JPH1041124A - Superconducting device using modulation super structure - Google Patents

Superconducting device using modulation super structure

Info

Publication number
JPH1041124A
JPH1041124A JP22027796A JP22027796A JPH1041124A JP H1041124 A JPH1041124 A JP H1041124A JP 22027796 A JP22027796 A JP 22027796A JP 22027796 A JP22027796 A JP 22027796A JP H1041124 A JPH1041124 A JP H1041124A
Authority
JP
Japan
Prior art keywords
layers
layer
dimensional structure
conductors
spin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22027796A
Other languages
Japanese (ja)
Inventor
Hideo Shingu
秀夫 新宮
Katsuyuki Tsukui
克幸 津久井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22027796A priority Critical patent/JPH1041124A/en
Publication of JPH1041124A publication Critical patent/JPH1041124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a critical temperature and a critical magnetic field by producing a superconducting material obtained by introducing modulated structures and optimizing both structures, so that internal magnetic moment in a metallic super lattice is organized and the dimension of a momentum space is made to be low. SOLUTION: In a device, several types of conductors are alternately stacked. The types of the conductors (containing vacuum), the phases of the conductors and particles acting as a factor for conduction are not restricted. Layers (A layers) whose spin interactions are strong and layers (B layers) detaching them are alternately formed. For organizing internal magnetic moment and for making the dimension of momentum space to be low, the thicknesses of the A layers take disturbed values restricted by a Laue diffraction function G and a coherent distance ξ. The thicknesses of the B layers take prescribed values for optimizing the spin exchange operations between the A layers and canceling the whole number of spin quantum number. The modulated structure in the stacking direction can be introduced to a three-dimensional structure, a two-dimensional structure and one-dimensional structure. The modulated structure can be introduced to the directions of two axes and more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】エネルギーの発生、伝送、変換、
および、蓄積などへの応用が期待されるばかりではな
く、高速動作素子、情報媒体変換素子などの情報通信分
野への応用、あるいは、計測・評価に用いられる高能率
フォトン放射源としての応用が期待できる。
[Industrial applications] Energy generation, transmission, conversion,
It is expected to be applied not only to storage and other applications, but also to information communication fields such as high-speed operation devices and information medium conversion devices, or as highly efficient photon radiation sources used for measurement and evaluation. it can.

【0002】[0002]

【従来の技術】1911年にH.K.Onnesによ
ってHgの超伝導現象が発見されて以来、金属、合金、
金属間化合物、化合物、有機物を用いることによって、
産業上の利用分野への応用が試みられてきた。しかし、
超伝導体の高度な応用を可能にするためには、(1)高
度な冷却を必要としない、高い臨界温度(Tc)を有す
ること、(2)強磁場中での機能を確保するための、高
い臨界磁場(Hc)を有すること、(3)微細構造を形
成した際の動作を維持するための、高い臨界電流密度
(Jc)、長い可干渉距離(ξ)を有すること、 の3点が要求される。75年にわたる技術革新の結果、
1986年に酸化物超伝導体がJ.A.Bednor
z、K.A.Mullerによって発見され、H.I
haraらによって実証された。酸化物超伝導体によっ
て、100K程度の臨界温度が達成され、高度な冷却が
必要なくなり、応用範囲が広がるかのように見えた。し
かし、臨界磁場、あるいは、臨界電流密度などの特性
が、従来の金属系材料を凌駕するには至っていないため
、実用材となっていない。
2. Description of the Related Art K. Since the discovery of the superconducting phenomenon of Hg by Ones 1 , metals, alloys,
By using intermetallic compounds, compounds and organic substances,
Applications to industrial applications have been attempted. But,
In order to enable advanced applications of superconductors, (1) having a high critical temperature (Tc) that does not require advanced cooling, and (2) ensuring a function in a strong magnetic field. Having a high critical magnetic field (Hc), (3) having a high critical current density (Jc) and a long coherence length (ξ) for maintaining operation when a microstructure is formed; The following three points are required. As a result of 75 years of innovation,
In 1986, oxide superconductors were introduced by J.A. A. Bednor
z, K .; A. Discovered by Muller 2 ; I
demonstrated by Hara et al. With the oxide superconductor, a critical temperature of about 100K was attained, high cooling was not required, and it appeared as if the application range was expanded. However, properties such as critical magnetic field or critical current density have not yet surpassed conventional metal-based materials.
3. Not a practical material.

