JPH1041279A - Method and device for plasma etching - Google Patents

Method and device for plasma etching

Info

Publication number
JPH1041279A
JPH1041279A JP8197296A JP19729696A JPH1041279A JP H1041279 A JPH1041279 A JP H1041279A JP 8197296 A JP8197296 A JP 8197296A JP 19729696 A JP19729696 A JP 19729696A JP H1041279 A JPH1041279 A JP H1041279A
Authority
JP
Japan
Prior art keywords
lamp
film
plasma etching
wafer
unnecessary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8197296A
Other languages
Japanese (ja)
Inventor
Yasumichi Suzuki
康道 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8197296A priority Critical patent/JPH1041279A/en
Publication of JPH1041279A publication Critical patent/JPH1041279A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the production of exfoliation and foreign matters by reducing the thickness of an unnecessary deposited film as much as possible by providing a mechanism which supplies electromagnetic waves having such a wavelength that is not absorbed by a member from the backside of the member, but by the unnecessary deposited film, at a constant intensity. SOLUTION: A substrate electrode 2 for placing a wafer 1 is provided with a power applying mechanism 4 connected to a power source 3 and a wafer temperature control mechanism 6 connected to a cooler (or heater) 5. An insulator layer 7 is formed around the mechanism 4 for preventing the leakage of electric power and the layer 7 is surrounded with a grounded earth plate 8. In addition, a lamp 9 which mainly emits light having a specific wavelength is buried in the layer 7. When the wafer is irradiated with the light emitted from the lamp 9, foreign matter producing spots can be removed and the cleaning frequency of the wafer 1 can be reduced remarkably. In addition, the number of persons required for the cleaning work of the wafer 1 can be reduced. Furthermore, the temperature of the wafer 1 can be raised easily, because the thin film has a small heat capacity is heated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体等の処理にお
けるエッチングに係り、特に、プロセス処理時にウエハ
の周囲に付着する不要堆積膜の形成防止方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to etching in the processing of semiconductors and the like, and more particularly to a method for preventing the formation of unnecessary deposited films adhering to the periphery of a wafer during processing.

【0002】[0002]

【従来の技術】プラズマを利用したドライエッチング法
では、孔の断面形状を垂直に近く制御するため側壁保護
膜を形成し側壁部のエッチング反応を防止している。側
壁保護膜の成分は主に、プラズマ中で分解した反応ガ
ス、反応ガスが被エッチング材料との反応で生じた反応
生成物であるが、側壁に付着せず気相中に拡散したガス
成分は電極周辺の温度の低い部分に吸着する。ガス成分
はラジカル状態にあるため他分子と反応しやすく一部重
合あるいは架橋構造を形成する。
2. Description of the Related Art In a dry etching method using plasma, a side wall protective film is formed to control the cross-sectional shape of a hole to be almost vertical, thereby preventing an etching reaction on a side wall portion. The components of the sidewall protective film are mainly a reaction gas decomposed in the plasma and a reaction product generated by the reaction of the reaction gas with the material to be etched. Adsorbs to low temperature parts around the electrodes. Since the gas component is in a radical state, it easily reacts with other molecules to form a partially polymerized or crosslinked structure.

【0003】一般に、堆積した膜と下地の電極部材の応
力が異なり処理中の温度が高い状態で付着した膜は、プ
ロセス処理終了後温度が低下するとストレスを発生す
る。膜厚が厚くなると応力は増加し、一定値を越えると
剥離が生じる。この時、微小な剥離片が処理室内に生じ
一部はウエハ上に付着し異物となる。また、装置内に堆
積した微小剥離片は次処理以降のウエハ処理の際の気
圧,電界変化等で雰囲気中に飛散し、一部はウエハ上に
付着することになる。従って、上記現象が発生するとク
リーニングの実施が不可欠であり、その間装置は停止す
ることになる。
In general, a deposited film and a film adhered in a state where the stress of the underlying electrode member is different and the temperature during processing is high generate stress when the temperature is lowered after the completion of the processing. As the film thickness increases, the stress increases, and when the thickness exceeds a certain value, peeling occurs. At this time, minute peeled pieces are generated in the processing chamber, and a part thereof adheres to the wafer and becomes foreign matter. Further, the minute peeling pieces deposited in the apparatus are scattered in the atmosphere due to a change in air pressure, electric field, and the like in the wafer processing after the next processing, and a part of the pieces adheres to the wafer. Therefore, when the above-mentioned phenomenon occurs, it is indispensable to perform cleaning, during which the apparatus stops.

