JPH1036676A - Method for concentrating aqueous protein solution - Google Patents

Method for concentrating aqueous protein solution

Info

Publication number
JPH1036676A
JPH1036676A JP21522496A JP21522496A JPH1036676A JP H1036676 A JPH1036676 A JP H1036676A JP 21522496 A JP21522496 A JP 21522496A JP 21522496 A JP21522496 A JP 21522496A JP H1036676 A JPH1036676 A JP H1036676A
Authority
JP
Japan
Prior art keywords
concentration
solution
aqueous
protein
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21522496A
Other languages
Japanese (ja)
Inventor
Akio Kuzuhara
亜起夫 葛原
Chiho Maeda
知穂 前田
Satoshi Ibaraki
敏 茨木
Masatoshi Sugimoto
雅俊 杉本
Hiroshi Nakayama
博 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP21522496A priority Critical patent/JPH1036676A/en
Publication of JPH1036676A publication Critical patent/JPH1036676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To concentrate an aqueous protein solution within a short time without denaturing the protein by bringing the solution into contact with an aqueous polyol-base polymer or polyether-base polymer solution through a dialysis membrane. SOLUTION: An aqueous protein solution is brought into contact with an aqueous solution containing at least 20wt.% polyether-base polymer or polyol- base polymer having a molecular weight of 1,500 or above and having an ethylene glycol fraction of 20% or above at 50 deg.C or below through a dialysis membrane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、タンパク質水溶液の濃
縮方法に関する。
The present invention relates to a method for concentrating an aqueous protein solution.

【0002】[0002]

【従来の技術】タンパク質は一般に変性し易いことか
ら、水溶液中のタンパク質を濃縮する方法としては、塩
析や有機溶媒沈殿、凍結乾燥などにより固体として濃縮
する方法、吸着を利用する方法、半透膜を用いる方法、
吸水性ゲルを用いる方法などが用いられている。しか
し、濃縮処理速度の点で満足できなかったり、立体構造
の変化やゲル化等が遅こり易いタンパク質については、
こうした方法の適用も困難な場合があるなどの問題があ
った。
2. Description of the Related Art Since proteins are generally easily denatured, methods for concentrating proteins in an aqueous solution include a method of concentrating them as a solid by salting out, an organic solvent precipitation, freeze-drying, etc., a method using adsorption, a semipermeable method, and the like. A method using a membrane,
A method using a water-absorbing gel is used. However, for proteins that are unsatisfactory in terms of the concentration processing speed, or that are liable to delay in changes in three-dimensional structure or gelation,
There were problems such as the difficulty in applying such a method.

【0003】特に、絹タンパク質フィブロインは高濃度
の塩溶液に溶解させた後、透析することにより水溶液と
することができる。この水溶液は、シルクペプチドの製
造原料としてばかりでなく、塩析や乾燥、攪拌(ズリ応
カ)等の処理が加えられると、フィブロインが部分的に
結晶化して不溶化する。この現象を利用して膜、粉末、
ゲルなどに成形することができることから、化粧品用の
絹粉末(特公昭58−38449)や、酵素や抗体等の
固定化膜の製造に有効に応用されている(特公昭56−
38193、特公昭60−13672、特公平4−39
623)が、目的によってはこの水溶液を濃縮して用い
ることが多い。
[0003] In particular, silk protein fibroin can be made into an aqueous solution by dissolving it in a high-concentration salt solution and then dialysis. This aqueous solution is not only used as a raw material for producing a silk peptide, but also undergoes treatment such as salting out, drying, and agitation (slipperiness), whereby fibroin partially crystallizes and becomes insoluble. Using this phenomenon, films, powders,
Since it can be formed into a gel or the like, it has been effectively applied to the production of silk powder for cosmetics (Japanese Patent Publication No. 58-38449) and an immobilized film of enzymes, antibodies, etc.
38193, JP-B-60-13672, 4-39
623), but the aqueous solution is often concentrated and used depending on the purpose.