【0003】[0003]

【発明が解決しようとする課題】現在までに酸化物超伝
導体において解決されていない問題を整理すると、 (1)高い臨界温度を有し、臨界磁場、臨界電流密度と
もに実用に供する値(5Tの磁場中でJc=10
/cm)を示す材料がない。 (2)常伝導時の内部抵抗が高いため、クエンチングに
対する安定化対策が難しい。 (3)c軸方向の可干渉距離が短いため、永続電流に対
して垂直な方向の伝播を利用した素子を作成することが
困難である。 などという問題点が浮き彫りとなる。
When [0006] organizing problems not solved in the oxide superconductor to date, (1) has a high critical temperature, the value 4 for practical use in critical magnetic field, critical current density both ( Jc = 10 5 A in a magnetic field of 5T
/ Cm 2 ). (2) Stability measures against quenching are difficult due to high internal resistance during normal conduction. (3) Since the coherence length in the c-axis direction is short, it is difficult to create an element using propagation in a direction perpendicular to the persistent current. Such problems are highlighted.

【0004】[0004]

【課題を解決するための手段】問題点を解決するために
金属超格子に着目した。金属系材料は、高い臨界磁場、
臨界電流密度、加工性の高さ、微細構造形成時の構造再
現性の高さ、常伝導時の内部抵抗の低さ、長い可干渉距
離などの特徴を有している。そのため、金属超格子の特
性に関しては、過去にも数多くの報告がなされてきた
5,6,7。しかし、超伝導現象と巨大磁気抵抗効果の
類似性、および、スピン交換相互作用に注目し、内部磁
気モーメントの秩序化、および、運動量空間の低次元化
という観点で、超伝導装置の作製を行った例は皆無であ
る。両者は、相反する要素であるが、変調構造(非整数
次の周期性を有する構造)を導入することで、人為的に
両者を最適化する材料を作成できると考えた。
Means for Solving the Problems In order to solve the problems, attention was paid to a metal superlattice. Metallic materials have high critical magnetic fields,
It has features such as critical current density, high workability, high structure reproducibility during microstructure formation, low internal resistance during normal conduction, and long coherence length. Therefore, there have been many reports on the properties of metal superlattices in the past.
5,6,7 . However, the similarity of superconductivity and giant magnetoresistance effect, and attention to spin exchange interaction, the internal magnetic
There has been no example in which a superconducting device has been manufactured from the viewpoint of ordering the moment and reducing the dimension of the momentum space . Although both are contradictory elements, it was thought that by introducing a modulation structure (a structure having a non-integer order periodicity), it is possible to artificially create a material that optimizes both.

【0005】[0005]

【作用】本発明により、 (1)高度な冷却を必要としない、高い臨界温度(T
c)を有する。 (2)強磁場中での機能を確保するための、高い臨界磁
場(Hc)を有する。 (3)微細構造を形成した際の動作を維持するための、
高い臨界電流密度(Jc)、長い可干渉距離(ξ)を有
する。 (4)構造上、クエンチングを起こさない材料を選択で
きる。 (5)安価な材料を選択できる。 という特徴を持った、超伝導装置を作製することができ
る。
According to the present invention, (1) a high critical temperature (T
c). (2) It has a high critical magnetic field (Hc) for ensuring its function in a strong magnetic field. (3) In order to maintain the operation when the fine structure is formed,
It has a high critical current density (Jc) and a long coherence length (ξ). (4) A material that does not cause quenching due to its structure can be selected. (5) Inexpensive materials can be selected. A superconducting device having the characteristics described above can be manufactured.

【0006】[0006]

