JPH1038215A - Burner combustion method - Google Patents

Burner combustion method

Info

Publication number
JPH1038215A
JPH1038215A JP16613096A JP16613096A JPH1038215A JP H1038215 A JPH1038215 A JP H1038215A JP 16613096 A JP16613096 A JP 16613096A JP 16613096 A JP16613096 A JP 16613096A JP H1038215 A JPH1038215 A JP H1038215A
Authority
JP
Japan
Prior art keywords
combustion
fuel
air
temperature
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16613096A
Other languages
Japanese (ja)
Other versions
JP3879005B2 (en
Inventor
Ryoichi Tanaka
良一 田中
Toshiaki Hasegawa
敏明 長谷川
Toshibumi Hoshino
俊文 星野
Susumu Mochida
晋 持田
Hirokazu Katsushima
裕和 勝島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Original Assignee
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd filed Critical Nippon Furnace Co Ltd
Priority to JP16613096A priority Critical patent/JP3879005B2/en
Publication of JPH1038215A publication Critical patent/JPH1038215A/en
Application granted granted Critical
Publication of JP3879005B2 publication Critical patent/JP3879005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a burner combustion method wherein there is accompanied by an oxidization heat production reaction where a heat production rate is enough low as compared with ordinary combustion, and a fire flame is formed stably in a wide space, and further a fire flame volume is very greatly stabilized and combusted. SOLUTION: There are brought into contact high temperature diluted air that is very lower than ordinary air at least before a combustion reaction and above combustion stabilization limit temperature of mixed air at that oxygen concentration or a corresponding oxidizing agent and a fuel in a furnace, which are therefore stably combusted under an oxidization heat production reaction at a very low speed. The combustion is securely achieved by adding a hydrocarbon fuel or hydrocarbon as a marker when the hydrocarbon fuel is used as a fuel or even when a fuel not including hydrocarbon is used, and keeping the combustion in the state where it is green colored.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はバーナの燃焼方法の
改善に関する。更に詳述すると、本発明は、高温かつ低
酸素の空気で十分に低速な酸化発熱反応下に拡散燃焼さ
せる高温空気燃焼を安定に実現するバーナ燃焼方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for burning a burner. More specifically, the present invention relates to a burner combustion method for stably realizing high-temperature air combustion in which diffusion combustion is performed under sufficiently low-speed oxidative exothermic reaction with high-temperature and low-oxygen air.

【0002】[0002]

【従来の技術】一般に拡散燃焼バーナは、燃料と空気と
を素早く混合して燃焼させるため短炎を形成する。そし
て、火炎部分には燃焼ガスが発生する顕熱の全てが保持
されているため、どうしても火炎の熱流束のピークが発
生し、大量のNOxが発生すると共に均一な熱流束分布
を得ることが困難であった。また、燃料と空気の混合性
を悪くして長炎を形成しようとしても、燃焼が不安定に
なり、不完全燃焼や火炎の吹き飛びなどを起こし易くな
る。そこで、従来の一般的な拡散燃焼方式のバーナで
は、熱流束の均一化を図るためには、たくさんのバーナ
を備え付け、各バーナごとの火炎のボリュームを小さく
して最高熱流束と平均熱流束との差を小さくすることが
行われている。
2. Description of the Related Art Generally, a diffusion combustion burner forms a short flame because fuel and air are quickly mixed and burned. And since all the sensible heat generated by the combustion gas is held in the flame portion, the peak of the heat flux of the flame is inevitably generated, and it is difficult to generate a large amount of NOx and obtain a uniform heat flux distribution. Met. In addition, even if an attempt is made to form a long flame by deteriorating the mixability between fuel and air, combustion becomes unstable, and incomplete combustion and flame blow-off are liable to occur. Therefore, in order to achieve a uniform heat flux, a conventional general diffusion combustion type burner is equipped with many burners, and the volume of the flame for each burner is reduced to achieve the maximum heat flux and the average heat flux. The difference has been reduced.

【0003】しかしながら、勢いよく酸化発熱反応を起
こす以上、火炎ボリュームが小さくなり熱流束のピーク
が発生することを防ぐことはできないので、根本的な解
決策にはなっていない。
However, it is not a fundamental solution since it is impossible to prevent the flame volume from being reduced and the peak of the heat flux from occurring due to the vigorous oxidative exothermic reaction.

【0004】一方、加熱システム内の燃焼ガス温度の差
を低下させるという、伝熱面で最も好ましいとされる温
度場を形成する方法のひとつとして、未燃混合気を希釈
してその質量を増すことにより温度差を無くすことが考
えられる。この希釈を排ガス循環によって行う場合、排
ガス損失を抑えつつガス循環量を増やすには、排ガスの
一部を燃焼用空気に混ぜて再循環せさることが考えられ
る。排ガスの一部を燃焼用空気に混ぜて供給する方法と
しては、従来から排ガス再循環燃焼方法と呼ばれる燃焼
方法がある。この燃焼方法は、低温の排ガスの一部を燃
焼用空気に混ぜることによって、通常の空気よりも2〜
3%程度酸素濃度が低くかつ50℃〜200℃程度に温
められた空気を使って燃焼させるものである。
[0004] On the other hand, as one of the methods for forming a temperature field which is most preferable in terms of a heat transfer surface by reducing a difference in temperature of combustion gas in a heating system, an unburned air-fuel mixture is diluted to increase its mass. Thus, it is possible to eliminate the temperature difference. When this dilution is performed by exhaust gas circulation, in order to increase the gas circulation amount while suppressing the exhaust gas loss, it is conceivable to recirculate a part of the exhaust gas by mixing it with the combustion air. As a method of supplying a part of exhaust gas mixed with combustion air, there is a combustion method conventionally called an exhaust gas recirculation combustion method. This combustion method mixes part of the low-temperature exhaust gas with the combustion air to produce
The combustion is carried out using air having a low oxygen concentration of about 3% and warmed to about 50 ° C to 200 ° C.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この排
ガス再循環燃焼方法によっても、火炎の最高温度を僅か
に低下させてサーマルNOxを幾分抑制させ得る程度で
あって、加熱システム内例えば炉内での燃焼ガス温度の
差を十分低下させることはできなかった。更にガス循環
量を増加させて温度差を小さくすることも考えられる
が、排ガス再循環量だけを増加させても、酸素濃度が低
くなって燃え難くなり、燃焼の急激な不安定を生じるこ
ととなる。
However, even with this exhaust gas recirculation combustion method, the maximum temperature of the flame can be slightly reduced to suppress the thermal NOx somewhat, and the temperature can be reduced in the heating system, for example, in the furnace. Could not sufficiently reduce the difference in combustion gas temperature. It is conceivable to further reduce the temperature difference by increasing the gas circulation amount.However, even if only the exhaust gas recirculation amount is increased, the oxygen concentration becomes low and it becomes difficult to burn, causing sudden instability of combustion. Become.

【0006】また、酸化剤の温度を単独に上げること、
例えば1000℃程度以上の高温にすることは、濃淡燃
焼などの特殊な燃焼方法を採用しない限り、あるいは採
用したとしても、火炎の最高温度が通常の燃焼における
よりもはるかに高くなって大量のNOxを発生させるこ
とになると考えられていたので、一般的に利用すること
ができる燃焼としては殆ど考慮されることがなかった。
[0006] In addition, raising the temperature of the oxidizing agent alone,
For example, raising the temperature to about 1000 ° C. or higher requires that the maximum temperature of the flame be much higher than that in normal combustion unless a special combustion method such as light-and-dark combustion is adopted, or even if it is adopted. It was considered that this would cause combustion, and therefore, was hardly considered as generally available combustion.