【0004】しかし、この水溶液は、上述したように容
易にゲル化したり、フィブロインの析出を招いたりする
ため、その濃縮に際してはこれらの点に十分配慮する必
要があった。一つの方法として、水の加熱留去により濃
縮することができるが、この場合も一部析出やゲル化が
おこるため、歩留まりの低下を招くばかりでなく、微少
なゲル状部はろ過によっても除去し難いことから、得ら
れた膜に粒状の不均一部を与えることがある。また、半
透膜を用いる方法のうち、限外ろ過法においては膜表面
の物質濃縮による効率低下を解消するため、膜内液を攪
拌する必要があるが、攪拌により加えられるズリ応力に
よりフィブロインの析出がおこる。また、タンパク質水
溶液を入れた透析膜表面に送風したり、ポリエチレング
リコール粉末を接触させる方法(Agr.Biol.Che.30,
576−584,1966)も用いることができるが濃
縮効率、処理速度に問題があった。
However, since this aqueous solution easily gels or causes precipitation of fibroin as described above, it is necessary to pay sufficient attention to these points when concentrating the aqueous solution. As one method, concentration can be performed by heating and distilling off water.However, in this case, precipitation or gelation occurs partially, which not only causes a decrease in yield, but also removes fine gel-like portions by filtration. It is difficult to perform the treatment, and the resulting film may have a granular nonuniform portion. In addition, among the methods using a semipermeable membrane, in the ultrafiltration method, it is necessary to agitate the liquid in the membrane in order to eliminate the efficiency decrease due to the concentration of the substance on the membrane surface. Precipitation occurs. Further, a method of blowing air onto the surface of a dialysis membrane containing an aqueous protein solution or contacting it with polyethylene glycol powder (Agr. Biol. Che. 30,
576-584, 1966) can be used, but there are problems with the concentration efficiency and the processing speed.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、立体
構造の変化やゲル化等の変性をおこし易いタンパク質の
水溶液の濃縮に適した高効率の方法を提供することであ
る。
An object of the present invention is to provide a highly efficient method suitable for concentrating an aqueous solution of a protein which is liable to undergo denaturation such as change in steric structure or gelation.

【0006】[0006]

【課題を解決するための手段】本発明は、タンパク質水
溶液を透析膜を介して液状のポリエーテル系高分子或い
はポリオール系高分子の水溶液に接触させることを特徴
とするタンパク質水溶液の濃縮方法であり、前述の課題
を解決するものである。
The present invention is a method for concentrating an aqueous protein solution, which comprises contacting an aqueous protein solution with an aqueous solution of a liquid polyether polymer or polyol polymer via a dialysis membrane. This is to solve the above-mentioned problem.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で使用するポリエーテル系高分子としては、エチ
レングリコール誘導体として、ポリエチレングリコー
ル、エチレングリコール−プロピレングリコール共重合
体などが用いられ、末端がメチル基、エチル基、プロピ
ル基、ブチル基等のアルキル基で置換されているもの、
或いはその他の誘導体も同様に用いられる。更にこれら
を混合して用いることもできる。エチレングリコール−
プロピレングリコール共重合体としては、ブロック重合
体、ランダム共重合体の何れであってもよいが、高分子
量でも液状になり易い点からランダム共重合体が更に好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
As the polyether polymer used in the present invention, as an ethylene glycol derivative, polyethylene glycol, ethylene glycol-propylene glycol copolymer or the like is used, and the terminal is alkyl such as methyl group, ethyl group, propyl group, butyl group, etc. Substituted with a group,
Alternatively, other derivatives are used as well. Further, these can be used in combination. Ethylene glycol
The propylene glycol copolymer may be either a block polymer or a random copolymer, but is more preferably a random copolymer because it easily becomes liquid even with a high molecular weight.

【0008】また、本発明で使用するポリオール系高分
子としては、デキストラン、プルラン等の多糖類、ヒド
ロキシエチルセルロース、ヒドロキシプロピルセルロー
ス等の多糖類誘導体、及びポリビニルアルコールなどを
用いることができる。更に、これらのポリエーテル系高
分子やポリオール系高分子を適宜混合して用いることも
できる。
As the polyol polymer used in the present invention, polysaccharides such as dextran and pullulan, polysaccharide derivatives such as hydroxyethylcellulose and hydroxypropylcellulose, and polyvinyl alcohol can be used. Furthermore, these polyether-based polymers and polyol-based polymers can be appropriately mixed and used.

【0009】これらの外系に用いるポリエーテル高分子
或いはポリオール高分子の分子量については、小さいも
のであっても濃縮効果の面では使用できるが、分子量が
小さくなるに従いタンパク質水溶液中に混入する割合が
増加する傾向にある。この程度はポリエチレングリコー
ル等の高分子の構造によっても異なるが、これを抑制す
るため、一般に分子量が1500以上のものを使用する
ことが好ましく、2000以上のものが更に好ましい。
Regarding the molecular weight of the polyether polymer or polyol polymer used in the external system, even if the molecular weight is small, it can be used in terms of the concentration effect, but as the molecular weight becomes smaller, the proportion mixed into the aqueous protein solution becomes smaller. It tends to increase. Although the degree varies depending on the structure of a polymer such as polyethylene glycol, it is generally preferable to use one having a molecular weight of 1500 or more, and more preferably 2000 or more, in order to suppress this.

