JPH1039096A - Production of positron emission isotope - Google Patents
Production of positron emission isotopeInfo
- Publication number
- JPH1039096A JPH1039096A JP8275179A JP27517996A JPH1039096A JP H1039096 A JPH1039096 A JP H1039096A JP 8275179 A JP8275179 A JP 8275179A JP 27517996 A JP27517996 A JP 27517996A JP H1039096 A JPH1039096 A JP H1039096A
- Authority
- JP
- Japan
- Prior art keywords
- isotope
- positron
- electrolysis
- mass number
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、請求項1に記載
の、金属や合金のフェルミ面の電子構造を研究するフェ
ルミオロジーや格子欠陥の研究の為の二光子消滅角相関
測定装置や医学における癌の発見等、病気の診断に使わ
れる陽電子カメラやポジトロンCT装置、及びポジトロ
ニウムと種々の結晶の間の電荷交換反応速度を観察する
ポジトロニウム化学において必要な、陽電子を放射する
同位元素を、電解により常温核融合連鎖反応を起こすこ
とを利用して、簡単な装置と手法により、必要な時、必
要な場所で必要な量を製造する技術分野に属する。
【0002】
【従来の技術】従来、「0001」に記載の金属・固体
の研究や医学等に陽電子消滅の現象を利用は、通常、陽
電子放射同位元素を製造するサイクロトロンや原子炉の
近くにおいてのみ、可能である。特にポジトロン核医学
に必要な陽電子放射同位元素の半減期は短い。又利用に
関しては危険を伴い、高い使用料を必要とし、簡便な方
法とは云い難い。従って、製造された同位元素は非常に
高価である。
【0003】
【発明が解決しようとする課題】従って、本発明は、
「0002」に記際の問題点を解決し、精確にコントロ
ール可能な核反応により効率良く、安全且つ簡便に、陽
電子放射同位元素を製造する方法を提供する。
【0004】
【課題を解決しようとする手段】請求項1に記載の常温
核融合連鎖反応を起こす電極を用い、請求項2から請求
項6の核反応の反応系(請求項7に記載)において電解
することを手段とする。即ち、電極素材として白金族金
属、遷移金属、鋼の多孔質体及びそれらに表面修飾を施
したものを用い、請求項2から請求項6までに記載の核
反応の原系である、安定同位体及び天然に存在する長寿
命の同位元素Mを、単体のガスや化合物分子及びイオン
として含む、気相、水、非水溶媒叉は溶融塩から成る電
解液や電極中に合金、混合物、化合物、吸収・吸着物、
付着物および内包物として含有させた電解系を電解する
ことにより、請求鋼2から請求項6の核反応を引き起こ
し、陽電子崩壊する放射性同位元素を製造する方法。
【0005】
【実施例】多孔質ニッケル電極を用いて、0.1〜0.
5mol/lのリチウム、ナトリウム、カリウム、ルビ
ジウム及びセシウムの炭酸塩または硫酸塩の軽水溶液を
電解しながら、発生するγ線をゲルマニウム・γ線スペ
クトルアナライザーにより観測し続けた。その結果、電
解により、すべての溶液中で51DkeVにおけるピー
クが増大することが明かになった。このピークはCu
(64)の放射陽電子が「陽電子消滅」する際に発する
510KeVのγ一線である。「表1」に、その実験結
果を示す。
【0006】この様な反応系に於ける電解により、電極
素材の金属も、上記の反応に於いて発生する核子等と反
応し、原子核変換が起きることが、明らかになった。即
ち、、ニッケル電極の本体が中性子捕獲をおこす:先
ず、Ni(62)+n−)Ni(63)+6.048M
eV)そしてNi(63)はβ線崩壊を起こし、Ni
(63))−β−→Cu(63)と成り、さらに中性子
捕獲、Cu(63)+n→Cu(64)+7.134M
eV、をおこす。実証されたのは、ガンマ線、510k
eVの検出による。その他、Co(56)、Fe(5
8)、Zn(65)等も製造されている可能性がある。
【0007】
【発明の効果】 申請している方法は、装置や手法も簡
便で、電解条件のコントロールは電流による為、非常に
精確に行えるため、原子炉や荷電粒子加速器を利用した
中性子線源を使う他の方法より、目的物質のみを精度良
く製造することが可能である。フェルミオロジーやポジ
トロン核医学は、他に代替可能な方法が存在しないた
め、非常に重要であり、現在、陽電子崩壊同位元素の入
手のみが研究発展の隘路担っていた。この発明により、
これらの研究が場所を選ばず広がり、発展する様にな
る。
【表1】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for studying fermiology and lattice defects for studying the electronic structure of the Fermi surface of a metal or an alloy according to claim 1. Positron cameras and positron CT devices used for diagnosing diseases, such as two-photon annihilation angle correlation measurement devices and cancer detection in medicine, and positronium chemistry that observes the rate of charge exchange reaction between positronium and various crystals, It belongs to the technical field of producing the required quantity in the required place at the required place with a simple device and method by utilizing the cold fusion chain reaction of the positron emitting isotope by electrolysis. 