【実施例】現在までに、変調構造を導入した例はない。
しかし、超伝導体に変調構造を導入することは、可能で
あると考えられる。本装置の作成方法を、以下に示
す。 (1)メカニカルアロイング法による層状構造作製法。 (2)機械的な変形を原理とした加工法による層状構造
作製法(鍛造法、圧延法などを含む)。 (3)凝固組織の制御による層状構造作製法(急冷凝固
法を含む)。 (4)薄膜作製法(気相、液相、および、固相中におけ
る物理的作製法、化学的作製法を含む)による層状構造
作製法。 (5)化学的手法を用いた層状構造作製法。 (6)電気化学的手法を用いた層状構造作製法。 (7)生物化学的手法を用いた層状構造作製法。 (8)自然界に存在する構造の周期性を利用した層状構
造作製法。 (9)自然界に存在する駆動力を利用して、層状構造を
作製する方法。 (10)物理的手法(粒子加速器など)を用いて、層状
構造を作製する方法。 なお、これらを複数にわたって組み合わせた方法を含
む。
DESCRIPTION OF THE PREFERRED EMBODIMENTS No modulation structure has been introduced to date.
However, it seems possible to introduce a modulation structure into the superconductor 8 . The method of making this device will be described below. (1) A method for producing a layered structure by a mechanical alloying method. (2) A method of producing a layered structure by a processing method based on mechanical deformation (including a forging method, a rolling method, and the like). (3) Layered structure production method by controlling solidification structure (including rapid solidification method). (4) A layered structure manufacturing method by a thin film manufacturing method (including a physical manufacturing method and a chemical manufacturing method in a gas phase, a liquid phase, and a solid phase). (5) A method for producing a layered structure using a chemical technique. (6) A method of forming a layered structure using an electrochemical method. (7) A method for producing a layered structure using a biochemical technique. (8) A method for producing a layered structure utilizing the periodicity of a structure existing in the natural world. (9) A method for producing a layered structure using a driving force existing in the natural world. (10) A method for producing a layered structure using a physical method (such as a particle accelerator). It should be noted that a method combining a plurality of these is included.

【0007】[0007]

【発明の効果】変調超構造を用いた超伝導装置は、金属
系材料の特徴を損なうことなく、酸化物超伝導体の特徴
である高い臨界温度を有する、新しい超伝導体を可能に
すると考えられる。また、この装置の範囲内には、超伝
導を応用した新しい素子が考えられる。それらは、エネ
ルギーの発生、伝送、変換、および、蓄積などへの応用
が期待されるばかりではなく、高速動作素子、情報媒体
変換素子などの情報通信分野への応用、あるいは、計測
・評価に用いられる高能率フォトン放射源としての応用
が期待できる。また、これらが実現すれば、高速でしか
も低消費電力で動作するコンピュータ、高速高密度の情
報通信、高効率の観測計測、太陽エネルギーの有効活
用、電力の高効率伝送などが可能になると考えられる。
It is believed that a superconducting device using a modulated superstructure enables a new superconductor having a high critical temperature characteristic of an oxide superconductor without impairing the characteristics of metallic materials. Can be In addition, new devices utilizing superconductivity are considered within the scope of this device. They are not only expected to be applied to the generation, transmission, conversion, and storage of energy, but are also used in the information and communication fields such as high-speed operation elements and information medium conversion elements, or used for measurement and evaluation. The application as a highly efficient photon radiation source is expected. In addition, if these technologies are realized, computers that operate at high speed with low power consumption, high-speed and high-density information communication, high-efficiency observation and measurement, effective use of solar energy, and high-efficiency power transmission will be possible. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本装置の断面図(特に金属を用いた場合)FIG. 1 is a cross-sectional view of the present apparatus (particularly when metal is used).

【図2】本装置を応用した素子の単位胞の例(特に金属
を用いた場合)
FIG. 2 shows an example of a unit cell of an element to which the present apparatus is applied (particularly when a metal is used)

【図3】本装置の断面図(2軸以上の方向に対して変調
構造を導入した場合)
FIG. 3 is a cross-sectional view of the present apparatus (when a modulation structure is introduced in two or more axes).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(1)数種類の伝導体を交互に積層した装
置。 (2)伝導体は限定されない。真空を含む。 (3)伝導体の相は、限定されない。 (4)伝導を担う粒子は、限定されない。 (5)スピン相互作用の強い層(A層)と、それを隔離
する層(B層)が、交互に形成される。各層の内部構造
がこれに準ずる場合もある。 (6)内部磁気モーメントの秩序化と運動量空間の低次
元化を両立するためA層の厚さは、Laueの回折関数
(G)、および、可干渉距離(ξ)によって制限される
乱れた値をとり、B層の厚さは、A層間のスピン交換相
互作用を最適化し、全スピン量子数を相殺する一定値を
とる。結果的に積層方向に対して変調構造を有する。 (7)変調超構造は、3次元構造体、2次元構造体、お
よび、1次元構造体に導入できる。 (8)作製された超伝導装置を変形させたものを含む。 (9)変調構造は、2軸以上の方向に対して導入するこ
とができる。
(1) An apparatus in which several types of conductors are alternately stacked. (2) The conductor is not limited. Including vacuum. (3) The phase of the conductor is not limited. (4) The particles responsible for conduction are not limited. (5) A layer having a strong spin interaction (A layer) and a layer separating the layer (B layer) are alternately formed. The internal structure of each layer may conform to this. (6) In order to achieve both ordering of the internal magnetic moment and reduction of the dimension of the momentum space, the thickness of the A layer is a disturbed value limited by the Laue diffraction function (G) and the coherence length (ξ). The thickness of the B layer takes a constant value that optimizes the spin exchange interaction between the A layers and cancels out the total spin quantum number. As a result, it has a modulation structure in the stacking direction. (7) The modulated superstructure can be introduced into a three-dimensional structure, a two-dimensional structure, and a one-dimensional structure. (8) Includes a modified superconducting device. (9) The modulation structure can be introduced in two or more axes.
【請求項2】請求項1に記述された装置を応用した装
置。
2. An apparatus to which the apparatus according to claim 1 is applied.
JP22027796A 1996-07-18 1996-07-18 Superconducting device using modulation super structure Pending JPH1041124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22027796A JPH1041124A (en) 1996-07-18 1996-07-18 Superconducting device using modulation super structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22027796A JPH1041124A (en) 1996-07-18 1996-07-18 Superconducting device using modulation super structure