【0004】クリーニングとしては二つの方法に分けら
れる。第一の方法は処理室を開放し不要堆積膜が付着し
た部品を交換する方法である。本方法は確実に異物を抑
えられる方法であるが、人が常についていなければ実行
できないこと、大気に解放するため水分等の吸着が生じ
処理室内部の雰囲気が安定するまで真空引き開始後、数
〜十数時間が必要である等の問題がある。
[0004] Cleaning is divided into two methods. The first method is a method of opening a processing chamber and exchanging a part to which an unnecessary deposited film has adhered. Although this method is a method that can reliably suppress foreign substances, it can not be executed unless people are always present, after evacuation is started until the atmosphere inside the processing chamber is stabilized due to adsorption of moisture etc. to release to the atmosphere, There is a problem that several to ten and several hours are required.

【0005】第二の方法は内部に不要堆積膜をエッチン
グするガス成分を導入することで不要堆積膜を除去する
方法である。本方法は内部を大気中の水分等にさらさな
い利点があるが、不要堆積膜の除去速度が遅い上に、堆
積速度と必ずしも相関がなく下地材料を不必要に削った
り、除去が不十分な箇所が発生する。このため、多くの
場合第二の方法は第一の方法と併用して実施される場合
が多い。
The second method is a method of removing an unnecessary deposited film by introducing a gas component for etching the unnecessary deposited film into the inside. This method has the advantage of not exposing the interior to moisture in the atmosphere, but it has a slow removal rate of unnecessary deposited films, and is not always correlated with the deposition rate, and unnecessarily scrapes the underlying material or insufficient removal. A spot occurs. For this reason, the second method is often performed in combination with the first method in many cases.

【0006】この方法のように不要堆積膜が一度付着す
ると除去にかなりの時間が必要となるため、不要堆積膜
が付着しない方法が望まれる。しかし、不要堆積膜を生
じないエッチングは実用上困難であり、不要堆積膜が集
中的に付着し短時間で剥離が発生するのを防止する手段
が適用が望ましい。
[0006] Once the unnecessary deposited film adheres as in this method, it takes a considerable time to remove it. Therefore, a method in which the unnecessary deposited film does not adhere is desired. However, it is practically difficult to perform etching without generating an unnecessary deposited film, and it is desirable to apply a means for preventing the unnecessary deposited film from intensively adhering and causing peeling in a short time.

【0007】この方法として特開平5−283368 号公報に
記載のように電極周辺を加熱することでラジカルの吸着
確率を低下させ、不要堆積膜の集中形成を防止するもの
がある。
As this method, there is a method described in Japanese Patent Application Laid-Open No. 5-283368, in which the periphery of the electrode is heated to lower the probability of adsorbing radicals and prevent the concentrated formation of unnecessary deposited films.

【0008】[0008]

【発明が解決しようとする課題】従来は、電極周囲の壁
面温度とプラズマの相互作用について十分考慮されてい
ない。すなわち、不要堆積膜の形成速度が最も速いのは
プラズマに近い部分であるが、本部分に到達するラジカ
ル種はエッチング性と堆積性の両特性を有しており不要
堆積膜上でエッチング現象と堆積現象がバランスしてい
る。本部分で下地部材を加熱した場合の現象をみると、
全体的には温度の上昇によりラジカルの吸着確率が低下
する一方温度の上昇によりエッチング反応が促進される
ことで不要堆積膜形成速度は低下する。特に、プラズマ
直近では周辺に拡散したプラズマからイオンが供給さ
れ、不要堆積膜の形成速度低減と相まって下地部材のエ
ッチング反応が進行する。エッチングにより部分的に下
地部材が欠如するとさらに電界が集中しイオン量が増加
するためエッチング速度が一層増加するという悪巡回に
陥る。この場合、短期間で電極部材の交換作業が必要と
なる。
Heretofore, the interaction between the wall temperature around the electrode and the plasma has not been sufficiently considered. In other words, the formation speed of the unnecessary deposited film is the highest in the portion close to the plasma, but the radical species reaching this portion has both the etching property and the depositing property. The sedimentation phenomenon is balanced. Looking at the phenomenon when the base member is heated in this part,
As a whole, the rise in temperature lowers the probability of adsorbing radicals, while the rise in temperature promotes the etching reaction, thereby lowering the unnecessary deposition film formation rate. In particular, in the immediate vicinity of the plasma, ions are supplied from the plasma diffused to the periphery, and the etching reaction of the underlying member proceeds in combination with the reduction in the formation speed of the unnecessary deposition film. If the underlying member is partially lacked by the etching, the electric field is further concentrated and the amount of ions increases, so that the etching speed further increases, resulting in a bad circuit. In this case, it is necessary to replace the electrode member in a short period of time.