【0007】本発明は、通常の燃焼に比して十分に熱発
生速度が低速な酸化発熱反応を伴いかつ広い空間で安定
に燃焼する火炎が形成されるバーナの燃焼方法を提供す
ることを目的とする。換言すれば、本発明は、火炎ボリ
ュームが非常に大きく安定して燃焼するバーナの燃焼方
法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of burning a burner in which a flame is generated which is accompanied by an oxidative exothermic reaction having a sufficiently low heat generation rate as compared with ordinary combustion and which stably burns in a wide space. And In other words, an object of the present invention is to provide a method for burning a burner in which the flame volume is very large and burns stably.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
め、本発明者等が種々研究した結果、酸素濃度を通常の
空気よりも遥かに低くしたときの燃焼の不安定性を回復
させるには、空気温度そのものも従来の排ガス再循環燃
焼方法で用いられていたよりも遥かに上げることが不可
欠であることが判明した。
In order to achieve the above object, the present inventors have conducted various studies. As a result, to recover the instability of combustion when the oxygen concentration is much lower than that of ordinary air, It has been found that it is essential that the air temperature itself be much higher than that used in the conventional exhaust gas recirculation combustion method.

【0009】即ち、燃焼安定条件について考察すると、
空気高温化とガス再循環を組み合わせた高温空気燃焼の
本質的因子は酸化剤の温度と酸素濃度と見ることができ
る。そこで、炭化水素ガスを燃料とした拡散火炎の燃焼
可能範囲が、高温希釈空気温度とその酸素濃度によりど
のように変化するかを実験的に調べた。実験は、図1〜
図7に例示するように、あらかじめ高温空気を窒素で希
釈後、高温予熱空気流に直角方向から燃料噴流が流入す
る交差流れ系で形成される火炎を対象とした。ノズル部
は高温流中にさらされない断熱材で覆われた構造となっ
ている。燃料はLPG(C38 97%)を0.053
3/h (1.380kW)一定とし、高温空気流量は
空気量と窒素希釈量の和を15m3/h 一定とした。希
釈空気温度は1100℃より漸次低下するが、燃焼が不
安定化する条件までとした。空気の窒素希釈割合を変化
させ、その時の希釈空気温度に対する安定燃焼範囲の傾
向を図8にまとめた。この燃焼状態の観察の結果、燃焼
用酸化剤たる空気の温度と熱再循環量即ち希釈空気の酸
素濃度との間には、燃焼用酸化剤の温度が高いほどガス
再循環量を増加できるという関係、換言すれば、燃焼用
酸化剤である希釈空気の温度が高温度であれば酸素濃度
を低くしても燃焼が成立するという関係があることを知
見した。
That is, considering the combustion stability conditions,
The essential factors of high temperature air combustion combining air heating and gas recirculation can be seen as oxidant temperature and oxygen concentration. Therefore, it was experimentally examined how the combustible range of a diffusion flame using hydrocarbon gas as a fuel varies depending on the high-temperature dilution air temperature and its oxygen concentration. The experiment is shown in Figs.
As illustrated in FIG. 7, a flame formed in a cross flow system in which a high-temperature air is diluted with nitrogen in advance, and then a fuel jet flows into the high-temperature preheated air flow from a direction perpendicular to the high-temperature preheat air flow. The nozzle portion has a structure covered with a heat insulating material that is not exposed to a high-temperature flow. Fuel and LPG (C 3 H 8 97% ) 0.053
m 3 / h (1.380 kW) was constant, and the high-temperature air flow rate was constant at 15 m 3 / h, the sum of the air amount and the nitrogen dilution amount. The temperature of the dilution air gradually decreased from 1100 ° C., but the condition was such that the combustion became unstable. FIG. 8 shows the tendency of the stable combustion range with respect to the dilution air temperature at that time when the nitrogen dilution ratio of air was changed. As a result of the observation of the combustion state, between the temperature of the air as the combustion oxidant and the heat recirculation amount, that is, the oxygen concentration of the dilution air, the gas recirculation amount can be increased as the temperature of the combustion oxidant increases. It has been found that there is a relationship, in other words, that if the temperature of the dilution air, which is the oxidizing agent for combustion, is high, combustion is established even if the oxygen concentration is reduced.

【0010】更に、この知見に基づいて本発明者等が研
究した結果、燃焼用空気の温度を従来の排ガス再循環燃
焼方法で用いられていたよりも遥かに上げながら空気比
を変えずに燃焼用酸化剤としての酸素濃度を通常の空気
よりも遥かに低くして行くと、それがある条件に達する
と、酸化発熱反応が通常の空気を用いた場合に比べて非
常に遅いにもかかわらず安定して燃焼する現象が起こ
り、そのときには火炎の可視発光色中に緑色のスペクト
ル成分を出す炭化水素系燃料の燃焼反応中間生成物の割
合の増加が認められる結果、火炎が通常燃焼時の青色よ
りも緑色がかる(緑色化)という現象を知見するに至っ
た。
Further, based on this finding, the present inventors have conducted a study and found that the temperature of the combustion air was raised much higher than that used in the conventional exhaust gas recirculation combustion method without changing the air ratio. If the oxygen concentration as an oxidizing agent is made much lower than that of ordinary air, when it reaches a certain condition, the oxidation exothermic reaction is much slower than that of ordinary air, but it is stable. A phenomenon occurs in which the flame increases in the visible emission color of the flame, at which time the proportion of the combustion reaction intermediate product of the hydrocarbon-based fuel that emits a green spectrum component increases. Also came to know the phenomenon of greening (greening).

【0011】即ち、燃焼用空気の温度を上昇させるのに
伴って火炎の可視発光色中における青色の発光スペクト
ル強度に対する緑色の発光スペクトル強度の割合が増加
する傾向があり、更に酸素濃度を下げるとその増加現象
が顕著になることを知見するに至った。火炎は、通常の
酸素濃度(約21%)でかつ常温の空気と燃料とを拡散
燃焼させたとき(以下、通常燃焼という)には、いわゆ
るブルーフレームと呼ばれるように青色をしており、緑
色がかった色になること即ち緑色の発光スペクトル成分
が火炎色に影響を与えるほどに出現することはありえな
かった。通常燃焼時の炭化水素系燃料のリアクションチ
ャートによると、大部分の反応が青色発光スペクトル成
分であるCHラジカルを発生させる反応経路を経る。し
かし、酸化剤の温度を上げかつ酸素濃度を下げて行く
と、緑色発光成分であるC2 ラジカルを発生させる反応
経路を経る反応の割合が増加しあるいは主流となる燃焼
反応が起こっているものと推定される。
That is, as the temperature of the combustion air increases, the ratio of the green emission spectrum intensity to the blue emission spectrum intensity in the visible emission color of the flame tends to increase. It has been found that the increase phenomenon becomes remarkable. When the flame has a normal oxygen concentration (about 21%) and diffuses and combusts air and fuel at normal temperature (hereinafter, referred to as normal combustion), the flame has a blue color, so-called blue flame, and has a green color. It was not possible for the color to become dull, that is, for the green emission spectral components to appear so as to affect the flame color. According to the reaction chart of the hydrocarbon fuel during normal combustion, most of the reactions pass through a reaction path that generates CH radicals, which are blue emission spectrum components. However, when the temperature of the oxidizing agent is increased and the oxygen concentration is decreased, the rate of the reaction passing through the reaction path for generating C 2 radicals, which is a green light-emitting component, increases, or the mainstream combustion reaction occurs. Presumed.