【0010】本発明の濃縮方法を用いた場合の濃縮効率
は、用いるポリエーテル系高分子やポリオール系高分子
の種類、濃度、温度、及び攪拌の有無などに依存する。
また、内系の目的となるタンパク質の物性や濃度にも左
右されるが、一般に濃度が低く、粘性が小さいほど濃縮
速度は大きい。外系に用いる高分子としては、高濃度の
水溶液とした際の粘性が小さく、効率の高い濃縮効果を
与える点で、ポリエチレングリコールやランダム型のエ
チレングリコール−プロピレングリコール共重合体及び
それらの誘導体が好適に用いられる。
[0010] The concentration efficiency when the concentration method of the present invention is used depends on the type, concentration, temperature, presence or absence of stirring, and the like of the polyether polymer and the polyol polymer used.
In addition, although it depends on the physical properties and concentration of the target protein in the inner system, generally, the concentration is low and the viscosity is small, the concentration rate is high. As the polymer used for the external system, polyethylene glycol or a random type ethylene glycol-propylene glycol copolymer and derivatives thereof are low in viscosity when used as a high-concentration aqueous solution and provide a highly efficient concentration effect. It is preferably used.

【0011】外系の高分子濃度としては、用いる高分子
の種類によっても異なるが、一般に、20%以上で用い
ることができる。更に濃縮効率及び速度の点で、50%
以上であることが好ましい。
The concentration of the polymer in the external system varies depending on the type of the polymer used, but generally it can be used at 20% or more. Furthermore, in terms of concentration efficiency and speed, 50%
It is preferable that it is above.

【0012】また、ポリエーテル系高分子の1つである
ポリエチレングリコールは分子量が大きくなるに従い融
点が高くなり、1000以上のものは室温ではワックス
状から固体状となる。そこで濃縮を行うタンパク質が熱
変性を起こさない範囲内で、加温によりポリエチレング
リコールを融解させ液状として本発明を実施することが
できるが、平均分子量1500〜2000のポリエチレ
ングリコールを用いて50℃以下の温度で行うか、又は
液状エチレングリコール−プロピレングリコール共重合
体と混合して行うことが好ましい。
The melting point of polyethylene glycol, one of the polyether polymers, increases as the molecular weight increases, and those of 1,000 or more change from waxy to solid at room temperature. Therefore, within the range in which the protein to be concentrated does not undergo thermal denaturation, the present invention can be carried out as a liquid by melting polyethylene glycol by heating. It is preferable to carry out at a temperature or by mixing with a liquid ethylene glycol-propylene glycol copolymer.

【0013】更に、エチレングリコーループロピレング
リコール共重合体、なかでもランダム共重合体は、室温
領域で液状であるため、変性し易いタンパク質の濃縮に
も利用できる点で本発明に最も好適に用いることができ
るが、濃縮効率の点から分子量1500以上、エチレン
グリコール分率20%以上のものを用いることが好まし
い。
Furthermore, ethylene glycol-propylene glycol copolymers, especially random copolymers, are liquid in the room temperature range, and therefore can be used most preferably in the present invention because they can be used for concentrating proteins that are easily denatured. However, it is preferable to use those having a molecular weight of 1500 or more and an ethylene glycol fraction of 20% or more from the viewpoint of concentration efficiency.

【0014】本発明を実施するに際し、濃縮速度を高め
効率向上を計るために透析膜の外系のポリエチレングリ
コール誘導体液を攪拌することが好ましい。また、変性
などの問題のない範囲で加温することは外系の粘性を低
下させるので、攪拌効果の点からは好ましく、目的に応
じて適切な条件を選ぶことができる。
In practicing the present invention, it is preferable to agitate the polyethylene glycol derivative liquid external to the dialysis membrane in order to increase the concentration rate and improve the efficiency. Heating in a range where there is no problem such as denaturation lowers the viscosity of the external system, so it is preferable from the viewpoint of the stirring effect, and appropriate conditions can be selected according to the purpose.

【0015】以下、実施例を挙げて本発明の効果を詳述
する。
Hereinafter, the effects of the present invention will be described in detail with reference to examples.