【0009】また、エッチングが生じなくても、下地部
材が常時プラズマにさらされることでラジカルが下地部
材と反応して新たな反応生成物が付着する現象が生じる
場合がある。
Even when etching does not occur, there is a case where a phenomenon in which radicals react with the base member and new reaction products adhere to the base member due to constant exposure to the plasma.

【0010】以上のように、不要堆積膜の形成防止と、
電極部材のラジカル成分からの保護とを両立させる手段
が必要となる。
As described above, prevention of the formation of an unnecessary deposited film and
Means are required to achieve both protection of the electrode member from radical components.

【0011】[0011]

【課題を解決するための手段】上記課題に対して、本発
明では電極部材上にラジカル成分を保護するための不要
堆積膜を形成するが、その膜厚を極力薄く制御する事で
剥離が生じず異物が発生しない状態をつくる。具体的に
は、部材の裏面等から部材に吸収されることなく不要堆
積膜が吸収する波長の電磁波を一定強度で供給する機構
を設けることである。
According to the present invention, an unnecessary deposited film for protecting radical components is formed on an electrode member in the present invention. However, peeling is caused by controlling the film thickness as thin as possible. Create a state in which no foreign matter is generated. Specifically, there is provided a mechanism for supplying an electromagnetic wave having a wavelength that is absorbed by the unnecessary deposition film without being absorbed by the member from the back surface of the member or the like at a constant intensity.

【0012】電極周辺の部材は透過し不要堆積膜が吸収
する波長の電磁波を照射することで、部材が清浄な表面
を有する状態では照射光は処理室内を迷走し徐々に減衰
する。エッチング処理が進むに従って部材上に不要堆積
膜の形成が始まる。不要堆積膜の膜厚が非常に薄い場合
は、照射光のほとんどは透過してしまい膜中での吸収量
はわずかで温度の上昇は少ない。
By irradiating the member around the electrode with an electromagnetic wave having a wavelength that is transmitted and absorbed by the unnecessary deposition film, the irradiation light strays in the processing chamber and gradually attenuates when the member has a clean surface. As the etching process proceeds, the formation of the unnecessary deposition film on the member starts. When the thickness of the unnecessary deposition film is extremely small, most of the irradiation light is transmitted, the absorption amount in the film is small, and the temperature rise is small.

【0013】膜厚が成長すると膜中の光の吸収量が増加
し、かつ膜の熱容量も小さいことから膜温度は容易に上
昇する。膜温度が上昇すると、これまで膜表面で吸着後
重合し堆積していたラジカル成分は吸着後短時間で脱離
するため、堆積反応は生じにくくなる。膜が増加すると
光の吸収エネルギは増加するため堆積速度はさらに減少
する一方、堆積膜をエッチングするラジカルは堆積膜表
面で反応する確率が温度上昇で一般に増加する。この結
果、ウエハ周辺部材の堆積膜は一定膜厚でバランスがと
れる。
As the film thickness grows, the amount of light absorbed in the film increases and the heat capacity of the film is small, so that the film temperature easily rises. When the film temperature rises, radical components that have been polymerized and deposited on the film surface after being adsorbed are desorbed in a short time after the adsorption, so that a deposition reaction is less likely to occur. As the number of films increases, the absorption energy of light increases, so that the deposition rate further decreases. On the other hand, the probability that radicals etching the deposited film react on the surface of the deposited film generally increases with an increase in temperature. As a result, the deposited film on the peripheral member of the wafer is balanced at a constant film thickness.

【0014】従って、部材表面は常に堆積膜で覆われて
いることにより下地の部材を腐食するガス(例えば、フ
ッ素ラジカル)が直接部材に接触することがなく、部材
の削れによる発塵またはプロセス状態の変化を生じるこ
となく部材の延命が図れる。一方、堆積膜の膜厚増加が
抑えられることで剥離に起因する発塵が防止できる。
Therefore, since the surface of the member is always covered with the deposited film, the gas (for example, fluorine radicals) that corrodes the underlying member does not come into direct contact with the member. The life of the member can be extended without causing a change in On the other hand, dust generation due to peeling can be prevented by suppressing an increase in the thickness of the deposited film.

