材料で
ある。必要ならば,半導体基板5の下面を研磨し,その
後,透明電極8を形成する。透明電極8の厚さは薄いの
で(たとえば1000オングストロームから2000オングスト
ローム程度),半導体基板5の下面を平坦にしておけ
ば,n側金属電極9の透明電極8との接合面(この面を
反射面という)は平坦になる。
Next, a transparent electrode 8 is formed on the entire lower surface of the semiconductor substrate 5 by using a sputtering method, a sol-gel method or the like.
As a material of the transparent electrode 8, a transparent conductive film such as ITO (indium tin oxide) is used. ITO is a material having a light transmittance of 90% or more and good electrical conductivity. If necessary, the lower surface of the semiconductor substrate 5 is polished, and then the transparent electrode 8 is formed. Since the thickness of the transparent electrode 8 is thin (for example, about 1000 Å to 2000 Å), if the lower surface of the semiconductor substrate 5 is flat, the bonding surface of the n-side metal electrode 9 with the transparent electrode 8 (this surface is referred to as a reflecting surface) Is flattened.

【0019】さらに,透明電極8の下面の全面にAuま
たはAu/Cuからなるn側電極9を蒸着法またはスパ
ッタ法により形成する。平坦な反射面をもつAuまたは
Au/Cuは入射する光の95%以上を反射する。
Further, an n-side electrode 9 made of Au or Au / Cu is formed on the entire lower surface of the transparent electrode 8 by vapor deposition or sputtering. Au or Au / Cu having a flat reflecting surface reflects 95% or more of incident light.

【0020】p側金属電極1およびn側金属電極9の形
成後,たとえば赤外線ランプ(ハロゲン・ランプ,Xe
ランプ)によるアニールを行なう。アニールによってp
側金属電極1と上部クラッド層2とはその境界面で合金
化し,オーミック接触する。一方,半導体基板5とn側
電極9とはその間に透明電極8を挟んで形成されている
ので,アニールによって合金化しない。このため,金属
電極9の反射面は粗面化せず平坦な状態を保つ。
After the formation of the p-side metal electrode 1 and the n-side metal electrode 9, for example, an infrared lamp (halogen lamp, Xe
Lamp). By annealing
The side metal electrode 1 and the upper clad layer 2 are alloyed at the interface between them and make ohmic contact. On the other hand, since the semiconductor substrate 5 and the n-side electrode 9 are formed with the transparent electrode 8 interposed therebetween, they are not alloyed by annealing. For this reason, the reflection surface of the metal electrode 9 is kept flat without being roughened.

【0021】半導体基板5と透明電極8との界面,およ
び透明電極8とn側電極9との界面はどちらも合金化さ
れないが,これらの界面において面発光型半導体発光素
子の動作に悪影響があるまでの電圧降下が生じることは
ない。
Neither the interface between the semiconductor substrate 5 and the transparent electrode 8 nor the interface between the transparent electrode 8 and the n-side electrode 9 are alloyed, but these interfaces adversely affect the operation of the surface-emitting type semiconductor light emitting device. No voltage drop occurs.

【0022】p側金属電極1とn側金属電極9との間に
電流を流すと,活性層3が励起され,光を発生する。活
性層3で発生した光の一部は上部クラッド層2を通って
上面の光取り出し領域6から外部に出射する。活性層3
で発生した光の他の一部は下部クラッド層4,半導体基
板5および透明電極8を通ってn側金属電極9の反射面
に入射し,この反射面で光取り出し領域6へ向けて反射
される。透明電極8が90%以上の光の透過率をもち,n
側金属電極9が入射光の95%以上を反射するため,活性
層3から上記反射面に向かう光はその75%以上(90%×
95%×90%=76.95%)が反射され,光取り出し領域6
から外部に出射される。
When a current flows between the p-side metal electrode 1 and the n-side metal electrode 9, the active layer 3 is excited to generate light. Part of the light generated in the active layer 3 passes through the upper cladding layer 2 and exits from the light extraction region 6 on the upper surface. Active layer 3
Another part of the light generated in step (a) passes through the lower cladding layer 4, the semiconductor substrate 5, and the transparent electrode 8 and is incident on the reflection surface of the n-side metal electrode 9, and is reflected toward the light extraction region 6 by this reflection surface. You. The transparent electrode 8 has a light transmittance of 90% or more, and n
Since the side metal electrode 9 reflects 95% or more of the incident light, the light traveling from the active layer 3 to the reflection surface is 75% or more (90% ×
95% × 90% = 76.95%) is reflected, and the light extraction area 6
Is emitted to the outside.