【0016】[0016]

【実施例1】生糸を精錬後、エタノールを混合した45
重量%塩化カルシウム水溶液に溶解し、これを透析して
絹フィブロイン水溶液(5.0重量%)を得た。この1
0gをセルロース透析チュープ(三光純薬株式会社:サ
イズ18/32)に入れ、29℃で攪拌下、分子量の異
なる各種ポリエチレングリコール(PEG)の50重量
%水溶液0.1L中に浸漬した。60分間浸漬後、PE
G水溶被より透析チェーブを取り出し、濃縮率及び絹フ
ィブロイン溶液中へのPEG混入量を測定した。絹フィ
ブロイン水溶液の濃縮率ほ、浸漬前後の重重変化を測定
し、元のフィブロィン濃度に対する攪拌後の濃度倍率を
算出した。またPEG混入量は、絹フィブロイン水溶液
の屈折率測定結果と、濃縮率より算出された絹フィブロ
イン濃度に対応する屈析率との差分を混入PEGによる
ものとして求めた。表1の結果より明らかなように、P
EGの分子量に拘らず濃縮率はほぼ一定の値を与えた
が、PEG平均分子量が小さくなるに従い、PEG混入
量が増大する傾向が認められる。また、絹フィブロイン
溶液中へのPEG混入量は、PEG平均分子量が小さく
なるに従い減少し、特に分子量2000以上ではその値
を非常に小さくすることができる。尚、対照実験として
平均分子量1000のポリプロピレングリコール(PP
G)に対して、25℃で1時間浸漬処理を行ったが、濃
縮率1.05倍と殆ど濃縮効果は認められなかった。ま
た、平均分子量20000のPEG粉末を透析チェープ
表面に付着せしめ、25℃で1時間放置する方法で濃縮
実験を行った結果、濃縮率は1.2倍であり、本発明の
方法に比較して低い効果しか得られなかった。
Example 1 Raw silk was refined and mixed with ethanol.
It was dissolved in an aqueous solution of calcium chloride by weight and dialyzed to obtain an aqueous solution of silk fibroin (5.0% by weight). This one
0 g was placed in a cellulose dialysis tube (Sanko Junyaku Co., Ltd .: size 18/32) and immersed in 0.1 L of a 50% by weight aqueous solution of various polyethylene glycols (PEG) having different molecular weights at 29 ° C. with stirring. After immersion for 60 minutes, PE
G The dialysis chamber was taken out from the aqueous solution, and the concentration ratio and the amount of PEG mixed into the silk fibroin solution were measured. The concentration ratio of the silk fibroin aqueous solution and the change in weight before and after immersion were measured, and the concentration ratio after stirring to the original fibroin concentration was calculated. The amount of PEG mixed was determined as the difference between the refractive index measurement result of the aqueous solution of silk fibroin and the refractive index corresponding to the silk fibroin concentration calculated from the concentration ratio, based on the mixed PEG. As is clear from the results in Table 1, P
Although the enrichment ratio was almost constant irrespective of the molecular weight of EG, there was a tendency for the amount of PEG to increase as the average molecular weight of PEG became smaller. In addition, the amount of PEG mixed into the silk fibroin solution decreases as the average PEG molecular weight decreases, and particularly when the molecular weight is 2,000 or more, the value can be extremely reduced. As a control experiment, polypropylene glycol having an average molecular weight of 1000 (PP
G) was subjected to an immersion treatment at 25 ° C. for 1 hour, but the concentration rate was 1.05 times, and almost no concentration effect was observed. Further, a PEG powder having an average molecular weight of 20,000 was adhered to the surface of the dialysis cheep, and a concentration experiment was performed by leaving it at 25 ° C. for 1 hour. Only a low effect was obtained.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【実施例2】実施例1と同様にして調製した絹フィブロ
イン水溶液(濃度5.5重量%)10gをセルロース透
析チューブに入れ、これを表2に示す各種濃度のPEG
(分子量3000)水溶液0.1L中に攪拌下、各温度
で1時間浸漬した後取り出し、実施例1と同様の方法で
濃縮率を測定した。表2に示す限り、PEG濃度が高
く、温度が高いほど絹フィブロイン水溶液の濃縮率が大
きいことがわかる。PEG濃度が20%以下では濃縮効
率が低く実用的ではない。
Example 2 10 g of an aqueous solution of silk fibroin (concentration: 5.5% by weight) prepared in the same manner as in Example 1 was placed in a cellulose dialysis tube.
It was immersed in 0.1 L of an aqueous solution (molecular weight: 3000) at each temperature for 1 hour with stirring and then taken out. The concentration was measured in the same manner as in Example 1. As shown in Table 2, it can be seen that the higher the PEG concentration and the higher the temperature, the higher the concentration of the silk fibroin aqueous solution. If the PEG concentration is 20% or less, the concentration efficiency is low and not practical.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【実施例3】実施例1と同様にして調整した絹フィブロ
イン水溶液(濃度4.9重量%)20gをセルロース透
析チェープに入れ、これを50重量%のPEG水溶液
(平均分子量6000)200ml中に攪拌下23.5
℃で浸漬した後、経時的に取り出し、実施例1と同様の
方法で濃縮率を測定し、濃縮速度を求めた。結果を表3
に示す。
Example 3 20 g of an aqueous silk fibroin solution (concentration: 4.9% by weight) prepared in the same manner as in Example 1 was placed in a cellulose dialysis cheep, and stirred in 200 ml of a 50% by weight aqueous PEG solution (average molecular weight: 6000). Lower 23.5
After immersion at ℃, it was taken out with time, the concentration rate was measured in the same manner as in Example 1, and the concentration rate was determined. Table 3 shows the results
Shown in