【0015】上記のように、発塵,部材の削れがないこ
とから、装置内部の洗浄化処理(プラズマ等の直接人手
を介さない場合と、装置を開放し部品等の交換の両方を
含む)の頻度が大幅に低減でき装置稼働率の向上が実現
できる。
As described above, since there is no dust generation and no scraping of the members, the inside of the apparatus is cleaned (including both the case where no manual operation such as plasma is performed and the case where the apparatus is opened and parts are replaced). Frequency can be greatly reduced, and the operation rate of the apparatus can be improved.

【0016】[0016]

【発明の実施の形態】図1は本発明の一実施例である電
極構造の断面図である。ウエハ1を載置する基板電極2
は電源3に接続された電力印加機構4及び冷却器(ある
いは、ヒータ電源)5に接続したウエハ温度制御機構6
を有し、上記電力印加機構4の周囲には電力の漏洩を防
止するため絶縁体層7を形成しさらに周囲を接地したア
ース板8で取り囲んでいる。前記絶縁体層7の内部には
特定波長を主に発光するランプ9が埋め込まれている。
本図の場合ランプ9は同心円状の形状を有しているが、
半径方向に短いランプを複数個配置する構成でもよくウ
エハ周囲の絶縁体層7表面上で周方向の光強度が均一で
あれば配置方向は限定されない。
FIG. 1 is a sectional view of an electrode structure according to an embodiment of the present invention. Substrate electrode 2 on which wafer 1 is placed
Is a power application mechanism 4 connected to a power supply 3 and a wafer temperature control mechanism 6 connected to a cooler (or heater power supply) 5.
An insulating layer 7 is formed around the power application mechanism 4 to prevent leakage of power, and is further surrounded by a ground plate 8 grounded. A lamp 9 mainly emitting a specific wavelength is embedded in the insulator layer 7.
In this case, the lamp 9 has a concentric shape,
A plurality of short lamps may be arranged in the radial direction. The arrangement direction is not limited as long as the light intensity in the circumferential direction is uniform on the surface of the insulator layer 7 around the wafer.

【0017】前記ウエハの基板電極2と反対の面に対向
してプラズマ発生機構10が配置されている。プラズマ
発生機構10は、従来の平行平板方式であれば電源に接
続した導電性の平板がウエハと一定間隔を有し設置され
る。また、ECR方式の場合は周辺に電磁石を配したマ
イクロ波供給機構が設置される(プラズマ発生機構によ
ってはウエハ周辺にも磁石等を配置する場合がある)。
A plasma generating mechanism 10 is arranged opposite to the surface of the wafer opposite to the substrate electrode 2. In the case of the conventional parallel plate type, the plasma generating mechanism 10 is provided with a conductive flat plate connected to a power source at a predetermined interval from the wafer. Further, in the case of the ECR method, a microwave supply mechanism having an electromagnet disposed around is installed (a magnet or the like may be disposed around the wafer depending on the plasma generation mechanism).

【0018】上記基板電極2およびプラズマ発生機構1
0は、ガス供給機構11,真空排気機構12,圧力調整
機構13を有した真空槽14内に取り込まれている。
The above substrate electrode 2 and plasma generating mechanism 1
Numeral 0 is taken into a vacuum chamber 14 having a gas supply mechanism 11, a vacuum exhaust mechanism 12, and a pressure adjusting mechanism 13.

【0019】真空排気機構12により真空槽14内を一
定時間排気しウエハ温度制御機構6によってウエハ1を
所定の温度にした後、ガス供給機構11によって所定の
エッチングガスを所定量供給し、圧力調整機構13によ
り所定圧力に設定する。その後、プラズマ発生機構10
に電力等を印加するとウエハ1上の空間に電磁界15が
供給されプラズマ16が発生する。
After the vacuum chamber 14 is evacuated for a certain period of time by the vacuum evacuation mechanism 12 and the wafer 1 is brought to a predetermined temperature by the wafer temperature control mechanism 6, a predetermined amount of a predetermined etching gas is supplied by the gas supply mechanism 11 to adjust the pressure. A predetermined pressure is set by the mechanism 13. Then, the plasma generation mechanism 10
When power or the like is applied to the space, an electromagnetic field 15 is supplied to the space on the wafer 1 and a plasma 16 is generated.