Publications (1)

Publication Number Publication Date
JPH1041124A true JPH1041124A (en) 1998-02-13

Family

ID=16748657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22027796A Pending JPH1041124A (en) 1996-07-18 1996-07-18 Superconducting device using modulation super structure

Country Status (1)

Country Link
JP (1) JPH1041124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168318A (en) * 1999-12-07 2001-06-22 Katsuyuki Tsukui Switching device with super lattice and without insulator barrier
WO2002041412A1 (en) * 2000-11-17 2002-05-23 Katsuyuki Tsukui Switch device without dielectric barrier using superlattice

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168318A (en) * 1999-12-07 2001-06-22 Katsuyuki Tsukui Switching device with super lattice and without insulator barrier
WO2002041412A1 (en) * 2000-11-17 2002-05-23 Katsuyuki Tsukui Switch device without dielectric barrier using superlattice
US6995390B2 (en) 2000-11-17 2006-02-07 Katsuyuki Tsukui Switching device using superlattice without any dielectric barriers
US7314765B2 (en) 2000-11-17 2008-01-01 Katsuyuki Tsukui Switching device using superlattice without any dielectric barriers

Similar Documents

Publication Publication Date Title
Poole et al. Handbook of superconductivity
Kwok et al. Vortices in high-performance high-temperature superconductors
Wesche High-temperature superconductors: materials, properties, and applications
Saxena High-temperature superconductors
Cardwell et al. Handbook of superconducting materials
Fossheim et al. Superconductivity: physics and applications
Glowacki Niobium aluminide as a source of high-current superconductors
Kovalenko High-temperature superconductivity: From macroto nanoscale structures
Ašner High field superconducting magnets
Chong-Yu et al. Electronic structure of impurity (oxygen)–stacking-fault complex in nickel
JPH1041124A (en) Superconducting device using modulation super structure
Meng et al. Intrinsic phonon-mediated superconductivity in graphene-like BSi lattice
Chen et al. Superconducting properties of copper oxide high-temperature superconductors
Liu et al. Chiral symmetry breaking and violation of the Wiedemann-Franz law in underdoped cuprates
Dresselhaus New trends in intercalation compounds
Luo et al. High-Tc Superconductivity: The Excitonic Coulomb Perspective
Zhang et al. $ f $-electron and magnetic ordering effects in nickelates LaNiO $ _2 $ and NdNiO $ _2 $: remarkable role of the cuprate-like $3 d_ {x^ 2-y^ 2} $ band
King Chemical structure and superconductivity
Keimer et al. High temperature superconductivity in the cuprates
Catterall High-Field Superconductivity and Its Applications
JPH10341044A (en) Switch device having no insulator barrier, using superlatticle
Bukhanko et al. Effect of External Factors on Magnetism of Fluctuating Low-Dimensional Electron and Spin Correlations in Frustrated Manganites La 1–y Sm y MnO 3+ δ (y= 0.85, 1.0)
Silver et al. 9 Developments in high temperature superconductivity
Priinits et al. Peculiarities of niobium-based superconducting alloys in the light of crystal chemistry: A brief survey
Ivanov et al. Coactive-Staggered Feature in Weyl Materials for Enhancing the Anomalous Nernst Conductivity