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【実施例4】実施例1と同様にして調整した絹フィブロ
イン水溶液(濃度4.8重量%)10gをセルロース透
析チュープに入れ、これを表4に示す各種水溶液150
ml中に攪拌下、27.0℃で60分間浸漬した後取り
出し、実施例1と同様の方法で濃縮率を測定した。結果
を表4に示すが、PEGまたはその誘導体を用いた系が
特に良好な濃縮効果を与えた。また、いずれも外系高分
子のフィブロイン水溶液への混入は見られなかった。エ
チレングリコール(EG)−プロピレングリコール(P
G)共重合体のEG/PG比は、 1H−NMRにより決
定し、EGモル分率を示した。
Example 4 10 g of an aqueous solution of silk fibroin (concentration: 4.8% by weight) prepared in the same manner as in Example 1 was placed in a cellulose dialysis tube, and this was mixed with various aqueous solutions shown in Table 4.
After immersion in 2 ml at 27.0 ° C. for 60 minutes with stirring, the solution was taken out, and the concentration ratio was measured in the same manner as in Example 1. The results are shown in Table 4. The system using PEG or its derivative gave a particularly good concentration effect. In addition, no external polymer was mixed into the aqueous fibroin solution. Ethylene glycol (EG) -propylene glycol (P
G) The EG / PG ratio of the copolymer was determined by 1 H-NMR and showed the EG mole fraction.

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【実施例5】50重量%のPEG水溶液200ml(平
均分子量3000)中に、表5に示した各種タンパク質
水溶液25mlを入れたセルロース透析チェーブを浸漬
し、外液を攪拌下、各所定の温度で20分問の濃縮処理
を行った後、濃縮率を測定した。但し、タンパク質濃度
は、280nmの吸光度測定により求めた。表5より明
らかなように濃縮速度に対し大きな温度効果が認めれ
た。また、いずれもタンパク質水溶液へのPEGの混入
は認められなかった。
Example 5 A cellulose dialysis tube containing 25 ml of various protein aqueous solutions shown in Table 5 was immersed in 200 ml of a 50% by weight aqueous PEG solution (average molecular weight: 3000), and the external solution was stirred at a predetermined temperature while stirring. After performing the concentration treatment for 20 minutes, the concentration ratio was measured. However, the protein concentration was determined by measuring the absorbance at 280 nm. As is clear from Table 5, a large temperature effect was observed on the concentration rate. In addition, no PEG was mixed into the aqueous protein solution in any case.

【0025】[0025]

【表5】 [Table 5]

【0026】[0026]

【実施例6】実施例1と同様にして調整した絹フィブロ
イン水溶液(濃度5.3重量%)10gを透析チェーブ
に入れ、これを各種の液状エチレングリコール−プロピ
レングリコール共重合体0.1L中に24.5℃で1時
間浸漬した後取り出し、実施例1と同様の方法で濃縮率
を測定した。結果を表6に示す。エチレングリコール
(EG)−プロピレングリコール(PG)共重合体のE
G/PG比は、 1H−NMRにより決定し、EGモル分
率を示した。表6の中で、EG/PG,Bはエチレング
リコール−プロピレングリコールのプロック共重合体、
EG/PG,Rはランダム共重合体を示す。表6の結果
より、液状のポリエチレングリコール誘導体を用いるこ
とにより、室温でも有効な濃縮ができる。また、PEG
誘導体の混入量はいずれも0.3%以下であり、濃縮後
のフィブロイン水溶液にはゲル化部や析出部が全く見ら
れなかった。No.2の例では、濃縮が進み水がEG/
PG系に移行するに従い、外系の粘性が増大したため、
濃縮率が他の例より小さくなったものと考えられる。
Example 6 10 g of an aqueous solution of silk fibroin (concentration: 5.3% by weight) prepared in the same manner as in Example 1 was placed in a dialysis chamber, and this was added to 0.1 L of various liquid ethylene glycol-propylene glycol copolymers. After being immersed at 24.5 ° C. for 1 hour, it was taken out, and the concentration rate was measured in the same manner as in Example 1. Table 6 shows the results. E of ethylene glycol (EG) -propylene glycol (PG) copolymer
The G / PG ratio was determined by 1 H-NMR and indicated the EG mole fraction. In Table 6, EG / PG, B are ethylene glycol-propylene glycol block copolymers,
EG / PG, R indicates a random copolymer. From the results in Table 6, it is possible to perform effective concentration even at room temperature by using a liquid polyethylene glycol derivative. Also, PEG
The amount of the derivative mixed was 0.3% or less in each case, and no gelled or precipitated portion was found in the concentrated fibroin aqueous solution. No. In the example of 2, the concentration proceeds and the water is EG /
As the viscosity of the external system increased with the shift to the PG system,
It is considered that the concentration ratio was smaller than the other examples.