【0023】第2実施例 図2は,第2実施例による面発光型半導体発光素子を示
している。この面発光型半導体発光素子は,図1に示す
面発光型半導体発光素子と光取り出し領域の形状が異な
っている点を除いて全く同じ構造をもつ。
Second Embodiment FIG. 2 shows a surface emitting semiconductor light emitting device according to a second embodiment. This surface-emitting type semiconductor light-emitting device has exactly the same structure as the surface-emitting type semiconductor light-emitting device shown in FIG. 1 except that the shape of the light extraction region is different.

【0024】第2実施例の面発光型半導体発光素子にお
いては,p−GaAlAs上部クラッド層2の上面がそ
の中心部分を除いてp側金属電極1で覆われている。中
心部分が円形の小さな光取り出し領域6であり,点発光
の光を出射する。光取り出し領域6は必ずしも上部クラ
ッド層2の上面の中心に位置する必要はなく,また円形
以外であってもよい。
In the surface-emitting type semiconductor light-emitting device of the second embodiment, the upper surface of the p-GaAlAs upper cladding layer 2 is covered with the p-side metal electrode 1 except for its central portion. The central portion is a small circular light extraction region 6, which emits point-emitted light. The light extraction region 6 does not necessarily need to be located at the center of the upper surface of the upper cladding layer 2 and may be other than circular.

【0025】活性層3で発生する光のうち,光取り出し
領域6と反対側へ向かう光は表面の平坦なn側金属電極
9によって効率よく反射されるので,第1実施例のもの
と同じように光取り出し効率が高められている。また光
取り出し領域6を小さな形状にすることによって光取り
出し領域から外部に出射される光の発光径を小さくする
ことができる。以下に示す第3実施例から第5実施例の
面発光型半導体発光素子においても点発光型の光取り出
し領域とすることができる。
Of the light generated in the active layer 3, the light traveling toward the side opposite to the light extraction region 6 is efficiently reflected by the n-side metal electrode 9 having a flat surface, so that it is the same as that of the first embodiment. The light extraction efficiency has been improved. Further, by making the light extraction region 6 small, the emission diameter of light emitted from the light extraction region to the outside can be reduced. In the surface emitting type semiconductor light emitting devices of the following third to fifth embodiments, point emission type light extraction regions can be used.

【0026】第3実施例 図3は面発光型半導体素子の第3実施例を示すものであ
る。図1に示す面発光型半導体発光素子とは透明電極お
よびn側金属電極の形状が異なっている。他の構造は図
1に示すものと同じである。
Third Embodiment FIG. 3 shows a third embodiment of the surface-emitting type semiconductor device. The shapes of the transparent electrode and the n-side metal electrode are different from those of the surface emitting semiconductor light emitting device shown in FIG. Other structures are the same as those shown in FIG.

【0027】n−GaAs半導体基板5の下面の全面に
透明電極を形成した後,この透明電極をフォトリソグラ
フィ工程やフッ酸過水等を用いたエッチングによって網
目状に形成する(網目状の透明電極を符号8Aで示
す)。
After a transparent electrode is formed on the entire lower surface of the n-GaAs semiconductor substrate 5, the transparent electrode is formed in a mesh by a photolithography process or etching using hydrofluoric acid or the like (a mesh-shaped transparent electrode). Is denoted by reference numeral 8A).

【0028】p側金属電極1および網目状の透明電極8
Aを形成した後,アニールを施し,p側金属電極1と上
部クラッド層2とをオーミック接触させる。その後,透
明電極8Aの下面からAuまたはAu/Cuからなるn
側金属電極9を蒸着する。n側金属電極9は透明電極8
Aの下面と,n−GaAs半導体基板5の下面の透明電
極8Aが形成されていない部分とに接触する。n側金属
電極9を形成した後にはアニールを行わない。
P-side metal electrode 1 and mesh-shaped transparent electrode 8
After the formation of A, annealing is performed to bring the p-side metal electrode 1 and the upper cladding layer 2 into ohmic contact. After that, from the lower surface of the transparent electrode 8A, n made of Au or Au / Cu
The side metal electrode 9 is deposited. The n-side metal electrode 9 is a transparent electrode 8
A and the lower surface of the n-GaAs semiconductor substrate 5 where the transparent electrode 8A is not formed. After forming the n-side metal electrode 9, annealing is not performed.