【0012】また、各酸素濃度における混合気の燃焼安
定限界温度(通常燃焼において燃焼が不安定になる場合
その限界付近では例えば空気比の値や空気流速の僅かな
変化によって火炎は吹き消えて消失してしまうという特
性が見られる。ところが、高温の空気を不活性ガスで希
釈し、酸素濃度を低下させた場合には、火炎は容易に消
失せず、吹き消えなくなる。しかし、その際、最終排ガ
ス濃度組成中にCO成分を伴うようになる。このような
現象を引き起こす温度、即ちそれよりも温度が低くなる
と吹き消えを起こさないまでも、完全燃焼が困難とな
り、最終排ガス濃度組成中にCO成分を伴うようになっ
て、燃焼が急激に不安定となる温度を本明細書では燃焼
安定限界温度と呼ぶ)以上に予熱された高温希釈空気と
燃料とは、拡散混合して可燃範囲に入ると、保炎機構の
助けを受けてあるいは自発的に燃焼を開始する。しか
も、酸素濃度が通常の空気よりもはるかに低く尚かつ希
釈空気のボリュームが相当大きいので、通常の燃焼に比
して熱発生速度が十分に低速な酸化発熱反応を伴ったも
のとなる。このため、炉内の広範囲で酸化発熱反応を持
続させて安定した燃焼を続け、顕熱が発生する過程で熱
を奪われ炉内の被加熱物を加熱することとなる。しか
も、低酸素濃度でかつ高温の希釈空気によって火炎ボリ
ュームが顕著に増大するため、熱ガス流速が速くなり、
対流伝熱性を格段に向上させる。
In addition, the combustion stability limit temperature of the air-fuel mixture at each oxygen concentration (when the combustion becomes unstable in normal combustion, near the limit, the flame blows out and disappears due to a slight change in the air ratio value or the air flow velocity, for example). However, when high-temperature air is diluted with an inert gas to reduce the oxygen concentration, the flame is not easily extinguished and does not blow out. At the temperature that causes such a phenomenon, that is, at a temperature lower than this, it becomes difficult to completely burn the exhaust gas even if it does not blow out. The temperature at which combustion becomes unstable due to the presence of components is referred to as the combustion stability limit temperature in this specification). Once in the combustible range Te, starts receiving of or spontaneously combust help of flame holding mechanism. Moreover, since the oxygen concentration is much lower than that of normal air and the volume of dilution air is considerably large, the heat generation rate is accompanied by an oxidative exothermic reaction whose heat generation rate is sufficiently lower than that of normal combustion. For this reason, the oxidation exothermic reaction is maintained over a wide area in the furnace, and stable combustion is continued. In the process of generating sensible heat, heat is deprived and the object to be heated in the furnace is heated. In addition, the flame volume is significantly increased by the low-oxygen-concentration and high-temperature dilution air, so that the hot gas flow rate increases,
Dramatically improve convective heat transfer.

【0013】本発明は、かかる知見に基づくものであっ
て、請求項1記載の発明は、酸化剤と燃料とが炉内で接
触して拡散燃焼するバーナ燃焼方法において、少なくと
も燃焼反応直前には通常の空気よりもはるかに酸素濃度
が低くかつその酸素濃度における燃焼安定限界温度以上
の高温希釈空気あるいはそれに相当する酸化剤で拡散燃
焼させるようにしている。
The present invention is based on this finding, and the invention according to claim 1 is directed to a burner combustion method in which an oxidizing agent and a fuel are brought into contact in a furnace to diffuse and burn, and at least immediately before the combustion reaction. Diffusion combustion is performed using high-temperature diluted air having an oxygen concentration much lower than that of ordinary air and having a combustion stability limit temperature or higher at the oxygen concentration or an oxidizing agent corresponding thereto.

【0014】この拡散燃焼においては、十分に低速な酸
化発熱反応下に拡散燃焼が起こり、熱ガスが流動する間
にも絶えず酸化発熱反応を起こして広範囲で燃焼し続
け、同じ燃焼量の通常燃焼時に比べてはるかに大きなボ
リュームで安定に燃焼する火炎が形成される。そして、
この大きなボリュームの火炎は、広範囲で酸化発熱反応
を持続するため熱流束のピークを作らず、広い領域ある
いは炉内のほぼ全域において顕熱を発生させながら対流
伝熱とふく射伝熱とで被加熱物を加熱することができ
る。
In this diffusion combustion, diffusion combustion takes place under a sufficiently low-speed oxidative exothermic reaction, and the oxidative exothermic reaction is constantly caused even during the flow of the hot gas to continue burning over a wide range. A flame that stably burns at a much larger volume than sometimes is formed. And
This large-volume flame sustains an oxidative exothermic reaction over a wide area without generating a heat flux peak.It is heated by convective heat transfer and radiation heat transfer while generating sensible heat in a wide area or almost the entire area of the furnace. Things can be heated.

【0015】また、請求項2記載の発明は、上述の高温
空気燃焼下において、燃料として炭化水素系燃料あるい
は炭化水素を含む燃料が使用される場合には、拡散燃焼
で発生する火炎の可視発光色中における青色の発光スペ
クトル強度に対する緑色の発光スペクトル強度の割合が
通常の酸素濃度でかつ常温の空気と燃料とを拡散燃焼さ
せたときよりも顕著に増加させて火炎を緑色化させる状
態に燃焼を維持するようにしている。
Further, according to the present invention, when a hydrocarbon-based fuel or a fuel containing a hydrocarbon is used as the fuel under the above-described high-temperature air combustion, the visible light emission of the flame generated by the diffusion combustion. The ratio of the intensity of the green emission spectrum to the intensity of the blue emission spectrum in the color is remarkably increased compared to the case where air and fuel at normal temperature are diffused at normal oxygen concentration, and the flame is turned to green. To maintain.

【0016】また、請求項3記載の発明は、燃料として
炭化水素を含まない燃料を使用する場合において、炭化
水素系燃料あるいは炭化水素をマーカーとして燃料中に
添加することによって、火炎を緑色化させる状態に燃焼
を維持することを可能としている。
According to a third aspect of the present invention, when a fuel containing no hydrocarbon is used as a fuel, the flame is turned green by adding a hydrocarbon-based fuel or a hydrocarbon as a marker to the fuel. It is possible to maintain combustion in a state.

【0017】この高温空気燃焼下における炭化水素系燃
料の燃焼反応中間生成物には、燃料組成や当量比が一定
であっても、酸化剤の温度と酸素濃度の組み合わせごと
に固有のラジカル発光が生じるラジカル成分、即ち青色
の発光スペクトルを出すCHラジカル成分と緑色の発光
スペクトルを出すC2ラジカル成分とが含まれている。
そして、青色の発光スペクトル強度に対する緑色の発光
スペクトル強度の割合が通常の拡散燃焼のときよりも顕
著に増加して火炎を緑色化させていると認められると
き、少なくとも燃焼反応直前には、燃焼に供される空気
あるいはそれに相当する酸化剤は、通常の空気よりもは
るかに酸素濃度が低くかつその酸素濃度における燃焼安
定限界温度以上の高温であり、通常の拡散燃焼に比して
熱発生速度が十分に低速な酸化発熱反応を伴った燃焼、
即ち高温空気燃焼を安定かつ確実に生ずる。
The combustion reaction intermediate product of the hydrocarbon fuel under the high-temperature air combustion emits a unique radical luminescence for each combination of the oxidizing agent temperature and the oxygen concentration, even if the fuel composition and the equivalence ratio are constant. radical component generated, that is, contains the C 2 radical component issuing the emission spectrum of the CH radical component and green issuing blue light spectrum.
Then, when it is recognized that the ratio of the green emission spectrum intensity to the blue emission spectrum intensity is significantly increased compared to the case of normal diffusion combustion and the flame is greened, at least immediately before the combustion reaction, The supplied air or the corresponding oxidant has a much lower oxygen concentration than ordinary air and a high temperature equal to or higher than the combustion stability limit temperature at that oxygen concentration, and has a heat generation rate higher than that of ordinary diffusion combustion. Combustion with a sufficiently slow oxidation exothermic reaction,
That is, high-temperature air combustion occurs stably and reliably.