【0020】プラズマ16によりエッチングガスは分解
しラジカル状態になる。ラジカルはガス流あるいは拡散
でウエハ1表面に吸着する。一方、プラズマ16とウエ
ハ1間に発生した電位によってプラズマ16中のイオン
はウエハ1に衝突すると、前記ラジカルとの相互作用で
下地材との反応が生じ下地材は削られ反応生成物が発生
する。反応生成物の一部は削られた穴の側壁に堆積し側
壁が広がらないように保護膜となるが、残りは気相中に
放出される。前記反応生成物のガスは保護膜となるよう
に堆積しやすい性質を有するが、ウエハ1表面はイオン
入射により温度が上昇していることもありほとんど堆積
しない。従って、ウエハ1周囲、すなわちプラズマ発生
部近傍は前記反応生成物を含め多数のラジカルに接する
ことになる。一部、エッチング性のガス(塩素やフッ
素)のラジカルは混入しているがデポ性を有するガスが
優勢であり、不要堆積膜が形成される。
The etching gas is decomposed by the plasma 16 into a radical state. The radicals are adsorbed on the surface of the wafer 1 by gas flow or diffusion. On the other hand, when the ions in the plasma 16 collide with the wafer 1 due to the potential generated between the plasma 16 and the wafer 1, a reaction with the base material occurs due to the interaction with the radicals, the base material is shaved, and a reaction product is generated. . A part of the reaction product is deposited on the side wall of the cut hole to form a protective film so that the side wall does not spread, but the rest is released into the gas phase. The gas of the reaction product has a property that it is easily deposited so as to form a protective film, but the surface of the wafer 1 is hardly deposited because the temperature is increased due to ion incidence. Therefore, the periphery of the wafer 1, that is, the vicinity of the plasma generating section comes into contact with many radicals including the reaction product. In some cases, radicals of etching gas (chlorine and fluorine) are mixed, but gas having a deposition property is dominant, and an unnecessary deposited film is formed.

【0021】ガスは真空槽14内の圧力が高い場合ガス
流に沿って移動し特定箇所に集中して堆積しやすく、反
応圧力が低い場合には拡散現象が強くなり広がった領域
に堆積する。膜の堆積は下地部材との直接反応がなくて
も下地の凹凸部に吸着,重合した膜が成長していく。
When the pressure in the vacuum chamber 14 is high, the gas moves along the gas flow and tends to concentrate at a specific location, and when the reaction pressure is low, the diffusion phenomenon becomes strong and the gas accumulates in a widened area. In the deposition of the film, a film adsorbed and polymerized on the uneven portions of the base grows without a direct reaction with the base member.

【0022】ここで、特に堆積膜が集中して成長する箇
所に、堆積膜が吸収しやすく下地部材が吸収しにくい波
長の光をランプ9で照射しておくと、堆積膜の初期状態
においては下地部材と同様照射光のほとんどは透過して
堆積現象は継続する。さらに、堆積が続くと堆積膜が照
射光から受けるエネルギが増加し体積膜表面温度が上昇
する。温度が上昇した面にガスが衝突しても吸着確率が
低く堆積速度が減少する。ここで、下地部材全体を加熱
した場合を考えると、プラズマの周辺は絶縁物で囲って
おり熱伝導は低く熱容量は大きいので、大きなエネルギ
の供給が必要である一方、細かな温度制御は困難であ
る。そのため、初期状態に置いて部材温度が高い状態で
エッチングを開始すると、部材表面には堆積が生じない
が逆に単独で下地部材をエッチングするガスが表面と反
応を起こすことになる。部材によって下地部材の浸食、
新たな反応生成物の発生により異物発生源となる可能性
が高い。従って、例えば排気下流側で金属部材が利用で
きる範囲では全体加熱機構は有効であるが、電極周辺で
は適用が困難である。
Here, when light having a wavelength which is easily absorbed by the deposited film and which is hardly absorbed by the underlying member is irradiated by the lamp 9 particularly at a portion where the deposited film is grown in a concentrated manner, the initial state of the deposited film is high. Like the underlying member, most of the irradiation light is transmitted and the deposition phenomenon continues. Further, as the deposition continues, the energy that the deposited film receives from the irradiation light increases, and the volume film surface temperature increases. Even if the gas collides with the surface where the temperature has risen, the adsorption probability is low and the deposition rate decreases. Here, considering the case where the entire base member is heated, the periphery of the plasma is surrounded by an insulator and the heat conduction is low and the heat capacity is large, so that a large amount of energy is required to be supplied, but fine temperature control is difficult. is there. Therefore, if the etching is started in a state where the temperature of the member is high in the initial state, no gas is deposited on the surface of the member, but on the contrary, the gas for etching the underlying member alone reacts with the surface. Erosion of the base member depending on the member,
The generation of new reaction products is likely to be a source of foreign matter. Therefore, for example, the entire heating mechanism is effective in a range where the metal member can be used on the downstream side of the exhaust gas, but it is difficult to apply it around the electrodes.