【0029】発光層3から光取り出し領域6と反対側へ
向かう光は,下部クラッド層4およびn−GaAs半導
体基板5を通って直接に,またはその後網目状に形成さ
れた透明電極8Aを透過してn側金属電極9の反射面に
入射する。透明電極を網目状に形成することによって,
光が透明電極を通過することによって生じる光損失を最
小限に抑えることができるので,光取り出し領域6から
出射される光の取り出し効率をさらに高めることができ
る。励起電流は透明電極8Aを通って流れるので,発光
に必要な電流を確保することができる。
Light traveling from the light emitting layer 3 to the side opposite to the light extraction region 6 passes directly through the lower cladding layer 4 and the n-GaAs semiconductor substrate 5 or thereafter passes through the mesh-shaped transparent electrode 8A. Incident on the reflection surface of the n-side metal electrode 9. By forming the transparent electrodes in a mesh,
Since light loss caused by light passing through the transparent electrode can be minimized, the light extraction efficiency of light emitted from the light extraction region 6 can be further increased. Since the excitation current flows through the transparent electrode 8A, a current necessary for light emission can be secured.

【0030】第4実施例 図4は第4実施例による面発光型半導体発光素子を模式
的に示す断面図である。
Fourth Embodiment FIG. 4 is a sectional view schematically showing a surface emitting semiconductor light emitting device according to a fourth embodiment.

【0031】この面発光型半導体発光素子の半導体層
は,LPE法などを用いることによって,n−GaAs
半導体基板の上に,n−GaAlAs下部クラッド層
4,p−GaAlAs活性層3およびp−GaAlAs
上部クラッド層2を順次エピタキシャル成長させ,その
後,エッチング等によりn−GaAs半導体基板を取り
除くことによって形成されている。
The semiconductor layer of this surface-emitting type semiconductor light-emitting device is made of n-GaAs by using the LPE method or the like.
On a semiconductor substrate, an n-GaAlAs lower cladding layer 4, a p-GaAlAs active layer 3, and a p-GaAlAs
The upper cladding layer 2 is formed by sequentially epitaxially growing the substrate and then removing the n-GaAs semiconductor substrate by etching or the like.

【0032】結晶成長過程において用いられる半導体基
板,たとえば上記のn−GaAs半導体基板は,短波長
の光を若干吸収する性質をもつ。活性層3から光取り出
し領域6と反対側へ放射された光は,金属電極によって
反射された後,光取り出し窓6から外部に出射されるま
でに半導体基板を2回通過する。半導体基板を発光素子
から取り除くことによって,この半導体基板の光吸収に
より生じる光損失を無くし,光取り出し効率をさらに高
めることができる。
A semiconductor substrate used in the crystal growth process, for example, the above-mentioned n-GaAs semiconductor substrate has a property of slightly absorbing short-wavelength light. The light radiated from the active layer 3 to the side opposite to the light extraction region 6 passes through the semiconductor substrate twice before being reflected from the metal electrode and then emitted to the outside through the light extraction window 6. By removing the semiconductor substrate from the light emitting element, light loss caused by light absorption of the semiconductor substrate can be eliminated, and the light extraction efficiency can be further increased.

【0033】上部クラッド層2の上面には図1に示すも
のと同じ形状のp側金属電極1が形成され,その周囲が
光取り出し領域6となっている。下部クラッド層4の下
面には,透明電極8およびn側金属電極9が形成されて
いる。さらに上部クラッド層4の透明電極8との接合部
分(符号10で示す)には,イオン注入法または拡散法等
によって下部クラッド層4と同じ導電型をもつ不純物が
ドープされている。この実施例の場合,下部クラッド層
4の導電型がn型であるので,不純物にはn型のもの,
たとえばZn等が用いられる。
A p-side metal electrode 1 having the same shape as that shown in FIG. 1 is formed on the upper surface of the upper cladding layer 2, and the periphery thereof is a light extraction region 6. On the lower surface of the lower cladding layer 4, a transparent electrode 8 and an n-side metal electrode 9 are formed. Further, an impurity having the same conductivity type as that of the lower clad layer 4 is doped into a portion (indicated by reference numeral 10) of the upper clad layer 4 which is joined to the transparent electrode 8 by an ion implantation method or a diffusion method. In this embodiment, since the conductivity type of the lower cladding layer 4 is n-type, the impurity is n-type,
For example, Zn or the like is used.