【0018】[0018]

【発明の実施の形態】以下、本発明の構成を図面に示す
実施の形態の一例に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below in detail based on an example of an embodiment shown in the drawings.

【0019】まず、空気高温化とガス再循環を組み合わ
せた高温空気燃焼の燃焼安定条件について考察すると、
前述したように、本質的因子は酸化剤の温度と酸素濃度
と見ることができる。そして、高温希釈空気温度とその
酸素濃度により炭化水素ガスを燃料とした拡散火炎の燃
焼可能範囲がどのように変化するかを実験的に調べた図
8の結果からも明らかなように、燃焼用酸化剤たる空気
の温度と熱再循環量即ち希釈空気の酸素濃度との間に
は、燃焼用酸化剤の温度が高いほどガス再循環量を増加
できるという関係、換言すれば、燃焼用酸化剤・希釈空
気の温度が高温度であれば酸素濃度を低くしても燃焼が
成立するという関係があることが理解できる。
First, considering the combustion stabilization conditions of high-temperature air combustion combining air high temperature and gas recirculation,
As mentioned above, the essential factors can be seen as the temperature of the oxidant and the oxygen concentration. As is apparent from the results of FIG. 8 in which the combustible range of a diffusion flame using hydrocarbon gas as a fuel changes depending on the high-temperature dilution air temperature and its oxygen concentration, as is clear from the results of FIG. The relationship between the temperature of the air as the oxidant and the heat recirculation amount, that is, the oxygen concentration of the dilution air, is such that the higher the temperature of the combustion oxidant, the greater the gas recirculation amount, in other words, the combustion oxidant. -It can be understood that if the temperature of the dilution air is high, there is a relationship that combustion is established even if the oxygen concentration is lowered.

【0020】ここで、極めて大きな火炎ボリュームで安
定燃焼させるには、即ち酸化発熱反応を十分に低速にす
るには、酸素濃度をできるだけ通常の空気よりも低くし
尚かつ燃焼用酸化剤の温度をできるだけ高くすることが
必要である。例えば、15%程度以下、より好ましくは
10%以下、最も好ましくは5〜3%程度とすることで
ある。また、希釈空気の温度は、少なくともその酸素濃
度における混合気の燃焼安定限界温度以上、好ましくは
その酸素濃度における混合気の自己着火温度以上とされ
る。因みに、混合気の自己着火温度は、燃焼用酸化剤の
酸素濃度および燃料の種類によっても異なるが、例えば
LPG(C3 8 97%)の場合には、図8に示すよう
に、酸素濃度15%程度では約850℃以上、酸素濃度
10%程度では約880℃以上、酸素濃度3%程度では
約1000℃以上である。また、希釈空気の少なくとも
燃焼反応直前の温度は各酸素濃度における燃焼安定限界
温度よりは上でも保炎機構を必要とする程度の温度、例
えば酸素濃度15%以下で温度600℃以上、酸素濃度
10%以下で800℃以上でも良い。この場合でも、可
視発光中での青色の発光スペクトル成分に対する緑色の
発光スペクトル成分の増加の割合は小さくなるものの通
常燃焼時よりは大きかったことが認められた。
Here, in order to perform stable combustion with an extremely large flame volume, that is, to make the oxidation exothermic reaction sufficiently slow, the oxygen concentration should be lower than that of ordinary air as much as possible, and the temperature of the combustion oxidizer should be kept low. It needs to be as high as possible. For example, it is about 15% or less, more preferably about 10% or less, and most preferably about 5 to 3%. Further, the temperature of the dilution air is at least the combustion stability limit temperature of the air-fuel mixture at the oxygen concentration, and preferably the auto-ignition temperature of the air-fuel mixture at the oxygen concentration. Incidentally, the self-ignition temperature of the air-fuel mixture varies depending on the oxygen concentration of the oxidizing agent for combustion and the type of fuel. For example, in the case of LPG (C 3 H 8 97%), as shown in FIG. The temperature is about 850 ° C. or more at about 15%, about 880 ° C. at about 10% oxygen concentration, and about 1000 ° C. at about 3% oxygen concentration. Further, at least the temperature of the diluted air immediately before the combustion reaction is higher than the combustion stability limit temperature at each oxygen concentration, but a temperature that requires a flame holding mechanism, for example, a temperature of 600 ° C. or more at an oxygen concentration of 15% or less and an oxygen concentration of 10% or less. % Or less and 800 ° C. or more. Also in this case, it was recognized that the ratio of the increase in the green emission spectrum component to the blue emission spectrum component in visible light emission was small, but larger than that in normal combustion.

【0021】なお、高温の空気と燃焼排ガスとは、炉内
において燃料と接触する前に混合されて所定の温度でか
つ所定の酸素濃度に希釈された高温希釈空気とされて供
給される。ここで、希釈空気としては、炉内を強循環す
る排ガスによって酸素濃度21%の燃焼用空気の酸素濃
度を希釈したものを使用することが経済的でかつ実用的
である。また、空気と燃料とは炉内へそれぞれ別々に直
接噴射され、炉内で拡散混合するように空気ノズルと燃
料ノズルとが配置されている。そして、空気ノズルから
炉内へ噴射される空気は、高温であるからその容量が従
来のものよりも遥かに増大し高速例えば60〜100m
/sあるいはそれ以上の高速度で噴出されることとな
る。そこで、空気噴流に炉内排ガスを巻き込んで所定の
酸素濃度に調整することが望まれる。尚、酸化剤として
の空気は、燃焼反応直前においてその酸素濃度が通常の
空気よりも遥かに低い例えば5〜3%程度であったとし
ても、全体として完全燃焼する酸化剤量となるように空
気比は設定されている。
The high-temperature air and the flue gas are mixed before being brought into contact with the fuel in the furnace, and supplied as high-temperature diluted air at a predetermined temperature and a predetermined oxygen concentration. Here, it is economical and practical to use dilution air in which the oxygen concentration of the combustion air having an oxygen concentration of 21% is diluted by exhaust gas strongly circulating in the furnace. In addition, the air nozzle and the fuel nozzle are arranged so that air and fuel are separately injected directly into the furnace, and diffused and mixed in the furnace. Since the air injected from the air nozzle into the furnace has a high temperature, the capacity thereof is much larger than that of the conventional one, and the air is injected at a high speed of, for example, 60 to 100 m.
/ S or higher. Therefore, it is desired that the exhaust gas in the furnace is involved in the air jet to adjust to a predetermined oxygen concentration. It should be noted that the air as the oxidizing agent is used so that the total amount of the oxidizing agent completely burns even immediately before the combustion reaction, even if the oxygen concentration is much lower than that of the normal air, for example, about 5 to 3%. The ratio is set.

【0022】図1から図6に空気の酸素濃度と予熱温度
の異なる燃焼状態の観察の結果を示す。図2〜図4には
酸素濃度10%の燃焼用酸化剤を用いて同じ燃料(LP
G)を異なる温度で拡散燃焼させた場合を示している。
この観察結果によると、880℃(図4参照)の場合よ
りも960℃(図3参照)の場合、更にそれよりも10
00℃(図2参照)の場合の方が、火炎ボリュームもよ
り大きくかつより多くの緑色の発光スペクトル成分を出
す燃焼反応中間生成物が認められ、その結果として緑色
がかった火炎となることが認められた。即ち、希釈空気
温度の上昇に伴って、青色の発光スペクトル成分を出す
燃焼反応中間生成物に対する緑色の発光スペクトル成分
を出す炭化水素燃料の燃焼反応中間生成物の割合が増加
し、可視発光中に占める緑色の発光スペクトルの影響が
目視でも認められるほどに相対的に大きくなって火炎の
緑色化の傾向を強めている。
FIG. 1 to FIG. 6 show the results of observation of combustion states in which the oxygen concentration of air and the preheating temperature are different. 2 to 4 show the same fuel (LP) using a combustion oxidizer having an oxygen concentration of 10%.
G) shows a case where diffusion combustion is performed at different temperatures.
According to these observation results, the temperature at 960 ° C. (see FIG. 3) was 10% higher than that at 880 ° C. (see FIG. 4).
In the case of 00 ° C. (see FIG. 2), a combustion reaction intermediate product having a larger flame volume and emitting more green emission spectrum components was observed, and as a result, a greenish flame was observed. Was done. That is, as the dilution air temperature increases, the ratio of the combustion reaction intermediate product of the hydrocarbon fuel that emits a green emission spectrum component to the combustion reaction intermediate product that emits a blue emission spectrum component increases, and during the visible light emission, The influence of the occupied green emission spectrum is relatively large so that it can be visually recognized, and the tendency of the flame to turn green is strengthened.