2. Description of the Related Art Conventionally, the use of the phenomenon of positron annihilation in metal and solid research and medicine described in "0001" is usually performed only near a cyclotron or a nuclear reactor for producing positron emitting isotopes. Is possible. In particular, the positron emission isotope required for positron nuclear medicine has a short half-life. In addition, the use is dangerous, requires a high fee, and is not a simple method. Therefore, the produced isotopes are very expensive. [0003] Accordingly, the present invention provides
A method for producing a positron emitting isotope efficiently, safely and simply by solving a problem described in “0002” and accurately controlling nuclear reactions. [0004] In the nuclear reaction system (claim 7) of claim 2 to 6, the electrode for causing a cold fusion chain reaction according to claim 1 is used. Electrolysis is the means. That is, a porous body of a platinum group metal, a transition metal, steel or the like, which has been subjected to surface modification, is used as an electrode material, and is a stable isotope which is a source system of a nuclear reaction according to claim 2 to 6. Alloys, mixtures, compounds in electrolytes or electrodes consisting of gas phase, water, non-aqueous solvents or molten salts, containing the long-lived isotope M in the body and naturally occurring as a single gas or compound molecule and ion , Absorption / adsorption materials,
7. A method for producing a radioisotope which causes nuclear reaction and positron decay according to claim 6 by electrolyzing an electrolytic system contained as an attachment and an inclusion. [0005] Using a porous nickel electrode, 0.1 to 0.
While electrolyzing a light aqueous solution of a carbonate or sulfate of 5 mol / l of lithium, sodium, potassium, rubidium and cesium, generated γ-rays were continuously observed by a germanium γ-ray spectrum analyzer. As a result, it was found that electrolysis increased the peak at 51 DkeV in all the solutions. This peak is Cu
This is a 510 KeV γ-ray emitted when the emitted positron of (64) “positron annihilation”. Table 1 shows the experimental results. [0006] It has been clarified that the electrolysis in such a reaction system also causes the metal of the electrode material to react with nucleons and the like generated in the above-mentioned reaction and to cause nuclear conversion. That is, the body of the nickel electrode causes neutron capture: Ni (62) + n-) Ni (63) + 6.048M.
eV) and Ni (63) undergoes beta-ray decay,
(63)) − β − → Cu (63), and neutron capture, Cu (63) + n → Cu (64) + 7.134M
eV. Proven gamma rays, 510k
By detection of eV. In addition, Co (56), Fe (5
8), Zn (65) and the like may also be manufactured. According to the method, the method and the applied method are simple, and the control of the electrolysis condition can be performed very accurately because the control of the electrolysis condition is performed by the electric current. Therefore, the neutron source using the nuclear reactor or the charged particle accelerator is used. It is possible to produce only the target substance with higher precision than by other methods using. Fermiology and positron nuclear medicine are very important because there is no alternative method. At present, only the acquisition of positron decay isotopes has been a bottleneck in research and development. With this invention,
These studies will spread and develop anywhere. [Table 1]
Claims (1)
(陽電子消滅とも云う)やポジトロニウムの消滅の際に
放出されるγ−線を手がかりとする、金属や合金のフェ
ルミ面の電子構造や格子欠陥を研究する手段としての二
光子消滅角相関測定装置や医学におけるポジトロンCT
装置、及びポジトロニウム化学は、他にかけがえの無い
方法として重要である。これらに必要な陽電子源である
陽電子崩壊を起こす放射性同位元素を、常温核融合連鎖
反応を起こす電解系(特開平7−174878により特
許申請中)を用いて製造する方法。 【請求項2】 質量数A+1やA+2(稀にはA+3)
の安定同位体及び天然に存在する長寿命の同位元素M
(A+1,Z)等を気相、液相及び固相として含む電解
系を、常温核融合連鎖反応を起こす電極(特開平7−1
74878により特許申請中)、例えば多孔質金属電極
を陰極として、電解して、質量数がAの同位元素M
(A,Z)を製造する方法。この様にして製造されたM
(A,Z)の殆どは、請求項1に記載の陽電子崩壊(β
+)元素である。ここにZは原子番号を表す。下記にそ
の核反応を示す。 記 M(A+1)等からM(A)を製造:B(10)→B
(8),C(12)→C(11,10),N(14)→
N(13),O(16)→O(15,14),F(1
9)→F(18,17),Ne(20)→Ne(19,
18),Na(23)→Na(22,21,20),M
g(24)→Mg(23,22),Al(27)→Al
(26,25),Si(28)→Si(27,26),
P(31)→P(30,29),S(32)→S(3
1),Cl(35)→Cl(34,33),Ar(3
6)→Ar(35),K(39)→K(38,37),
K(41)→K(40),Ca(40)→Ca(3
9),Sc(45)→Sc(44,43),Tl(4
6)→Tl45),V(50)→V(48,47),C
r(50)→Cr(49),Mn(53)→Mn(5
2,51),Fe(54)→Fe(53,52),Co
(59)→Co(58,56,55),Ni(60,5
8)→Ni(59,57),Co(63)→Co(62
〜60),Cu(65)→Cu(64),Zn(66,
64)→Zn(65,63,62),Ga(69)→G
a(68,66,65),Ge(70)→Ge(69,
67,66),As(75)→As(74,72,7
1,70),Se(74)→Se(73),Br(8
1,79)→Br(80,78〜75),Br(81)
→Br(80),Kr(80)→Kr(79,77),
Rb(85)→Rb(84,83,82,81),Sr
(84)→Sr(83,80),Y(89)→Y(8
8,87,86,85),Zr(90)→Zr(89,
87,86),Nb(93,91)→Nb(92m,9
0,89),Mo(92)→Mo(91,90),Tc
(97)→Tc(96〜93),Ru(96,98)→
Ru(95,97),Rh(103)→Rh(102,
100,99),Pd(102)→Pd(101),A
g(109,107)→Ag(108,106〜10
1),Cd(108,106)→Cd(107,10
5),In(115,113)→In(114,10
9),Sn(112)→Sn(111),Sb(12
3,121)→Sb(122,118,117),Te
(122,120)→Te(121,119,117,
116),I(129,127)→I(128,12
6,124,122,121,120),Xe(12
6,124)→Xe(125,123),Cs(13
3)→Cs(132,129〜127),Ba(13
2,130)→Ba(131,129),La(13
7)→La(135〜132),Ce(138,13
6)→Ce(137,135,133),Pr(14
1)→Pr(140,139),Nd(142)→Nd
(141),Pm(145)→Pm(144,14
3),Sm(144)→Sm(142),Eu(15
3,151)→Eu(152,150148〜14
5),Gd(148)→Gd(147,146),Tb
(155)→Tb(153),Ho(161)→Ho
(160),Er(164,162)→Er(163,
161),Tm(169)→Tm(168,166,1
65),Yb(168)→Yb(167),Lu(17
5,173)→Lu(174,171〜169),Hf
(172)→Hf(171),Ta(180)→Ta
(177〜175),Re(185)→Re(18
3),Os(184)→Os(183),Ir(19
1)→Ir(188),Pt(190)→pt(18
9),Au(197)→Au(196,194),Tl
(203)→Tl(200,198〜196),Pb
(202)→Pb(201,199),Bi(209)
→207〜205,203),Po(208)→Po
(207,205),At(211)→At(210,
208,207),Rn(221)→Rn(211,2
10),Np(236)→Np(234)。 【請求項3】 質量数A−1、原子番号Z−1の安定同
位体及び天然に存在する長寿命の同位元素M(A−1,
Z−1)を気相、液相及び固相として含む電解系を、請
求項2と同様に陰分極及び陽分極電解して、下記の質量
数がAの同位元素M(A,Z)を製造する方法。この様
にして製造されたM(A,Z)は、請求項1に記載の陽
電子崩壊(β+)元素である。下記にその核反応を示
す。 記 M(A−1,Z−1)からM(A,Z)を製造:B(1
0)→C(11),N(14)→O(15),Mg(2
5)→Al(26),Ca(43)→Sc(44),T
i(47)→V(48),Ti(48)→V(49),
Fe(57)→Co(58),Zn(67)→Ga(6
8),Kr(83)→Rb(84),Sr(87)→Y
(88),Cd(113)→In(114),Te(1
25)→I(126),Xe(131)→Cs(13
2)。 【請求項4】 質量数A−1、原子番号Zの安定同位体
及び天然に存在する長寿命の同位元素M(A−1,Z)
を気相、液相及び固相として含む電解系を、 【請求項2】と同様に陰分極及び陽分極電解して、下記
の質量数がAの同位元素M(A,Z)を製造する方法。
この様にして製造されたM(A,Z)は 【請求項1】に記載の陽電子崩壊(β+)元素である。
下記にその核反応を示す。 記 M(A−1,Z)からM(A,Z)を製造:K(39)
→K(40),Cu(63)→Cu(40),Zn(6
4)→Zn(65),Br(79)→Br(80),K
r(78)→Kr(79),Sr(84)→Sr(8
5),Ag(107)→Ag(108),Cd(10
6)→Cd(108),In(113)→In(11
4),Sb(121)→Sb(122),I(127)
→I(128),Eu(151)→Eu(152)。 【請求項5】 質量数A、原子番号Z+1の安定同位体
及び天然に存在する長寿命の同位元素M(A,Z+1)
を気相、液相及び固相として含む電解系を、請求項2と
同様に陰分極及び陽分極電解して、下記の質量数がAの
同位元素M(A,Z)を製造する方法。この様にして製
造されたM(A,Z)は、請求項1に記載の陽電子崩壊
(β+)元素である。下記にその核反応を示す。 記 M(A,Z+1)からM(A,Z)を製造:Ca(4
0)→K(40),Ni(58)→Co(58),Zn
(64)→Cu(64),Se(74)→As(7
4),Kr(78)→Rb(78),Sr(84)→R
b(84),Pd(102)→Rh(102),Cd
(106)→Ag(106),Sn(112)→In
(112),Sn(114)→In(114),Te
(120)→Sb(120),Te(122)→Sb
(122),Xe(124)→I(124),Xe(1
26)→I(126),Xe(128)→I(12
8),Ba(130)→Cs(130),Ba(13
2)→Cs(132),Gd(152)→Eu(15
2),Er(162)→Ho(162),Hf(17
4)→Lu(174),Hg(196)→Au(19
6)。 【請求項6】 質量数A+1、原子番号Z+1の安定同
位体及び天然に存在する長寿命の同位元素M(A+1,
Z+1)を気相、液相及び固相として含む電解系を、請
求項2と同様に陰分極及び陽分極電解して、下記の質量
数がAの同位元素M(A,Z)を製造する方法。この様
にして製造されたM(A,Z)は、請求項1に記載の陽
電子崩壊(β+)元素である。下記にその核反応を示
す。 記 M(A+1,Z+1)からM(A,Z)を製造:Sn
(115)→In(114),Xe(129)→I(1
28),Ba(130)→Cs(129),Ba(13
2)→Cs(131),Sm(144)→Pm(14
3)。 【請求項7】 請求項2から請求項6までに記載の核反
応の原系である、安定同位体及び天然に存在する長寿命
の同位元素Mは、単体のガスや化合物分子及びイオンと
して含む、気相、水、非水溶媒叉は溶融塩から成る電解
液や電極素材の組成(合金、混合物、化合物、吸収・吸
着物、付着物および内包物として電極に含有させる、以
下、これらを混入と呼ぶ)電解系を、請求項1に記載の
電極により電解することにより、下記の核反応を引き起
こし、陽電子崩壊する放射性同位元素を製造する方法。Claims: 1. Fermi of a metal or an alloy, based on two-photon annihilation (also referred to as positron annihilation) due to collision of positrons with electrons or γ-rays emitted when positronium is annihilated. Two-photon annihilation angle correlation measurement device and positron CT in medicine as means for studying the electronic structure and lattice defects of surfaces
Equipment and positronium chemistry are important as an irreplaceable method. A method for producing a radioisotope causing positron decay, which is a positron source required for these, using an electrolytic system causing a cold fusion chain reaction (patent pending according to Japanese Patent Application Laid-Open No. 7-174878). 2. A mass number A + 1 or A + 2 (rarely A + 3)
Stable isotopes and naturally occurring long-lived isotopes M
An electrode that causes a cold fusion chain reaction in an electrolytic system containing (A + 1, Z) and the like as a gas phase, a liquid phase, and a solid phase (Japanese Patent Laid-Open No.
74878 for patent), for example, using a porous metal electrode as a cathode to perform electrolysis to obtain an isotope M having a mass number of A.
A method for producing (A, Z). M thus manufactured
Most of (A, Z) is the positron decay (β
+ ) Element. Here, Z represents an atomic number. The nuclear reaction is shown below. Production of M (A) from M (A + 1) etc .: B (10) → B
(8), C (12) → C (11,10), N (14) →
N (13), O (16) → O (15,14), F (1
9) → F (18, 17), Ne (20) → Ne (19,
18), Na (23) → Na (22, 21, 20), M
g (24) → Mg (23,22), Al (27) → Al
(26, 25), Si (28) → Si (27, 26),
P (31) → P (30,29), S (32) → S (3
1), Cl (35) → Cl (34, 33), Ar (3
6) → Ar (35), K (39) → K (38,37),
K (41) → K (40), Ca (40) → Ca (3
9), Sc (45) → Sc (44, 43), Tl (4
6) → T145), V (50) → V (48, 47), C
r (50) → Cr (49), Mn (53) → Mn (5
2,51), Fe (54) → Fe (53,52), Co
(59) → Co (58,56,55), Ni (60,5)
8) → Ni (59,57), Co (63) → Co (62)
6060), Cu (65) → Cu (64), Zn (66,
64) → Zn (65, 63, 62), Ga (69) → G
a (68, 66, 65), Ge (70) → Ge (69,
67, 66), As (75) → As (74, 72, 7)
1, 70), Se (74) → Se (73), Br (8
1,79) → Br (80,78-75), Br (81)
→ Br (80), Kr (80) → Kr (79,77),
Rb (85) → Rb (84, 83, 82, 81), Sr
(84) → Sr (83,80), Y (89) → Y (8
8, 87, 86, 85), Zr (90) → Zr (89,
87, 86), Nb (93, 91) → Nb (92 m, 9
0,89), Mo (92) → Mo (91,90), Tc
(97) → Tc (96-93), Ru (96,98) →
Ru (95, 97), Rh (103) → Rh (102,
100, 99), Pd (102) → Pd (101), A
g (109,107) → Ag (108,106-10
1), Cd (108, 106) → Cd (107, 10)
5), In (115, 113) → In (114, 10)
9), Sn (112) → Sn (111), Sb (12
3,121) → Sb (122,118,117), Te
(122,120) → Te (121,119,117,
116), I (129,127) → I (128,12
6, 124, 122, 121, 120), Xe (12
6,124) → Xe (125,123), Cs (13
3) → Cs (132, 129 to 127), Ba (13
2,130) → Ba (131,129), La (13
7) → La (135-132), Ce (138, 13)
6) → Ce (137, 135, 133), Pr (14
1) → Pr (140,139), Nd (142) → Nd
(141), Pm (145) → Pm (144, 14
3), Sm (144) → Sm (142), Eu (15)
3,151) → Eu (152,150148-14
5), Gd (148) → Gd (147, 146), Tb
(155) → Tb (153), Ho (161) → Ho
(160), Er (164, 162) → Er (163, 162)
161), Tm (169) → Tm (168, 166, 1)
65), Yb (168) → Yb (167), Lu (17
5,173) → Lu (174,171-169), Hf
(172) → Hf (171), Ta (180) → Ta
(177-175), Re (185) → Re (18
3), Os (184) → Os (183), Ir (19)
1) → Ir (188), Pt (190) → pt (18)
9), Au (197) → Au (196, 194), Tl
(203) → Tl (200, 198 to 196), Pb
(202) → Pb (201, 199), Bi (209)
→ 207-205,203), Po (208) → Po
(207, 205), At (211) → At (210,
208, 207), Rn (221) → Rn (211 and 211)
10), Np (236) → Np (234). 3. A stable isotope having a mass number of A-1, an atomic number of Z-1 and a naturally occurring long-lived isotope M (A-1,
An electrolytic system containing Z-1) as a gas phase, a liquid phase and a solid phase is subjected to anodization and anodic polarization in the same manner as in claim 2 to obtain an isotope M (A, Z) having the following mass number A: How to make. M (A, Z) thus produced is the positron decay (β + ) element according to claim 1. The nuclear reaction is shown below. Production of M (A, Z) from the notation M (A-1, Z-1): B (1
0) → C (11), N (14) → O (15), Mg (2
5) → Al (26), Ca (43) → Sc (44), T
i (47) → V (48), Ti (48) → V (49),
Fe (57) → Co (58), Zn (67) → Ga (6
8), Kr (83) → Rb (84), Sr (87) → Y
(88), Cd (113) → In (114), Te (1
25) → I (126), Xe (131) → Cs (13
2). 4. A stable isotope having a mass number of A-1, an atomic number of Z and a naturally occurring long-lived isotope M (A-1, Z)
Is electrolyzed negatively and positively in the same manner as in claim 2 to produce an isotope M (A, Z) having the following mass number A: Method.
M (A, Z) thus produced is a positron decay (β + ) element according to claim 1.
The nuclear reaction is shown below. Production of M (A, Z) from the notation M (A-1, Z): K (39)
→ K (40), Cu (63) → Cu (40), Zn (6
4) → Zn (65), Br (79) → Br (80), K
r (78) → Kr (79), Sr (84) → Sr (8
5), Ag (107) → Ag (108), Cd (10
6) → Cd (108), In (113) → In (11)
4), Sb (121) → Sb (122), I (127)
→ I (128), Eu (151) → Eu (152). 5. A stable isotope of mass number A, atomic number Z + 1 and a naturally occurring long-lived isotope M (A, Z + 1)
A method for producing an isotope M (A, Z) having the following mass number A by subjecting an electrolytic system containing as a gas phase, a liquid phase and a solid phase to negative and positive polarization electrolysis in the same manner as in claim 2. M (A, Z) thus produced is the positron decay (β + ) element according to claim 1. The nuclear reaction is shown below. Production of M (A, Z) from the notation M (A, Z + 1): Ca (4
0) → K (40), Ni (58) → Co (58), Zn
(64) → Cu (64), Se (74) → As (7
4), Kr (78) → Rb (78), Sr (84) → R
b (84), Pd (102) → Rh (102), Cd
(106) → Ag (106), Sn (112) → In
(112), Sn (114) → In (114), Te
(120) → Sb (120), Te (122) → Sb
(122), Xe (124) → I (124), Xe (1
26) → I (126), Xe (128) → I (12
8), Ba (130) → Cs (130), Ba (13)
2) → Cs (132), Gd (152) → Eu (15
2), Er (162) → Ho (162), Hf (17
4) → Lu (174), Hg (196) → Au (19)
6). 6. A stable isotope of mass number A + 1, atomic number Z + 1 and a naturally occurring long-lived isotope M (A + 1,
An electrolytic system containing Z + 1) as a gas phase, a liquid phase, and a solid phase is subjected to negative and positive polarization electrolysis in the same manner as in claim 2 to produce an isotope M (A, Z) having the following mass number A: Method. M (A, Z) thus produced is the positron decay (β + ) element according to claim 1. The nuclear reaction is shown below. Production of M (A, Z) from M (A + 1, Z + 1): Sn
(115) → In (114), Xe (129) → I (1
28), Ba (130) → Cs (129), Ba (13
2) → Cs (131), Sm (144) → Pm (14
3). 7. The stable isotope and the naturally occurring long-lived isotope M, which are the source of the nuclear reaction according to claim 2 to 6, are contained as a single gas, compound molecule and ion. Electrolyte consisting of gas, water, non-aqueous solvent or molten salt, and composition of electrode material A method for producing a radioisotope that causes the following nuclear reaction and undergoes positron decay by electrolyzing an electrolytic system with the electrode according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8275179A JPH1039096A (en) | 1996-07-23 | 1996-07-23 | Production of positron emission isotope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8275179A JPH1039096A (en) | 1996-07-23 | 1996-07-23 | Production of positron emission isotope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1039096A true JPH1039096A (en) | 1998-02-13 |
Family
ID=17551781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8275179A Pending JPH1039096A (en) | 1996-07-23 | 1996-07-23 | Production of positron emission isotope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1039096A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001015176A1 (en) * | 1999-08-25 | 2001-03-01 | Hitachi, Ltd. | Method and apparatus for manufacturing radioisotopes |
-
1996
- 1996-07-23 JP JP8275179A patent/JPH1039096A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001015176A1 (en) * | 1999-08-25 | 2001-03-01 | Hitachi, Ltd. | Method and apparatus for manufacturing radioisotopes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9922742B2 (en) | Tritium adsorbent, method for separating tritium in water, and method for regenerating tritium adsorbent | |
Antonio et al. | Design of spectroelectrochemical cell for in situ X-ray absorption fine structure measurements of bulk solution species | |
Ge et al. | Selective electrodeposition of europium and samarium in molten LiCl-KCl with copper and aluminum electrodes | |
Lanier et al. | Nuclear Levels in Re 186 | |
Próchniak et al. | Electrochemical deposition of nickel from aqueous electrolytic baths prepared by dissolution of metallic powder | |
JPH1039096A (en) | Production of positron emission isotope | |
Soddy | Radioactivity | |
Vandegrift et al. | Preliminary investigations for technology assessment of Mo production from LEU targets | |
RU2499306C1 (en) | Method of cleaning irradiated nuclear fuel | |
Csikai et al. | Nuclear data for neutron activation analysis | |
Moon et al. | Molybdenum-99 from Molten Salt Reactor as a Source of Technetium-99 m for Nuclear Medicine: Past, Current, and Future of Molybdenum-99 | |
JP2569357B2 (en) | Method for removing radioactive europium from radioactive gadolinium solution | |
Yagi et al. | Production of 39Cl and 38S by photonuclear reactions using argon gas target | |
Linder et al. | Radiative Capture of N 14 on P 31 | |
Steiger et al. | Development of intense, long-lived positron sources | |
BRANDT | The Production of Iodine and Bromine Isotopes from Uranium at High Proton Energies: Part I: Experimental | |
Haas | Tailor-made thin radionuclide layers for targets and recoil ion sources in nuclear applications | |
Passell et al. | Trace elements added to palladium by exposure to gaseous deuterium | |
Phillips et al. | Chemistry and concept for an automated 72 Se/72 As generator | |
Eberhardt et al. | Preparation of actinide targets by electrodeposition for heavy-ion studies and laserspectroscopic investigations | |
Schwantes et al. | Neutron capture experiments on unstable nuclei | |
Bresesti et al. | Preparation of 18F in a Nuclear Reactor | |
LaVerne et al. | Hydrogen production in the lithium-7 (3+) ion radiolysis of benzene | |
Ding et al. | Electrochemical and kinetic studies on the electrolytic extraction of Gd on Bi electrode in LiCl–KCl melt | |
Mikheev et al. | Behavior of radioaerosols formed by evaporation of 137 Cs 131 I and 137 CsOH from the metal surface in an electrostatic field |