【0027】[0027]

【表6】 [Table 6]

【0028】[0028]

【実施例7】実施例1と同様にして調製した絹フィブロ
イン水溶被(濃度4.9重量%)10gを透析チューブ
に入れ、これを平均分子量3000のポリエチレングリ
コールとエチレングリコール−プロピレングリコールラ
ンダム共重合体(平均分子量5000、EGモル分率8
7%)とを重量比で1:1に混合した溶液中に浸漬し、
25℃、攪拌条件下で濃縮を行った。実施例1と同様の
方法で経時的に濃縮率を測定した。結果を表7に示す。
約1時間で2倍の濃縮率を得ることができる。
Example 7 10 g of an aqueous solution of silk fibroin (concentration: 4.9% by weight) prepared in the same manner as in Example 1 was placed in a dialysis tube, and this was mixed with polyethylene glycol having an average molecular weight of 3000 and ethylene glycol-propylene glycol random copolymer. Combined (average molecular weight 5000, EG mole fraction 8
7%) and 1: 1 by weight.
Concentration was performed at 25 ° C. under stirring conditions. The concentration rate was measured over time in the same manner as in Example 1. Table 7 shows the results.
A double enrichment rate can be obtained in about one hour.

【0029】[0029]

【表7】 [Table 7]

【0030】[0030]

【実施例8】実施例7と同じ濃縮系を用いて、表8に示
した各種タンパク質水溶液の濃縮試験を行った。温度2
2.5℃、1時間の濃縮処理を行った後、濃縮率を測定
した。 但し、タンパク質濃度は280nmの吸光度測
定により求めた。表8より明らかなようにいずれも高い
濃縮効果が認められた。
Example 8 Using the same concentration system as in Example 7, concentration tests of various protein aqueous solutions shown in Table 8 were performed. Temperature 2
After performing the concentration treatment at 2.5 ° C. for 1 hour, the concentration ratio was measured. However, the protein concentration was determined by measuring the absorbance at 280 nm. As is clear from Table 8, a high concentration effect was observed in all cases.

【0031】[0031]

【表8】 [Table 8]

【0032】[0032]

【発明の効果】本発明の濃縮方法によれば、タンパク質
水溶液をタンパク質の変性を招くことなく短時間に濃縮
でき、透析膜表面に送風したり、ポリエチレングリコー
ル粉末を付着せしめる方法に較ぺて優れた濃縮効率を与
えるものである。特に、タンパク質が絹フィブロインの
場合、水を加熱留去する方法のように分子量低下、部分
ゲル化や析出、更に歩留まり低下を招くことがなく、工
業的に有効な濃縮法を与えるのみならず、酵素固定化膜
などの絹膜の製造に対しても、欠陥のない均一性の高い
膜を調製できる絹水溶液原料を提供できるものである。
According to the concentration method of the present invention, the aqueous protein solution can be concentrated in a short time without denaturing the protein, and is superior to the method of blowing air onto the dialysis membrane surface or attaching polyethylene glycol powder. It provides a high concentration efficiency. In particular, when the protein is silk fibroin, a decrease in molecular weight, partial gelation or precipitation as in the method of heating and distilling off water does not cause a decrease in yield, and not only gives an industrially effective concentration method, The present invention can also provide a raw material for a silk aqueous solution that can be used to prepare a highly uniform film without defects even in the production of a silk film such as an enzyme-immobilized film.

【手続補正書】[Procedure amendment]

【提出日】平成8年9月25日[Submission date] September 25, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 タンパク質水溶の濃縮方法[Title of the Invention] The method of concentrating a protein aqueous solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 雅俊 大阪府八尾市山城町4丁目2番6号 (72)発明者 中山 博 大阪府枚方市東山1丁目38番5号 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masatoshi Sugimoto 4-6-6 Yamashiro-cho, Yao-shi, Osaka (72) Inventor Hiroshi Nakayama 1-35-5 Higashiyama, Hirakata-shi, Osaka