【0023】また、図1の酸素濃度3%の場合と図2の
酸素濃度10%とを比較すると、ほぼ同じ温度(101
0℃と1000℃)でも酸素濃度が低いほど火炎ボリュ
ームが大きくなっていることは明らかである。そしてこ
の場合においても、酸素濃度が低い方即ち酸素濃度3%
の火炎の方が、青色の発光スペクトル成分を出す炭化水
素燃料の燃焼反応中間生成物に対する緑色の発光スペク
トル成分を出す燃焼反応中間生成物の割合が増加し、可
視発光中に占める緑色の発光スペクトルの影響が目視で
も認められるほどに相対的に大きくなって火炎の緑色化
の傾向を強めていることが認められた。反面、同じ燃焼
用酸化剤温度でも酸素濃度が通常の空気と同じ21%で
は、図5に示すように火炎ボリュームが小さく、緑色の
発光スペクトル成分の影響のない青色であることが認め
られた。更に、同じ燃料(LPG)を酸素濃度21%、
温度50℃の燃焼用空気を用いて拡散燃焼させた場合
(図6参照)には、火炎の可視発光色中には青色の発光
スペクトル成分(430〜460nm)を出す燃焼中間
反応生成物に対して緑色の発光スペクトル成分を出す燃
焼反応中間生成物の割合が圧倒的に少ないため、火炎の
色はいわゆるブルーフレームとなった。そして、図7に
示すように、同じ燃料を酸素濃度21%、温度50℃の
燃焼用空気を用いて拡散燃焼させた場合(実線で示す火
炎)と、酸素濃度3%、温度1010℃の高温希釈空気
を用いて拡散燃焼させた場合(仮想線で示す火炎)とで
は、火炎ボリュームに概略ではあるが20倍以上もの差
が生じた。しかも、ボリュームの大きな火炎の可視発光
色中には緑色の発光スペクトル成分を出す炭化水素燃料
の燃焼反応中間生成物が相対的に多量に認められる結
果、緑色がかった火炎の色となった。このことから、酸
素濃度を下げると、前述の緑色の発光スペクトル成分の
相対的増加現象が顕著になることがわかった。
Further, comparing the case of 3% oxygen concentration in FIG. 1 with the oxygen concentration of 10% in FIG.
It is clear that even at 0 ° C. and 1000 ° C.), the lower the oxygen concentration, the greater the flame volume. Also in this case, the oxygen concentration is lower, that is, the oxygen concentration is 3%.
The ratio of the combustion reaction intermediate product that emits a green emission spectrum component to the combustion reaction intermediate product of hydrocarbon fuel that emits a blue emission spectrum component increases, and the green emission spectrum occupies the visible emission. It was recognized that the influence of was relatively large enough to be visually recognized, and the tendency of the flame to turn green was strengthened. On the other hand, when the oxygen concentration was 21%, which is the same as that of ordinary air, at the same oxidizing agent temperature, the flame volume was small as shown in FIG. Furthermore, the same fuel (LPG) is used with an oxygen concentration of 21%,
When diffusion combustion is performed using combustion air at a temperature of 50 ° C. (see FIG. 6), a combustion intermediate reaction product that emits a blue emission spectrum component (430 to 460 nm) in the visible emission color of the flame is used. Since the proportion of the combustion reaction intermediate product that emits a green emission spectrum component is overwhelmingly small, the flame color has a so-called blue flame. Then, as shown in FIG. 7, the same fuel is diffused and burned using combustion air having an oxygen concentration of 21% and a temperature of 50 ° C. (flame indicated by a solid line), and a high temperature of an oxygen concentration of 3% and a temperature of 1010 ° C. In the case of diffusion combustion using the dilution air (flame indicated by a virtual line), the difference in the flame volume was roughly 20 times or more. Moreover, in the visible emission color of the flame having a large volume, a relatively large amount of a combustion reaction intermediate product of the hydrocarbon fuel which emits a green emission spectrum component was recognized, and as a result, the color of the flame became greenish. From this, it was found that when the oxygen concentration was lowered, the above-described phenomenon of the relative increase in the green emission spectrum component became remarkable.

【0024】このことは、図9及び図10に示す火炎分
光測定結果からも明らかである。例えば、空気を窒素ガ
スで5.1%O2 に希釈し、燃料にLPGを用いて、希
釈空気温度を三条件1000℃、1050℃、1100
℃と変えた際の火炎発光スペクトル測定により、図9の
結果が得られた。火炎の目視観察でも希釈空気温度増加
と共に青色から青緑色に変化するのがわかるが、スペク
トル測定により定量的に把握できた。ただし分光器とC
CDの感度補正はなされていないので各条件毎の相対比
較となる。また、青色の発光スペクトル成分たるCHラ
ジカル(431.5nm)と緑色の発光スペクトル成分
たるC2 スワン帯のひとつのC2 ラジカル(516.5
nm)について、5.1%O2 、21%O2 での希釈空
気温度に対する変化を調べた。図10によれば希釈空気
温度によりC2 ラジカル発光強度がCHラジカルに比べ
増加していることがわかる。
This is clear from the results of flame spectroscopy shown in FIGS. 9 and 10. For example, air is diluted with nitrogen gas to 5.1% O 2 , and LPG is used as a fuel.
The result of FIG. 9 was obtained by measuring the flame emission spectrum when the temperature was changed to ° C. Visual observation of the flame showed that the color changed from blue to blue-green as the dilution air temperature increased, but it could be quantitatively grasped by spectrum measurement. However, spectroscope and C
Since the sensitivity of the CD has not been corrected, a relative comparison is made for each condition. Further, a CH radical (431.5 nm) as a blue emission spectrum component and one C 2 radical (516.5) in a C 2 swan band as a green emission spectrum component
nm), the change with respect to the dilution air temperature at 5.1% O 2 and 21% O 2 was examined. According to FIG. 10, it can be seen that the C 2 radical emission intensity increases as compared with the CH radical due to the dilution air temperature.

【0025】このことから、燃焼用空気の温度を従来の
排ガス再循環燃焼方法で用いられていたよりも遥かに上
げながら空気比を変えずに燃焼用酸化剤としての酸素濃
度を通常の空気よりも遥かに低くして行くと、それがあ
る条件に達したとき、酸化発熱反応が通常の空気を用い
た場合に比べて非常に遅いにもかかわらず安定して燃焼
する現象が起こり、そのときには火炎の可視発光色中に
緑色のスペクトル成分を出す炭化水素燃料の燃焼反応中
間生成物が得られる結果、通常燃焼時の青色よりも緑色
がかった(緑色化)火炎が生成されることが理解でき
る。
From this, it can be seen that while the temperature of the combustion air is much higher than that used in the conventional exhaust gas recirculation combustion method, the oxygen concentration as the combustion oxidizing agent is higher than that of ordinary air without changing the air ratio. If the temperature is reduced far below, when a certain condition is reached, a phenomenon occurs in which the oxidative exothermic reaction burns stably despite the fact that it is very slow as compared with the case where normal air is used. It can be understood that as a result of obtaining a combustion reaction intermediate product of the hydrocarbon fuel which emits a green spectral component in the visible light emission color, a flame which is greener (greener) than blue during normal combustion is generated.