【0023】上記の選択ランプ加熱では、膜厚が一定値
に達した点で堆積とエッチングは平衡状態になり見かけ
上堆積現象は停止する。膜が薄い状態で膜厚を維持する
と堆積膜に生じる応力は小さく剥離による異物発生が避
けられる。上記の光照射による選択加熱は電極内のすべ
ての堆積を制御は困難であるが、堆積が顕著な箇所に本
方法を適用することで従来の異物発生箇所を取り除き、
クリーニング頻度の大幅な削減が可能となり、クリーニ
ング作業に伴う人員の削減にも効果がある。また、熱容
量が小さい薄膜を加熱するため容易に温度上昇が可能で
ありプラズマ発生中のみランプ照射を実施すればよくエ
ネルギの節減にも有効である。また、常時ランプを点灯
する必要もなく、例えばプラズマ点火用電源のオン,オ
フに連動してランプのオン,オフを制御しても良い。
In the above selective lamp heating, when the film thickness reaches a certain value, the deposition and the etching are in an equilibrium state, and the deposition phenomenon stops apparently. When the film thickness is maintained in a thin state, the stress generated in the deposited film is small, and the generation of foreign matter due to peeling can be avoided. It is difficult to control the entire deposition in the electrode by the selective heating by light irradiation described above, but by applying the present method to a location where the deposition is remarkable, the conventional foreign matter generation location is removed,
The frequency of cleaning can be greatly reduced, and the number of personnel involved in the cleaning operation can be reduced. In addition, since a thin film having a small heat capacity is heated, the temperature can be easily raised, and it is sufficient to perform lamp irradiation only during plasma generation, which is effective in saving energy. Further, it is not necessary to constantly turn on the lamp, and for example, the on / off of the lamp may be controlled in conjunction with the on / off of the plasma ignition power supply.

【0024】酸化膜エッチングの場合ガスとしてCF系
(例えば、CF4,CHF3)を使用するが、この際堆積す
る膜はCおよびFを主体とする重合膜である。本重合膜
の波長に対する吸収特性を図2に示すが、1100cm~1
〜1300cm~1、の近辺に吸収帯があることがわかる。
これに対して、電極周辺部材で一般に使用される石英の
場合1000cm~1近傍の反射率が高く堆積膜に選択光を
照射できない。これに対し、SiCの吸収,反射特性を
図3(基礎物性図表,P351,共立出版)に示すが、
1000cm~1前後の光を透過することがわかる。また、
ランプでは赤外ランプを使用することで酸化膜デポ膜の
選択加熱が達成される。上記の組合わせは酸化膜に対す
る一例を示したものであるが、他のエッチングについて
も同様の考え方で設計すればよい。
In the case of etching an oxide film, CF gas is used as a gas.
(For example, CF 4 , CHF 3 ) is used, and the film deposited at this time is a polymer film mainly composed of C and F. The absorption characteristics for the wavelength of the polymerization film is shown in FIG. 2, 1100 cm ~ 1
It can be seen that there is an absorption band around 11300 cm1 1 .
On the other hand, in the case of quartz generally used for an electrode peripheral member, the reflectance near 1000 cm to 1 is high and the deposited film cannot be irradiated with the selective light. On the other hand, the absorption and reflection characteristics of SiC are shown in FIG. 3 (Basic physical property chart, P351, Kyoritsu Shuppan).
It can be seen that light of about 1000 cm- 1 is transmitted. Also,
In the lamp, selective heating of the oxide film is achieved by using an infrared lamp. The above combination is an example of an oxide film, but other etchings may be designed in the same way.

【0025】これまでの説明は部材表面に堆積した膜を
直接加熱制御するものであるが、事前に処理ガスと接す
る表面に特定波長を吸収する薄膜を形成する方法もあ
る。
In the description so far, the film deposited on the member surface is directly heated and controlled. However, there is also a method of forming a thin film absorbing a specific wavelength on the surface in contact with the processing gas in advance.

【0026】CF系ガスの内、特にデポ性が強いガス
(例えば、C26などC/F比が大きい種類)中に部材
を配置しプラズマを発生させることで表面にCF系ポリ
マを堆積させる。
A CF-based polymer is deposited on the surface by arranging members in a CF-based gas, particularly a gas having a strong depot property (for example, a type having a large C / F ratio such as C 2 F 6 ) and generating plasma. Let it.

【0027】一般に加熱する膜の熱容量が小さいことか
ら容易に加熱できるため、供給する光強度は小さくてす
むが、周辺部分の加熱による不要なリークを予防するた
めにランプの必要放射面以外には反射板等を設けても良
い。
In general, since the heat capacity of the film to be heated is small, it can be easily heated, so that the supplied light intensity is small. A reflection plate or the like may be provided.

【0028】[0028]

【発明の効果】本発明によれば、電極近傍の壁面に堆積
する不要堆積膜の剥離を防止でき、異物チェック,メン
テナンス等の作業頻度を低減でき、装置稼働率を向上す
ることができる。
According to the present invention, it is possible to prevent the unnecessary deposited film deposited on the wall surface near the electrode from being peeled off, to reduce the frequency of operations such as foreign substance check and maintenance, and to improve the operation rate of the apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例であるプラズマエッチング電
極の断面図。
FIG. 1 is a sectional view of a plasma etching electrode according to one embodiment of the present invention.

【図2】酸化膜エッチング時の不要堆積膜の吸収の特性
図。
FIG. 2 is a characteristic diagram of absorption of an unnecessary deposition film at the time of etching an oxide film.

【図3】炭化シリコン部材の反射,吸収の特性図。FIG. 3 is a characteristic diagram of reflection and absorption of a silicon carbide member.

【符号の説明】[Explanation of symbols]

1…ウエハ、2…基板電極、3…電源、4…電力印加機
構、5…冷却器、6…ウエハ温度制御機構、7…絶縁体
層、8…アース板、9…ランプ、10…プラズマ発生
部、11…ガス供給機構、12…真空排気機構、13…
圧力調整機構、14…真空槽内、15…電磁界、16…
プラズマ。
DESCRIPTION OF SYMBOLS 1 ... Wafer, 2 ... Substrate electrode, 3 ... Power supply, 4 ... Power application mechanism, 5 ... Cooler, 6 ... Wafer temperature control mechanism, 7 ... Insulator layer, 8 ... Ground plate, 9 ... Lamp, 10 ... Plasma generation Part, 11: gas supply mechanism, 12: vacuum exhaust mechanism, 13 ...
Pressure adjusting mechanism, 14: inside vacuum chamber, 15: electromagnetic field, 16:
plasma.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】半導体のプラズマエッチング処理におい
て、電極周辺に付着する不要堆積膜が吸収する波長を選
択的に照射し前記不要堆積膜のみを選択的に加熱するこ
とを特徴とするプラズマエッチング方法。
In a plasma etching process for a semiconductor, a plasma etching method characterized by selectively irradiating a wavelength absorbed by an unnecessary deposition film adhering to the periphery of an electrode and selectively heating only the unnecessary deposition film.
【請求項2】請求項1において、プラズマのオン,オフ
に応じて不要堆積膜吸収波長の照射の開始,停止を行う
プラズマエッチング方法。
2. The plasma etching method according to claim 1, wherein the irradiation of the unnecessary deposition film absorption wavelength is started and stopped according to the on / off state of the plasma.
【請求項3】プラズマエッチング処理装置において、不
要堆積膜が形成される電極周辺部材は付着する不要堆積
膜が吸収する波長を主に発光するランプ,前記波長を透
過させる材料からでき、前記ランプを内包する構成であ
ることを特徴とするプラズマエッチング処理装置。
3. In a plasma etching apparatus, an electrode peripheral member on which an unnecessary deposition film is formed is made of a lamp mainly emitting light of a wavelength absorbed by the unnecessary deposition film to be adhered, and a material transmitting the wavelength. A plasma etching apparatus characterized in that it includes a plasma etching treatment apparatus.
【請求項4】請求項3において、導入する反応ガスは炭
素とフッ素を主体とするガスであり、不要堆積膜が付着
する電極周辺部材の材質は炭化シリコン製であり、ラン
プは赤外ランプであるプラズマエッチング処理装置。
4. The method according to claim 3, wherein the reaction gas to be introduced is a gas mainly composed of carbon and fluorine, the material of the electrode peripheral member to which the unnecessary deposited film is attached is made of silicon carbide, and the lamp is an infrared lamp. A plasma etching equipment.
【請求項5】プラズマエッチング処理装置において、電
極周辺の不要堆積膜が付着する部材の表面にあらかじめ
ランプが主に発光する波長を吸収する薄膜を形成してお
き、電極周辺部材は前記ランプの光を透過する材料より
なり前記薄膜が形成される面と反対側に前記ランプを内
包したことを特徴とするプラズマエッチング処理装置。
5. In a plasma etching apparatus, a thin film for absorbing a wavelength mainly emitted by a lamp is previously formed on a surface of a member on which an unnecessary deposition film is attached around an electrode, and the electrode peripheral member is provided with a light of the lamp. A plasma etching apparatus comprising a material made of a material that transmits light and including the lamp on a side opposite to a surface on which the thin film is formed.
【請求項6】請求項3,4または5において、前記電極
の周辺に付着する前記不要堆積膜が吸収する波長を主に
発光する前記ランプの前記不要堆積膜が形成される方向
以外の面の周囲に反射板を設けたプラズマエッチング処
理装置。
6. The lamp according to claim 3, 4 or 5, wherein a surface of the lamp other than a direction in which the unnecessary deposited film is formed mainly emits a wavelength that is absorbed by the unnecessary deposited film attached to the periphery of the electrode. A plasma etching processing device provided with a reflection plate around it.
JP8197296A 1996-07-26 1996-07-26 Method and device for plasma etching Pending JPH1041279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8197296A JPH1041279A (en) 1996-07-26 1996-07-26 Method and device for plasma etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8197296A JPH1041279A (en) 1996-07-26 1996-07-26 Method and device for plasma etching