【0034】透明電極8,たとえばITOと,n−Ga
AlAs下部クラッド層4とはこれらの界面における接
触抵抗が高い。このため電流が半導体層中を流れにくく
なってしまう。そこで下部クラッド層4の透明電極8と
の接合部分10に下部クラッド層4の導電型と同じ導電型
の不純物をドープすることによって,接合部分10の接触
抵抗を減少させ,これにより充分な励起電流を流すこと
ができる。
A transparent electrode 8, for example, ITO and n-Ga
The contact resistance with the AlAs lower cladding layer 4 at these interfaces is high. This makes it difficult for the current to flow through the semiconductor layer. Therefore, by doping the junction 10 of the lower cladding layer 4 with the transparent electrode 8 with an impurity having the same conductivity type as that of the lower cladding layer 4, the contact resistance of the junction 10 is reduced, thereby providing a sufficient excitation current. Can flow.

【0035】第5実施例 図5は第5実施例による面発光型半導体発光素子を模式
的に示す断面図を示している。図1に示すものと同一物
には同一符号を付し重複説明を省略する。
Fifth Embodiment FIG. 5 is a sectional view schematically showing a surface emitting semiconductor light emitting device according to a fifth embodiment. The same components as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted.

【0036】p側金属電極1の下方に位置する上部クラ
ッド層2の部分11には,不純物がイオン注入または拡散
法によってドープされている。ドープされる不純物に
は,上部クラッド層2の導電型と異なる導電型をもつ不
純物,または質量の軽いH+ イオンが用いられる。不純
物がドープされた部分11の下面と上部クラッド層4との
間に逆バイアスのpn接合が形成されるので,この部分
には電流が流れない。
The portion 11 of the upper cladding layer 2 located below the p-side metal electrode 1 is doped with an impurity by ion implantation or diffusion. As the impurity to be doped, an impurity having a conductivity type different from the conductivity type of the upper cladding layer 2 or a light H + ion is used. Since a reverse-biased pn junction is formed between the lower surface of the impurity-doped portion 11 and the upper cladding layer 4, no current flows in this portion.

【0037】p側金属電極1とn側金属電極9との間に
電流を流すと,電流は上部クラッド層2にドープされた
不純物を避けるようにして光取り出し領域6の下方に位
置する活性層3の部分に集中して流れ込む。この電流狭
窄構造により光取り出し領域6に対応する活性層3の部
分でのみ発光し,高出力の光が外部に出射される。
When a current flows between the p-side metal electrode 1 and the n-side metal electrode 9, the current is applied to the active layer located below the light extraction region 6 so as to avoid impurities doped in the upper cladding layer 2. Concentrate on part 3 and flow. Due to this current confinement structure, light is emitted only in the portion of the active layer 3 corresponding to the light extraction region 6, and high-output light is emitted to the outside.

【0038】応用例 上述した種々の構造をもつ面発光型半導体発光素子は,
光取り出し効率が高く,高出力の光を出射することがで
きる。さらに点発光型の光取り出し領域を採用すること
によって発光径を小さくすることができるので,多くの
光学機器,光検出装置,光情報処理装置等に応用するこ
とができる。
APPLICATION EXAMPLES The surface-emitting type semiconductor light-emitting devices having the various structures described above are:
Light extraction efficiency is high, and high-output light can be emitted. Furthermore, since the light emission diameter can be reduced by adopting a point emission type light extraction region, it can be applied to many optical devices, light detection devices, optical information processing devices and the like.

【0039】図6は,面発光型半導体発光素子を用いた
投光器を示している。
FIG. 6 shows a projector using a surface-emitting type semiconductor light emitting device.