【0026】ところで、所定の温度でかつ所定の酸素濃
度に希釈された高温希釈空気・酸化剤を経済的かつ容易
に供給する手法の一つとして、酸素濃度21%の高温の
空気を高速で炉内へ噴射することによって炉内排ガスを
巻き込んで少なくとも燃料と接触する前には所定の酸素
濃度に希釈する方法が考えられる。しかし、高速の空気
噴流にどの程度の排ガスが巻き込まれるかは予測ないし
計算できず、燃焼反応直前の希釈空気の酸素濃度および
温度を所定の値に設定することは困難である。しかも、
燃焼反応直前の拡散状態にある希釈空気の酸素濃度およ
び温度を測定する手段も従来は存在しない。
As one of the methods for economically and easily supplying high-temperature diluted air and an oxidizing agent diluted to a predetermined temperature and a predetermined oxygen concentration, a high-temperature air having an oxygen concentration of 21% is supplied to a furnace at a high speed. A method may be considered in which the exhaust gas is injected into the furnace to dilute the furnace exhaust gas to a predetermined oxygen concentration at least before contact with the fuel. However, it is impossible to predict or calculate how much exhaust gas is caught in the high-speed air jet, and it is difficult to set the oxygen concentration and the temperature of the dilution air immediately before the combustion reaction to predetermined values. Moreover,
Conventionally, there is no means for measuring the oxygen concentration and the temperature of the diluted air in the diffusion state immediately before the combustion reaction.

【0027】しかしながら、火炎中に緑色の発光スペク
トル成分を出す炭化水素燃料の燃焼反応中間生成物が青
色の発光スペクトル成分の燃焼反応中間生成物に対する
割合が急激に増加して可視発光色中に多く認められる結
果、緑色がかった火炎が形成されるときは、少なくとも
燃焼反応直前には通常の空気よりもはるかに酸素濃度が
低くかつその酸素濃度における燃焼安定限界温度以上に
高温とされた所定の希釈空気と燃料とが混合拡散されて
十分に低速な酸化発熱反応下に拡散燃焼(高温空気燃
焼)を起こしていると推定できる。即ち、空気の予熱温
度、炉内ガスの再循環量などを制御して、通常燃焼時の
いわゆるブルーフレームよりも緑色化した火炎を作り続
ける限り高温空気燃焼を安定に実現できる。
However, the proportion of the combustion reaction intermediate product of the hydrocarbon fuel which emits a green emission spectrum component in the flame with respect to the combustion reaction intermediate product of the blue emission spectrum component increases sharply, and is increased in the visible emission color. As a result, when a greenish flame is formed, at least immediately before the combustion reaction, a predetermined dilution having a much lower oxygen concentration than ordinary air and a temperature higher than the combustion stability limit temperature at the oxygen concentration. It can be presumed that air and fuel are mixed and diffused to cause diffusion combustion (high-temperature air combustion) under a sufficiently low-speed oxidative heat generation reaction. That is, high-temperature air combustion can be stably realized by controlling the preheating temperature of the air, the recirculation amount of the gas in the furnace, and the like, so long as a flame that is greener than a so-called blue flame during normal combustion is continuously produced.

【0028】そこで、例えば、燃焼用空気を噴射するノ
ズルの噴射角度を調整するなどの手法によって燃料噴流
と衝突するまでに巻き込む炉内ガスの量を変化させ、燃
焼反応直前の希釈空気の酸素濃度を調整したり、また
は、炉内に噴出する前に酸化性の微弱なガスあるいは不
活性ガスを注入してその酸素濃度を調整することによ
り、火炎が緑色化するように燃焼を維持する。図1に示
すような好適な高温空気燃焼を実現しているときの火
炎、即ち可視発光色中における青色の発光スペクトル強
度に対する緑色の発光スペクトル強度の割合が通常燃焼
させたときよりも顕著に増加したと認められる火炎は、
通常燃焼時に発生する青色(ブルーフレーム)とは目視
によってもはっきり区別できる程度の緑色がかった色と
なった。
Therefore, for example, by adjusting the injection angle of a nozzle for injecting the combustion air, the amount of the in-furnace gas involved before the collision with the fuel jet is changed to change the oxygen concentration of the dilution air immediately before the combustion reaction. By adjusting the oxygen concentration or adjusting the oxygen concentration by injecting a weak oxidizing gas or an inert gas before jetting into the furnace, the combustion is maintained so that the flame turns green. The flame when the preferred high-temperature air combustion as shown in FIG. 1 is realized, that is, the ratio of the green emission spectrum intensity to the blue emission spectrum intensity in the visible emission color is significantly increased as compared with the normal combustion. The flame that is recognized as having
The color was greenish enough to be clearly distinguished visually from blue (blue flame) generated during normal combustion.

【0029】なお、上述の実施形態は本発明の好適な形
態の一例ではあるがこれに限定されるものではなく本発
明の要旨を逸脱しない範囲において種々変形実施可能で
ある。例えば、燃焼用酸化剤としては、例えば燃焼用空
気中の酸素濃度を炉内での排ガス再循環によって希釈さ
れたものを使用することが実用的であるがこれに特に限
定されるものではなく、酸素を一定量以上含有する空気
以外の気体をそれとは更に異なる他の気体によって希釈
したもの、あるいは空気を不活性ガス等の希釈気体で希
釈したものなどが使用可能である。排ガスを利用した燃
焼用酸化剤を使用するバーナシステムの場合には、図示
していないが、例えば燃焼ガスの一部が炉外の循環路を
通ってバーナ側へ還流されると共に排出される残りの燃
焼ガスの顕熱を利用して燃焼用空気を蓄熱体などの熱交
換器で予熱し、これら予熱された燃焼用空気と再循環燃
焼ガスとを混合して緑色の発光スペクトル成分を出す燃
焼反応中間生成物が得られる状態の酸素濃度と温度の高
温希釈空気が完全燃焼に必要な空気比を変えない容量で
供給される。
The above embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, as the oxidizing agent for combustion, it is practical to use, for example, one obtained by diluting the oxygen concentration in the combustion air by exhaust gas recirculation in a furnace, but is not particularly limited thereto. A gas other than air containing a certain amount of oxygen or more may be used by diluting it with another different gas, or air diluted with a diluent gas such as an inert gas. In the case of a burner system using an oxidizing agent for combustion using exhaust gas, although not shown, for example, a part of the combustion gas is returned to the burner side through a circulation path outside the furnace and the remaining is discharged. Combustion that uses the sensible heat of the combustion gas to preheat the combustion air with a heat exchanger such as a regenerator and mixes the preheated combustion air with the recirculated combustion gas to produce a green emission spectrum component The high-temperature dilution air having the oxygen concentration and the temperature at which the reaction intermediate product is obtained is supplied at a volume that does not change the air ratio required for complete combustion.