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 タンパク質水溶液を透析膜を介してポリ
エーテル系高分子或いはポリオール系高分子の水溶液に
接触させることを特徴とするタンパク質水溶液の濃縮方
法。
1. A method for concentrating an aqueous protein solution, comprising contacting the aqueous protein solution with an aqueous solution of a polyether polymer or a polyol polymer via a dialysis membrane.
【請求項2】 タンパク質が絹タンパクフィブロインで
ある請求項1の濃縮方法。
2. The method according to claim 1, wherein the protein is silk protein fibroin.
【請求項3】 ポリエーテル系高分子が分子量1500
以上のポリエチレングリコールである請求項1の濃縮方
法。
3. The polyether polymer has a molecular weight of 1500.
The method for concentrating according to claim 1, which is the above polyethylene glycol.
JP21522496A 1996-07-26 1996-07-26 Method for concentrating aqueous protein solution Pending JPH1036676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21522496A JPH1036676A (en) 1996-07-26 1996-07-26 Method for concentrating aqueous protein solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21522496A JPH1036676A (en) 1996-07-26 1996-07-26 Method for concentrating aqueous protein solution

Publications (1)

Publication Number Publication Date
JPH1036676A true JPH1036676A (en) 1998-02-10

Family

ID=16668769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21522496A Pending JPH1036676A (en) 1996-07-26 1996-07-26 Method for concentrating aqueous protein solution

Country Status (1)

Country Link
JP (1) JPH1036676A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515391A (en) * 2003-04-10 2007-06-14 タフツ ユニバーシティー Concentrated aqueous silk fibroin solutions and their use
US8071722B2 (en) 2002-06-24 2011-12-06 Trustees Of Tufts College Silk biomaterials and methods of use thereof
US8715740B2 (en) 2009-09-29 2014-05-06 Trustees Of Tufts College Silk nanospheres and microspheres and methods of making same
US8722067B2 (en) 2007-05-29 2014-05-13 Trustees Of Tufts College Method for silk fibroin gelation using sonication
US8728498B2 (en) 2009-07-14 2014-05-20 Trustees Of Tufts College Electrospun silk material systems for wound healing
US9040073B2 (en) 2008-05-15 2015-05-26 Trustees Of Tufts College Silk polymer-based adenosine release: therapeutic potential for epilepsy
US9074302B2 (en) 2009-09-28 2015-07-07 Trustees Of Tufts College Methods of making drawn silk fibers
US9102916B2 (en) 2007-02-27 2015-08-11 Trustees Of Tufts College Tissue-engineered silk organs
US9132197B2 (en) 2003-01-07 2015-09-15 Massachusetts Institute Of Technology Silk fibroin materials and use thereof
US9504575B2 (en) 2008-02-07 2016-11-29 Trustees Of Tufts College 3-dimensional silk hydroxyapatite compositions
US9539362B2 (en) 2003-06-06 2017-01-10 Trustees Of Tufts College Method for forming inorganic coatings
US9566365B2 (en) 2010-09-01 2017-02-14 Trustees Of Tufts College Silk fibroin and polyethylene glycol-based biomaterials
US9603971B2 (en) 2010-03-05 2017-03-28 Trustees Of Tufts College Silk-based ionomeric compositions
US9694082B2 (en) 2008-09-26 2017-07-04 Trustees Of Tufts College pH induced silk gels and uses thereof
US10335519B2 (en) 2011-04-20 2019-07-02 Trustees Of Tufts College Dynamic silk coatings for implantable devices
US10493179B2 (en) 2008-10-09 2019-12-03 Trustees Of Tufts College Modified silk films containing glycerol
US10912862B2 (en) 2012-02-06 2021-02-09 Children's Medical Center Corporation Multi-layer biomaterial for tissue regeneration and wound healing
US10933173B2 (en) 2010-10-19 2021-03-02 Trustees Of Tufts College Silk fibroin-based microneedles and methods of making the same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071722B2 (en) 2002-06-24 2011-12-06 Trustees Of Tufts College Silk biomaterials and methods of use thereof
US11110148B2 (en) 2003-01-07 2021-09-07 Trustees Of Tufts College Silk fibroin materials and use thereof
US9993527B2 (en) 2003-01-07 2018-06-12 Trustees Of Tufts College Silk fibroin materials and use thereof
US9132197B2 (en) 2003-01-07 2015-09-15 Massachusetts Institute Of Technology Silk fibroin materials and use thereof
US8614293B2 (en) 2003-04-10 2013-12-24 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US11129921B2 (en) 2003-04-10 2021-09-28 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US9623147B2 (en) 2003-04-10 2017-04-18 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US8742069B2 (en) 2003-04-10 2014-06-03 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
JP2007515391A (en) * 2003-04-10 2007-06-14 タフツ ユニバーシティー Concentrated aqueous silk fibroin solutions and their use
US9084840B2 (en) 2003-04-10 2015-07-21 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US10314938B2 (en) 2003-04-10 2019-06-11 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US9539362B2 (en) 2003-06-06 2017-01-10 Trustees Of Tufts College Method for forming inorganic coatings
US9102916B2 (en) 2007-02-27 2015-08-11 Trustees Of Tufts College Tissue-engineered silk organs
US10478524B2 (en) 2007-02-27 2019-11-19 Trustees Of Tufts College Tissue-engineered silk organs
US9655993B2 (en) 2007-02-27 2017-05-23 Trustees Of Tufts College Tissue-engineered silk organs
US9254333B2 (en) 2007-05-29 2016-02-09 Trustees Of Tufts College Method for silk fibroin gelation using sonication
US8722067B2 (en) 2007-05-29 2014-05-13 Trustees Of Tufts College Method for silk fibroin gelation using sonication
US9504575B2 (en) 2008-02-07 2016-11-29 Trustees Of Tufts College 3-dimensional silk hydroxyapatite compositions
US9040073B2 (en) 2008-05-15 2015-05-26 Trustees Of Tufts College Silk polymer-based adenosine release: therapeutic potential for epilepsy
US9694082B2 (en) 2008-09-26 2017-07-04 Trustees Of Tufts College pH induced silk gels and uses thereof
US10493179B2 (en) 2008-10-09 2019-12-03 Trustees Of Tufts College Modified silk films containing glycerol
US8728498B2 (en) 2009-07-14 2014-05-20 Trustees Of Tufts College Electrospun silk material systems for wound healing
US9074302B2 (en) 2009-09-28 2015-07-07 Trustees Of Tufts College Methods of making drawn silk fibers
US9381164B2 (en) 2009-09-29 2016-07-05 Trustees Of Tufts College Silk nanospheres and microspheres and methods of making same
US8715740B2 (en) 2009-09-29 2014-05-06 Trustees Of Tufts College Silk nanospheres and microspheres and methods of making same
US9603971B2 (en) 2010-03-05 2017-03-28 Trustees Of Tufts College Silk-based ionomeric compositions
US9566365B2 (en) 2010-09-01 2017-02-14 Trustees Of Tufts College Silk fibroin and polyethylene glycol-based biomaterials
US10933173B2 (en) 2010-10-19 2021-03-02 Trustees Of Tufts College Silk fibroin-based microneedles and methods of making the same
US12194200B2 (en) 2010-10-19 2025-01-14 Trustees Of Tufts College Silk fibroin-based microneedles and methods of making the same
US10335519B2 (en) 2011-04-20 2019-07-02 Trustees Of Tufts College Dynamic silk coatings for implantable devices
US11266339B2 (en) 2011-04-20 2022-03-08 Trustees Of Tufts College Dynamic silk coatings for implantable devices
US10912862B2 (en) 2012-02-06 2021-02-09 Children's Medical Center Corporation Multi-layer biomaterial for tissue regeneration and wound healing

Similar Documents

Publication Publication Date Title
JPH1036676A (en) Method for concentrating aqueous protein solution
US4048377A (en) Dried rehydratable film containing agarose or gelose and process for preparing same
US4407975A (en) Polymeric membrane having maleic anhydride residues
US5688775A (en) β-1,3-glucan polysaccharides, compositions, and their preparation and uses
Lozinsky A brief history of polymeric cryogels
JPH0678460B2 (en) Porous transparent polyvinyl alcohol gel
CA2060314C (en) Low electroendosmosis agarose
JPH04275346A (en) Compatibel mixture containing chitosan
JPH03259928A (en) Production of highly polymeric gelatin
JPS59105005A (en) Vinylene carbonate polymer and its manufacturing method
EP3921372B1 (en) Protein hydrogel, preparation method and use thereof
JPH0669485B2 (en) Molded product containing silk fibroin
US6203680B1 (en) Electrophoresis gels
EP0009430B1 (en) Aqueous gels of agarose, compositions constituted by these gels and tube containing them, and applications of these gels
US4409103A (en) Method for the preparation of calcium heparinate
EP0596315A2 (en) A method of attaching dialdehyde starch to a surface and products produced by that method
JPH0114240B2 (en)
EP0352330A1 (en) Fibroin moldings, process for their preparation, heparin-immobilizing carrier, and process for its preparation
CN113150180A (en) Gellan gum with low gel temperature and preparation method and application thereof
JP2005281654A (en) Temperature-responsive composition and hydrogel thereof
JPH06102229A (en) Semipermeable membrane and method for producing the same
JPS6344884A (en) Affinity chromatography carrier for purifying lysozyme
JPH06319537A (en) Modified peptide and production thereof
JPH0369275B2 (en)
JPS60120985A (en) Novel modification enzyme