【0040】面発光型半導体発光素子20はリードフレー
ム22の取付片に固定されている。発光素子20のn側金属
電極がリードフレーム22に電気的に接続されている。発
光素子20のp側金属電極は別のリードフレーム23にワイ
ヤによって電気的に接続されている。半導体発光素子2
0,リードフレーム22の取付片,リードフレーム23の上
部およびワイヤはモールド樹脂24内に封止されている。
モールド樹脂24の前面にはフレネル・レンズ21が形成さ
れ,このフレネル・レンズ21によって半導体発光素子20
の出射光が集光される,またはコリメートされる。
The surface-emitting type semiconductor light-emitting device 20 is fixed to a mounting piece of the lead frame 22. The n-side metal electrode of the light emitting element 20 is electrically connected to the lead frame 22. The p-side metal electrode of the light emitting element 20 is electrically connected to another lead frame 23 by a wire. Semiconductor light-emitting element 2
0, the mounting piece of the lead frame 22, the upper part of the lead frame 23 and the wires are sealed in the mold resin 24.
A Fresnel lens 21 is formed on the front surface of the mold resin 24. The Fresnel lens 21 allows the semiconductor light emitting element 20 to be formed.
Outgoing light is collected or collimated.

【0041】モールド樹脂24のフレネル・レンズ21が形
成されている前面の両側部分には,突部24a が設けられ
ている。突部24a は,フレネル・レンズ21を保護するた
めのものであり,フレネル・レンズ21の円環状突部と同
じ高さまたはそれよりも少し突出するように形成されて
いる。
On both sides of the front surface of the mold resin 24 where the Fresnel lens 21 is formed, projections 24a are provided. The protrusion 24a is for protecting the Fresnel lens 21 and is formed to have the same height as the annular protrusion of the Fresnel lens 21 or to protrude slightly therefrom.

【0042】面発光型半導体発光素子は光取り出し効率
が高いので,高い出力の光を出射することができる。こ
のため半導体発光素子を用いた投光器も同様に,高出力
の光を出射する。
Since the surface-emitting type semiconductor light-emitting device has a high light extraction efficiency, it can emit a high output light. For this reason, a projector using a semiconductor light emitting element similarly emits high output light.

【0043】図7は,面発光型半導体発光素子を備えた
光学式距離センサの概略図を示している。
FIG. 7 is a schematic view of an optical distance sensor provided with a surface-emitting type semiconductor light emitting device.

【0044】この光学式距離センサは,面発光型半導体
発光素子30およびコリメートレンズ31からなる投光部
と,受光側レンズ32および位置検出素子33からなる受光
部とから構成されている。投光部と受光部はケース35内
に収められている。投光部からの投射光はケース35にあ
けられた出射窓36から被測定物bに向けて投射される。
被測定物bからの反射光はケース35にあけられた受光窓
37から受光部の位置検出素子33に入射する。
This optical distance sensor is composed of a light projecting section comprising a surface emitting semiconductor light emitting element 30 and a collimating lens 31, and a light receiving section comprising a light receiving lens 32 and a position detecting element 33. The light emitting unit and the light receiving unit are housed in a case 35. The projection light from the light projecting unit is projected from the exit window 36 opened in the case 35 toward the object b.
The reflected light from the object b is received by the light receiving window opened in the case 35.
From 37, the light enters the position detection element 33 of the light receiving section.

【0045】ケース35から被測定物までの距離または被
測定物bの変位量は三角測量の原理を用いて測定され
る。すなわち,被測定物bからの反射光が位置検出素子
33に入射する位置が被測定物bの位置に応じて変化する
ので,位置検出素子33の出力信号に基づいて距離または
変位量が算出される。
The distance from the case 35 to the measured object or the displacement of the measured object b is measured using the principle of triangulation. That is, the reflected light from the object b is
Since the position of incidence on the target 33 changes according to the position of the object b, the distance or the amount of displacement is calculated based on the output signal of the position detection element 33.

【0046】面発光型半導体発光素子は,発光径の小さ
い,高出力の光を出射する。被測定物bに投射されるビ
ームスポットの径が小さくなることにより分解能が向上
し,精度のよい距離検出を行うことができる。また高い
出力の光が出射されるので,長い距離にわたる検出を行
うことが可能となる。
The surface-emitting type semiconductor light-emitting device emits high-output light having a small emission diameter. Since the diameter of the beam spot projected on the object to be measured b is reduced, the resolution is improved, and accurate distance detection can be performed. In addition, since high output light is emitted, detection over a long distance can be performed.

【0047】図8は,面発光型半導体発光素子を備えた
フォトカプラを示している。(A) はケースの一部を欠除
して示す斜視図,(B) はケースの水平断面図である。
FIG. 8 shows a photocoupler having a surface emitting semiconductor light emitting device. (A) is a perspective view showing the case with a part of the case removed, and (B) is a horizontal sectional view of the case.

【0048】面発光型半導体発光素子40はリードフレー
ム42の取付片にダイボンディングされている。発光素子
40のn側金属電極がリードフレーム42に電気的に接続さ
れている。発光素子40のp側金属電極は別のリードフレ
ーム41とワイヤによって電気的に接続されている。フォ
ト・ダイオード48はリードフレーム43の取付片にダイボ
ンディングされている。フォト・ダイオード48の下面電
極がリードフレーム43に電気的に接続されている。フォ
ト・ダイオード48の上面電極は別のリードフレーム44と
ワイヤによって電気的に接続されている。面発光型半導
体発光素子40,フォト・ダイオード48,リードフレーム
42および43の取付片,リードフレーム41および44の上部
ならびにワイヤはケース45内に封止されている。リード
フレーム41,42,43および44の下端部がケース45の外部
に出ている。
The surface-emitting type semiconductor light-emitting device 40 is die-bonded to a mounting piece of a lead frame 42. Light emitting element
Forty n-side metal electrodes are electrically connected to the lead frame 42. The p-side metal electrode of the light emitting element 40 is electrically connected to another lead frame 41 by a wire. The photodiode 48 is die-bonded to the mounting piece of the lead frame 43. The lower surface electrode of the photodiode 48 is electrically connected to the lead frame 43. The upper electrode of the photodiode 48 is electrically connected to another lead frame 44 by a wire. Surface emitting semiconductor light emitting device 40, photodiode 48, lead frame
The mounting pieces 42 and 43, the upper parts of the lead frames 41 and 44, and the wires are sealed in a case 45. The lower ends of the lead frames 41, 42, 43 and 44 are out of the case 45.

【0049】ケース45は楕円球状に形成され,その内面
には反射膜46が形成されている。好ましくは,ケース45
の材料には透明エポキシ樹脂が用いられる。面発光型半
導体発光素子40とフォト・ダイオード48とは,ケース45
によって形成された楕円の焦点位置にそれぞれ配置され
ている。
The case 45 is formed in an elliptical spherical shape, and a reflection film 46 is formed on the inner surface thereof. Preferably, case 45
A transparent epoxy resin is used as a material for the above. The surface-emitting type semiconductor light-emitting device 40 and the photo diode 48 are
Are arranged at the focal position of the ellipse formed by the above.

【0050】リードフレーム41および42に与えられる電
気信号によって面発光型半導体発光素子40が駆動され,
面発光型半導体発光素子40が発光する。面発光型半導体
発光素子40から出射された光は,ケース45の内面の反射
膜46によって反射される。その反射光はフォト・ダイオ
ード48の受光面に入射する。フォト・ダイオード48は,
光信号を再び電気信号に変換し,リードフレーム43およ
び44を通して外部に出力する。
The surface-emitting type semiconductor light-emitting device 40 is driven by electric signals applied to the lead frames 41 and 42,
The surface-emitting type semiconductor light emitting element 40 emits light. Light emitted from the surface-emitting type semiconductor light-emitting element 40 is reflected by the reflective film 46 on the inner surface of the case 45. The reflected light enters the light receiving surface of the photodiode 48. The photodiode 48
The optical signal is converted into an electric signal again and output to the outside through the lead frames 43 and 44.

【0051】このように面発光型半導体発光素子40に入
力された電気信号は,光信号に変換されたのち,再び電
気信号に変換され外部に出力されるので,入力信号と出
力信号は電気的に絶縁される。このようなフォトカプラ
は高圧回路の制御等に用いられる。
The electric signal input to the surface-emitting type semiconductor light-emitting device 40 is converted into an optical signal, converted into an electric signal again, and output to the outside, so that the input signal and the output signal are electrically connected. Insulated. Such a photocoupler is used for controlling a high-voltage circuit and the like.

【0052】フォトカプラにおいて,発光素子とフォト
・ダイオードとの光結合効率は発光素子の発光径と光強
度に強く依存している。面発光型半導体発光素子は,上
述したように,発光径を小さくすることができ,高出力
の光を出射することができるので,高い結合効率を得る
ことができる。
In the photocoupler, the light coupling efficiency between the light emitting element and the photodiode is strongly dependent on the light emitting diameter and light intensity of the light emitting element. As described above, the surface-emitting type semiconductor light-emitting element can reduce the emission diameter and emit high-output light, so that high coupling efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例を示すもので,面発光型半導体発光
素子の構造を模式的に示す斜視図である。
FIG. 1 is a perspective view schematically showing a structure of a surface emitting semiconductor light emitting device according to a first embodiment.

【図2】第2実施例を示すもので,面発光型半導体発光
素子の構造を模式的に示す斜視図である。
FIG. 2 is a perspective view schematically showing a structure of a surface-emitting type semiconductor light-emitting device according to a second embodiment.

【図3】第3実施例を示すもので,面発光型半導体発光
素子の構造を模式的に示す一部断面斜視図である。
FIG. 3 is a partial cross-sectional perspective view schematically illustrating a structure of a surface-emitting type semiconductor light emitting device according to a third embodiment.

【図4】第4実施例を示すもので,面発光型半導体発光
素子の構造を模式的に示す断面図である。
FIG. 4 is a cross-sectional view schematically illustrating a structure of a surface-emitting type semiconductor light emitting device according to a fourth embodiment.

【図5】第5実施例を示すもので,面発光型半導体発光
素子の構造を模式的に示す断面図である。
FIG. 5 is a cross-sectional view schematically illustrating a structure of a surface-emitting type semiconductor light emitting device according to a fifth embodiment.

【図6】応用例を示し,投光器の構成を示す斜視図であ
る。
FIG. 6 is a perspective view showing an application example and showing a configuration of a light projector.

【図7】応用例を示し,光学式距離センサの構成を示
す。
FIG. 7 shows an application example and shows a configuration of an optical distance sensor.

【図8】応用例を示し,フォトカプラの構成を示すもの
で,(A) は一部切り抜き斜視図,(B) は水平断面図であ
る。
8A and 8B show an application example and a configuration of a photocoupler, wherein FIG. 8A is a partially cutaway perspective view, and FIG. 8B is a horizontal sectional view.

【図9】従来の面発光型半導体発光素子の構造を模式的
に示す一部断面斜視図である。
FIG. 9 is a partially sectional perspective view schematically showing the structure of a conventional surface-emitting type semiconductor light-emitting device.

【符号の説明】[Explanation of symbols]

1 p側金属電極 2 p−GaAlAs上部クラッド層 3 p−GaAlAs活性層 4 n−GaAlAs下部クラッド層 5 n−GaAs半導体基板 6 光取り出し領域 8 透明電極 9 n側金属電極 20,30,40 面発光型半導体発光素子 REFERENCE SIGNS LIST 1 p-side metal electrode 2 p-GaAlAs upper cladding layer 3 p-GaAlAs active layer 4 n-GaAlAs lower cladding layer 5 n-GaAs semiconductor substrate 6 light extraction region 8 transparent electrode 9 n-side metal electrode 20, 30, 40 surface emission Type semiconductor light emitting device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 活性層を含む複数の半導体層が積層され
てなる面発光型半導体発光素子において,最下層の半導
体層の下面に透明導電膜が形成され,上記透明導電膜の
下面に金属電極が設けられ,上記透明導電膜と上記金属
電極との境界面が平坦に形成されていることを特徴とす
る,面発光型半導体発光素子。
In a surface-emitting type semiconductor light emitting device comprising a plurality of semiconductor layers including an active layer, a transparent conductive film is formed on a lower surface of a lowermost semiconductor layer, and a metal electrode is formed on a lower surface of the transparent conductive film. And a boundary surface between the transparent conductive film and the metal electrode is formed to be flat.
【請求項2】 上記透明導電膜が上記最下層の半導体層
の下面の一部に形成されている,請求項1に記載の面発
光型半導体発光素子。
2. The surface emitting semiconductor light emitting device according to claim 1, wherein said transparent conductive film is formed on a part of the lower surface of said lowermost semiconductor layer.
【請求項3】 上記最下層の半導体層が結晶成長過程で
用いられる半導体基板を取り除くことによって最下層と
なったものである,請求項1または2に記載の面発光型
半導体発光素子。
3. The surface-emitting type semiconductor light-emitting device according to claim 1, wherein the lowermost semiconductor layer is a lowermost layer by removing a semiconductor substrate used in a crystal growth process.
【請求項4】 上記最下層の半導体層の少なくとも上記
透明導電膜との接合部分に上記最下層の半導体層と同じ
導電型の不純物がドープされている,請求項1から3の
いずれか一項に記載の面発光型半導体発光素子。
4. The semiconductor device according to claim 1, wherein at least a junction of the lowermost semiconductor layer with the transparent conductive film is doped with an impurity having the same conductivity type as that of the lowermost semiconductor layer. 4. The surface-emitting type semiconductor light-emitting device according to item 1.
【請求項5】 上記活性層と発光素子の光取り出し面と
の間に電流狭搾構造が設けられている,請求項1から4
のいずれか一項に記載の面発光型半導体発光素子。
5. A current constriction structure is provided between the active layer and a light extraction surface of a light emitting device.
The surface-emitting type semiconductor light-emitting device according to any one of the above.
【請求項6】 請求項1から5のいずれか一項に記載の
面発光型半導体発光素子を投光部に用いた光学機器。
6. An optical apparatus using the surface-emitting type semiconductor light-emitting device according to claim 1 in a light projecting unit.
JP17443496A 1996-06-14 1996-06-14 Surface light emission type semiconductor light emitting element Pending JPH104208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17443496A JPH104208A (en) 1996-06-14 1996-06-14 Surface light emission type semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17443496A JPH104208A (en) 1996-06-14 1996-06-14 Surface light emission type semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPH104208A true JPH104208A (en) 1998-01-06

Family

ID=15978468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17443496A Pending JPH104208A (en) 1996-06-14 1996-06-14 Surface light emission type semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH104208A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064475A (en) * 2003-07-25 2005-03-10 Sharp Corp Nitride-based compound semiconductor light-emitting element and manufacturing method thereof
US7291865B2 (en) 2004-09-29 2007-11-06 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device
JP2011526733A (en) * 2008-03-31 2011-10-13 ブリッジラックス インコーポレイテッド Light emitting diode with a reflective electrode having a smooth surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064475A (en) * 2003-07-25 2005-03-10 Sharp Corp Nitride-based compound semiconductor light-emitting element and manufacturing method thereof
US7291865B2 (en) 2004-09-29 2007-11-06 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device
JP2011526733A (en) * 2008-03-31 2011-10-13 ブリッジラックス インコーポレイテッド Light emitting diode with a reflective electrode having a smooth surface
US8691606B2 (en) 2008-03-31 2014-04-08 Toshiba Techno Center Inc. Method for manufacturing a light emitting diode with smooth surface for reflective electrode
US9437776B2 (en) 2008-03-31 2016-09-06 Toshiba Corporation Method for manufacturing light emitting diodes with smooth surface for reflective electrode

Similar Documents

Publication Publication Date Title
US9166110B2 (en) Light-emitting diode and method of manufacturing the same
US7355212B2 (en) Light emitting element
US7763898B2 (en) Light emitting device having high optical output efficiency
JP2000164938A (en) Light emitting device and method of packaging light- emitting element
US20050035355A1 (en) Semiconductor light emitting diode and semiconductor light emitting device
JP2003086838A (en) Light emitting device
US8175128B2 (en) Semiconductor laser element and semiconductor laser device
JP6208051B2 (en) Point light source light emitting diode
JP2786375B2 (en) Light emitting diode
JP2947155B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH104208A (en) Surface light emission type semiconductor light emitting element
JPH11261111A (en) Light-emitting device equipped with monitoring mechanism
JPH07131066A (en) Light emitting diode
JPH06302853A (en) Semiconductor light-emitting element
US20100237358A1 (en) Light-emitting device and light-emitting module
JPH11261110A (en) Light-emitting device and upper face electrode connecting member used therefor
JP5411441B2 (en) Light emitting device
JPH09326507A (en) Surface light emitting semiconductor element and manufacture thereof
JP2009238845A (en) Light-emitting module and method of manufacturing the same
JP2981361B2 (en) Photo coupler
JPH0738153A (en) Semiconductor light emitting element, optical fiber module device, and semiconductor light emitting element display equipment
JPH07131070A (en) Semiconductor light emitting element and semiconductor light emitting element array
JP5304540B2 (en) Light emitting device and projector
JP2004015013A (en) Semiconductor light emitting device and manufacturing method therefor
JPH0697583A (en) Semiconductor laser element and semiconductor laser device