【0030】また、本実施形態では、炭化水素系燃料及
び都市ガスなどの炭化水素を含む燃料の燃焼について主
に説明したが、これに特に限定されず、水素燃料などの
炭化水素を含まない燃料を使った燃焼にも適用できる。
この場合、燃料中に炭化水素系燃料あるいは炭化水素を
マーカーとして添加することによって、拡散燃焼で発生
する火炎の可視発光色中に青色の発光スペクトルと緑色
の発光スペクトルとを伴う燃焼中間生成物を発生させる
ようにして火炎を緑色化させる状態に燃焼を維持するこ
とを実施することもできる。
In this embodiment, the combustion of a fuel containing a hydrocarbon such as a hydrocarbon fuel and a city gas is mainly described. However, the present invention is not particularly limited to this, and the fuel containing no hydrocarbon such as a hydrogen fuel is used. It can also be applied to combustion using.
In this case, by adding a hydrocarbon-based fuel or hydrocarbon as a marker to the fuel, a combustion intermediate product having a blue emission spectrum and a green emission spectrum in the visible emission color of the flame generated by diffusion combustion is obtained. It can also be implemented to maintain the combustion in a state that causes the flame to turn green.

【0031】[0031]

【発明の効果】以上の説明より明らかなように、請求項
1記載の本発明のバーナ燃焼方法によると、少なくとも
燃焼反応直前には通常の空気よりもはるかに酸素濃度が
低くかつその酸素濃度における混合気の燃焼安定限界温
度以上の高温希釈空気あるいはそれに相当する酸化剤で
拡散燃焼させるようにしているので、十分に低速な酸化
発熱反応下に火炎ボリュームを顕著に増大させながら安
定燃焼できる。したがって、熱流束のピークを作らず、
炉内のほぼ全域において顕熱を発生させながら対流伝熱
とふく射伝熱とで被加熱物を加熱することができる。し
かも、酸化発熱反応が通常燃焼時に比べて非常に遅いに
もかかわらず安定して燃焼する現象が起こる。そして、
流速が速く尚かつ広範囲で燃焼し続ける燃焼ガスは、炉
内においてこれまでよりも格段に流速を速めて対流伝熱
性を向上させると共に、炉内の広範囲な領域で流れなが
ら絶えず燃焼し続け、顕熱が発生する過程で熱を奪われ
被加熱物を加熱する。しかも、通常の燃焼時よりもガス
流動が激しくなり、炉内ガスの混合の促進や対流伝熱量
の増加を起こして局部的な温度差が一層解消される。
As is clear from the above description, according to the burner combustion method of the present invention, the oxygen concentration is much lower than that of ordinary air at least immediately before the combustion reaction, and the Since the mixture is diffused and burned with high-temperature diluted air having a temperature equal to or higher than the combustion stability limit temperature of the air-fuel mixture or an oxidizing agent corresponding thereto, stable combustion can be performed while significantly increasing the flame volume under a sufficiently low-speed oxidative heat generation reaction. Therefore, without creating a heat flux peak,
An object to be heated can be heated by convective heat transfer and radiant heat transfer while generating sensible heat in almost the entire area of the furnace. In addition, there occurs a phenomenon that the oxidation exothermic reaction is stably burned although it is very slow as compared with the normal combustion. And
Combustion gas, which has a high flow velocity and continues to burn over a wide area, has a significantly higher flow velocity in the furnace than ever before to improve convective heat transfer, and continues to burn continuously while flowing in a wide area within the furnace. Heat is deprived in the process of generating heat, and the object to be heated is heated. In addition, the gas flow becomes more intense than during normal combustion, which promotes mixing of the gas in the furnace and increases the amount of convective heat transfer, thereby further eliminating the local temperature difference.

【0032】よって、請求項1記載の発明によると、火
炎最高温度が大きく低下するのでNOxの発生を大幅に
(100〜10ppm程度)抑制できると共に平均熱流
束を最大熱流束に近づけて高くできるので加熱効率(伝
熱効率)が格段によくなる。また、酸化発熱反応が十分
に低速であるため、燃焼騒音や振動燃焼を抑制できる。
温度場が平坦化し、伝熱速度が増大すれば、炉のダウン
サイジングあるいは加熱時間短縮などの伝熱性能の著し
い改善が図れる。
According to the first aspect of the present invention, since the maximum flame temperature is greatly reduced, the generation of NOx can be largely suppressed (about 100 to 10 ppm) and the average heat flux can be increased close to the maximum heat flux. Heating efficiency (heat transfer efficiency) is significantly improved. Further, since the oxidation exothermic reaction is sufficiently slow, combustion noise and vibration combustion can be suppressed.
If the temperature field is flattened and the heat transfer rate is increased, the heat transfer performance can be significantly improved, such as downsizing the furnace or shortening the heating time.

【0033】また、請求項2記載の発明によると、火炎
を緑色化させる状態に燃焼を維持することで、燃焼に供
される空気あるいはそれに相当する酸化剤の供給状態に
拘わらず、少なくとも燃焼反応直前には、通常の空気よ
りもはるかに酸素濃度が低くかつその酸素濃度における
燃焼安定限界温度以上の高温であり、通常燃焼に比して
熱発生速度が十分に低速な酸化発熱反応でありながら安
定燃焼する状態を確実に実現できる。
According to the second aspect of the present invention, by maintaining the combustion in a state where the flame turns green, at least the combustion reaction is performed regardless of the supply state of the air used for combustion or the oxidizing agent corresponding thereto. Immediately before, while the oxygen concentration is much lower than that of ordinary air and the temperature is higher than the combustion stability limit temperature at that oxygen concentration, the oxidation exothermic reaction has a sufficiently low heat generation rate compared to normal combustion. A stable combustion state can be reliably realized.

【0034】更に、請求項3記載の発明によると、火炎
中に緑色の発光スペクトル成分を出さない燃料でも、マ
ーカーとして添加された炭化水素系燃料あるいは炭化水
素から発生する燃焼反応中間生成物によって火炎を緑色
化させることができるので、通常燃焼に比して熱発生速
度が十分に低速な酸化発熱反応でありながら安定燃焼す
る状態を確実に実現できる。
According to the third aspect of the present invention, even if the fuel does not emit a green emission spectrum component in the flame, the flame is added by the hydrocarbon-based fuel added as a marker or the combustion reaction intermediate product generated from the hydrocarbon. Can be made green, so that a stable combustion state can be reliably realized despite the oxidative exothermic reaction having a sufficiently low heat generation rate as compared with normal combustion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸素濃度3%、温度1010℃の燃焼用酸化剤
を用いた場合の火炎の状態を示す説明図である。
FIG. 1 is an explanatory diagram showing a state of a flame when an oxidizing agent for combustion having an oxygen concentration of 3% and a temperature of 1010 ° C. is used.

【図2】酸素濃度10%、温度1000℃の燃焼用酸化
剤を用いた場合の火炎の状態を示す説明図である。
FIG. 2 is an explanatory diagram showing a state of a flame when an oxidizing agent for combustion having an oxygen concentration of 10% and a temperature of 1000 ° C. is used.

【図3】酸素濃度10%、温度960℃の燃焼用酸化剤
を用いた場合の火炎の状態を示す説明図である。
FIG. 3 is an explanatory diagram showing a state of a flame when an oxidizing agent for combustion having an oxygen concentration of 10% and a temperature of 960 ° C. is used.

【図4】酸素濃度10%、温度880℃の燃焼用酸化剤
を用いた場合の火炎の状態を示す説明図である。
FIG. 4 is an explanatory diagram showing a state of a flame when an oxidizing agent for combustion having an oxygen concentration of 10% and a temperature of 880 ° C. is used.

【図5】酸素濃度21.0%、温度1000℃の燃焼用
酸化剤を用いた場合の火炎の状態を示す説明図である。
FIG. 5 is an explanatory diagram showing a state of a flame when an oxidizing agent for combustion having an oxygen concentration of 21.0% and a temperature of 1000 ° C. is used.

【図6】酸素濃度21.0%、温度50℃の燃焼用酸化
剤を用いた場合の火炎の状態を示す説明図である。
FIG. 6 is an explanatory diagram showing a state of a flame when an oxidizing agent for combustion having an oxygen concentration of 21.0% and a temperature of 50 ° C. is used.