Publications (1)

Publication Number Publication Date
JPH1041279A true JPH1041279A (en) 1998-02-13

Family

ID=16372109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8197296A Pending JPH1041279A (en) 1996-07-26 1996-07-26 Method and device for plasma etching

Country Status (1)

Country Link
JP (1) JPH1041279A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020008651A (en) * 2000-07-25 2002-01-31 윤종용 Equpiment for fabricating semiconductor and method for processing thereof
JP2015056519A (en) * 2013-09-12 2015-03-23 東京エレクトロン株式会社 Etching method, etching device, and storage medium
CN114959888A (en) * 2021-09-06 2022-08-30 江苏汉印机电科技股份有限公司 Production process of SiC epitaxial film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020008651A (en) * 2000-07-25 2002-01-31 윤종용 Equpiment for fabricating semiconductor and method for processing thereof
JP2015056519A (en) * 2013-09-12 2015-03-23 東京エレクトロン株式会社 Etching method, etching device, and storage medium
CN114959888A (en) * 2021-09-06 2022-08-30 江苏汉印机电科技股份有限公司 Production process of SiC epitaxial film
CN114959888B (en) * 2021-09-06 2023-11-10 江苏汉印机电科技股份有限公司 Production process of SiC epitaxial film

Similar Documents

Publication Publication Date Title
US4699689A (en) Method and apparatus for dry processing of substrates
US20180218884A1 (en) Substrate processing apparatus
US4687544A (en) Method and apparatus for dry processing of substrates
US7811409B2 (en) Bare aluminum baffles for resist stripping chambers
EP0234387B1 (en) Method of removing photoresist on a semiconductor wafer
CN1841214B (en) Methods of removing resist from substrates in resist stripping chambers
US6528427B2 (en) Methods for reducing contamination of semiconductor substrates
EP0830052A1 (en) Device and method for plasma treatment
JP3352418B2 (en) Pressure reduction method and pressure reduction device
KR20110025142A (en) Chamber cleaning method
US5690050A (en) Plasma treating apparatus and plasma treating method
JP3798491B2 (en) Dry etching method
JP2895909B2 (en) Plasma processing method
JP4668522B2 (en) Plasma processing method
JP3520577B2 (en) Plasma processing equipment
JPH1041279A (en) Method and device for plasma etching
US6960533B2 (en) Method of processing a sample surface having a masking material and an anti-reflective film using a plasma
KR100262883B1 (en) Plasma cleaning method
JP2004319972A (en) Etching method and etching device
JP2000150487A (en) Plasma treatment method
JP3651564B2 (en) Surface wave plasma etching equipment
JPH0869896A (en) Device and method for plasma treating
US5656334A (en) Plasma treating method
JP3373466B2 (en) Plasma processing apparatus and plasma processing method
JP7452992B2 (en) Plasma processing equipment and operating method of plasma processing equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110308

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130308