【図7】酸素濃度3%、温度1010℃の燃焼用酸化剤
を用いた場合の火炎の状態と酸素濃度21.0%、温度
50℃の燃焼用酸化剤を用いた場合の火炎の状態とを比
較する説明図である。
FIG. 7 shows a state of a flame when an oxidizing agent for combustion having an oxygen concentration of 3% and a temperature of 1010 ° C. is used, and a state of a flame when an oxidizing agent for combustion having an oxygen concentration of 21.0% and a temperature of 50 ° C. is used. It is explanatory drawing which compares.

【図8】燃焼の安定性に対する燃焼用酸化剤の温度と酸
素濃度の影響を示すグラフである。
FIG. 8 is a graph showing the influence of the temperature and oxygen concentration of a combustion oxidizer on combustion stability.

【図9】空気温度と火炎発光スペクトルとの関係を示す
グラフである。
FIG. 9 is a graph showing a relationship between an air temperature and a flame emission spectrum.

【図10】CH/C2 ラジカル発光強度の空気温度変化
を示すグラフである。
FIG. 10 is a graph showing changes in CH / C 2 radical emission intensity in air temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 持田 晋 神奈川県横浜市鶴見区尻手2丁目1番53号 日本ファーネス工業株式会社内 (72)発明者 勝島 裕和 神奈川県横浜市鶴見区尻手2丁目1番53号 日本ファーネス工業株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Susumu Mochida 2-1-153 Shirite, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Japan Furness Industrial Co., Ltd. (72) Inventor Hirokazu Katsushima 2-1-1 Shirite, Tsurumi-ku, Yokohama-shi, Kanagawa No. 53 Inside Japan Furnace Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化剤と燃料とが炉内で接触して拡散燃
焼するバーナ燃焼方法において、少なくとも燃焼反応直
前には通常の空気よりもはるかに酸素濃度が低くかつそ
の酸素濃度における混合気の燃焼安定限界温度以上の高
温希釈空気あるいはそれに相当する酸化剤で十分に低速
な酸化発熱反応下に拡散燃焼させることを特徴とするバ
ーナ燃焼方法。
In a burner combustion method in which an oxidant and a fuel are brought into contact in a furnace to diffuse and burn in a furnace, at least immediately before the combustion reaction, the oxygen concentration is much lower than ordinary air, and A burner combustion method characterized by diffusing and burning with a high-temperature dilution air having a combustion stability limit temperature or higher or an oxidizing agent corresponding thereto under a sufficiently low-speed oxidative exothermic reaction.
【請求項2】 前記燃料として炭化水素系燃料あるいは
炭化水素を含む燃料が使用される場合において、拡散燃
焼で発生する火炎の可視発光色中における青色の発光ス
ペクトル強度に対する緑色の発光スペクトル強度の割合
が通常の酸素濃度でかつ常温の空気と燃料とを拡散燃焼
させたときよりも顕著に増加させて火炎を緑色化させる
状態に燃焼を維持することを特徴とする請求項1記載の
バーナ燃焼方法。
2. A ratio of a green emission spectrum intensity to a blue emission spectrum intensity in a visible emission color of a flame generated by diffusion combustion when a hydrocarbon-based fuel or a fuel containing a hydrocarbon is used as the fuel. 2. The burner combustion method according to claim 1, wherein the combustion is maintained at a state in which the flame is turned green by increasing the air and fuel at a normal oxygen concentration and at a normal temperature by diffusion combustion. .
【請求項3】 前記燃料として炭化水素を含まない燃料
が使用される場合において、炭化水素系燃料あるいは炭
化水素をマーカーとして前記燃料に添加して供給し、拡
散燃焼で発生する火炎の可視発光色中における青色の発
光スペクトル強度に対する緑色の発光スペクトル強度の
割合が通常の酸素濃度でかつ常温の空気と燃料とを拡散
燃焼させたときよりも顕著に増加させて火炎を緑色化さ
せる状態に燃焼を維持することを特徴とする請求項1記
載のバーナ燃焼方法。
3. In the case where a fuel containing no hydrocarbon is used as the fuel, a visible light emission color of a flame generated by diffusion combustion is supplied by adding a hydrocarbon-based fuel or a hydrocarbon as a marker to the fuel and supplying the fuel. The ratio of the green emission spectrum intensity to the blue emission spectrum intensity in the inside is significantly increased compared to the case of diffusing and burning air and fuel at normal oxygen concentration and normal temperature, and the combustion is turned to a state in which the flame turns green. The burner combustion method according to claim 1, wherein the burner combustion is maintained.
JP16613096A 1996-02-02 1996-06-26 Burner combustion method Expired - Fee Related JP3879005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16613096A JP3879005B2 (en) 1996-02-02 1996-06-26 Burner combustion method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP1796796 1996-02-02
JP14807496 1996-05-18
JP8-17967 1996-05-18
JP8-148074 1996-05-18
JP16613096A JP3879005B2 (en) 1996-02-02 1996-06-26 Burner combustion method

Publications (2)

Publication Number Publication Date
JPH1038215A true JPH1038215A (en) 1998-02-13
JP3879005B2 JP3879005B2 (en) 2007-02-07

Family

ID=27282035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16613096A Expired - Fee Related JP3879005B2 (en) 1996-02-02 1996-06-26 Burner combustion method

Country Status (1)

Country Link
JP (1) JP3879005B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001072908A1 (en) * 2000-03-29 2001-10-04 Mitsubishi Chemical Corporation Method and apparatus for producing carbon black, and method and apparatus for burning in furnace
WO2016030495A1 (en) 2014-08-29 2016-03-03 Orion Engineered Carbons Gmbh Process for controlling the porosity of carbon blacks

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001072908A1 (en) * 2000-03-29 2001-10-04 Mitsubishi Chemical Corporation Method and apparatus for producing carbon black, and method and apparatus for burning in furnace
WO2016030495A1 (en) 2014-08-29 2016-03-03 Orion Engineered Carbons Gmbh Process for controlling the porosity of carbon blacks
US10907049B2 (en) 2014-08-29 2021-02-02 Orion Engineered Carbons Gmbh Process for controlling the porosity of carbon blacks

Also Published As

Publication number Publication date
JP3879005B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
JP2704919B2 (en) Burning in isolated areas
US8944809B2 (en) Tubular flame burner and combustion control method
JPH0611117A (en) Low nox burner of preliminarily mixed high-speed jet
JPH04500265A (en) Method and device for generating high luminescence flame
JP2791029B2 (en) Pulverized coal burner
CA2537926C (en) Pilot combustor for stabilizing combustion in gas turbine engines
JPH06317308A (en) Operating method of low nox burner
RU2387924C2 (en) Method of staged fuel combustion in oxygen-containing atmosphere by using pre-heated reagents
JP2524025B2 (en) Low calorie gas combustion burner structure and its combustion method
JP2004093123A (en) Non-oxidation furnace and its control method
JP3879005B2 (en) Burner combustion method
US5248252A (en) Enhanced radiant output burner
JP3523417B2 (en) Combustion condition diagnosis method
JP3153374B2 (en) Multi-stage ultra-lean premixed combustion method
JPS6138961B2 (en)
JPS6284215A (en) Catalyst combustion method
JP2004093119A (en) Tubular flame burner and combustion method thereof
JP2004093122A (en) Steel heating facility and operation method
JP2004093118A (en) Tubular flame burner
JP6430339B2 (en) Flameless combustion equipment
JPH09101006A (en) Fuel two-stage supplying type low nox burner
KR100189706B1 (en) Two stage combustion nozzle in oil burner
JPH04184007A (en) Burner
JPS58138906A (en) Low nox combustion device
JP2000274663A (en) Regenerative burner for non-oxidation combustion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees