JPH1036379A - Tantalum compound - Google Patents

Tantalum compound

Info

Publication number
JPH1036379A
JPH1036379A JP19653296A JP19653296A JPH1036379A JP H1036379 A JPH1036379 A JP H1036379A JP 19653296 A JP19653296 A JP 19653296A JP 19653296 A JP19653296 A JP 19653296A JP H1036379 A JPH1036379 A JP H1036379A
Authority
JP
Japan
Prior art keywords
tantalum
tantalum compound
compound
vapor deposition
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19653296A
Other languages
Japanese (ja)
Other versions
JP3223800B2 (en
Inventor
Atsushi Sai
篤 齋
Kazuo Wakabayashi
和夫 若林
Katsumi Ogi
勝実 小木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP19653296A priority Critical patent/JP3223800B2/en
Publication of JPH1036379A publication Critical patent/JPH1036379A/en
Application granted granted Critical
Publication of JP3223800B2 publication Critical patent/JP3223800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a tantalum compound being the specific one, having a high volatility, an excellent volatile stability and characteristics capable of stably and effectively forming a membrane and useful as a vapor deposition raw material for producing a ceramic thin film by a metal organic chemical vapor deposition method. SOLUTION: This tantalum compound is the new one of the formula [A is a group of the formula C(CH3 )3 or (CH2 )3 CH3 ; R is a group of the formula C(CH3 )3 or CH3 ]. The tantalum compound has a high volatility, an excellent volatile stability and is useful as a vapor deposition raw material, etc., for producing an oxide-based ceramic thin film containing the tantalum, a layered ceramic, etc., by a metal organic chemical vapor deposition (MOCVD method) capable of stably and effectively forming a film. The compound is obtained by, in an inert gas current, dissolving tantalum pentachloride in toluene, adding 4 equivalent amount of butanol based on the amount of the tantalum to the solution, further adding dipivaloylmethane, etc., to the solution with the added butanol and heating and refluxing the resultant solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規タンタル化合物
に係り、特に、有機金属化学蒸着法(Metalorganic Che
mical Vapor Deposition:以下「MOCVD法」と称
す。)により、タンタルを含む酸化物系のセラミックス
薄膜又は層状セラミックス等の製造に用いる蒸着原料と
して有用なタンタル化合物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel tantalum compound and, more particularly, to a metalorganic chemical vapor deposition method.
mical Vapor Deposition: Hereinafter referred to as “MOCVD method”. The present invention relates to a tantalum compound useful as a vapor deposition raw material for producing an oxide-based ceramic thin film or a layered ceramic containing tantalum.

【0002】[0002]

【従来の技術】近年、酸化物系のセラミックス薄膜又は
層状セラミックス等の製造法として、MOCVD法が有
力な手段として用いられるようになり、盛んに研究がな
されてきた。例えば、誘電体薄膜の製造がその一例であ
り、その製造に当っては、MOCVD用の蒸着原料とし
て揮発性が高く、供給量の安定した材料が求められてい
る。
2. Description of the Related Art In recent years, the MOCVD method has been used as an effective means for producing oxide-based ceramic thin films or layered ceramics, and has been actively studied. For example, the production of a dielectric thin film is one example. In the production, a material having a high volatility and a stable supply amount is required as a deposition material for MOCVD.

【0003】従来、このようなMOCVD法による蒸着
原料としてのタンタル化合物としては、特開平6−96
60号公報記載のβ−ジケトネートタンタル金属錯体の
Ta(DPM)4 Cl(ただし、DPMはHDPM:ジ
ピバロイルメタンからの配位子である。)や下記構造式
で表されるTa(i−PrO)4 (DPM)が知られて
いる。
[0003] Conventionally, tantalum compounds as a material for vapor deposition by the MOCVD method have been disclosed in JP-A-6-96.
No. 60, Ta (DPM) 4 Cl (where DPM is a ligand from dipivaloylmethane) of a tantalum metal complex of β-diketonate and Ta represented by the following structural formula. (I-PrO) 4 (DPM) is known.

【0004】[0004]

【化2】 Embedded image

【0005】このような蒸着原料を用いてMOCVD法
によりタンタル酸化物薄膜を形成するには、例えば、図
1の概略説明図に示す如く、反応炉8内に設けたヒータ
ー7上に基板6を置き、一方、この反応炉8と連接して
設けた加熱炉3内で、気化容器2内の上記有機ビスマス
化合物からなる蒸着原料1を気化させ、得られた蒸気を
配管4から導入されるAr,N2 等のキャリアガスで反
応炉8内に送給して拡散させると共に、反応ガスとして
2 ,N2 O,オゾン等の酸化性ガスを、配管5から反
応炉8に導入して加熱基板6上にタンタル酸化物を析出
させる。酸化性ガスの導入を行わない場合にはタンタル
が析出する。なお、図中、9は真空引配管、Pは圧力計
である。この方法は熱分解型MOCVD法と称される。
In order to form a tantalum oxide thin film by MOCVD using such a deposition material, for example, as shown in a schematic explanatory view of FIG. 1, a substrate 6 is placed on a heater 7 provided in a reaction furnace 8. On the other hand, in a heating furnace 3 provided in connection with the reaction furnace 8, the vapor deposition raw material 1 made of the organic bismuth compound in the vaporization vessel 2 is vaporized. , N 2 and the like are fed into the reaction furnace 8 and diffused, and an oxidizing gas such as O 2 , N 2 O and ozone as a reaction gas is introduced into the reaction furnace 8 from the pipe 5 and heated. Tantalum oxide is deposited on the substrate 6. If the oxidizing gas is not introduced, tantalum will precipitate. In the drawing, reference numeral 9 denotes a vacuum pipe, and P denotes a pressure gauge. This method is called a thermal decomposition type MOCVD method.

【0006】[0006]

【発明が解決しようとする課題】一般に、β−ジケトネ
ートタンタル金属錯体は、空気中の水分と反応して加水
分解を起こしたり、また、多量化するなど、極めて変質
し易く保存安定性に欠ける。このような現象は成膜時に
特に問題となり、安定した供給量を与えることができな
いことから、気化速度(即ち、成膜速度)に大きなばら
つきを生じることとなる。しかして、気化速度のばらつ
きは、形成される膜の均一性を損ない、組成の制御が困
難となるといった不具合を引き起こす。
Generally, a β-diketonate tantalum metal complex reacts with moisture in the air to cause hydrolysis, and is also very easily deteriorated, for example, to be increased in quantity, and has poor storage stability. Chip. Such a phenomenon is particularly problematic at the time of film formation, and since a stable supply amount cannot be provided, a large variation occurs in the vaporization rate (that is, the film formation rate). Thus, variations in the vaporization rate cause problems such as impairing the uniformity of the formed film and making it difficult to control the composition.

【0007】MOCVD用の蒸着原料として従来提供さ
れているTa(DPM)4 ClやTa(i−PrO)4
(DPM)についても同様の欠点があり、特に、特開平
6−9660号公報記載のTa(DPM)4 Clは、塩
素を含有するため装置の腐食や膜質へのダメージといっ
た問題が懸念される。
[0007] Ta (DPM) 4 Cl or Ta (i-PrO) 4 conventionally provided as a vapor deposition material for MOCVD.
(DPM) also has the same drawbacks. In particular, since Ta (DPM) 4 Cl described in Japanese Patent Application Laid-Open No. 6-9660 contains chlorine, there is a concern that it may cause problems such as corrosion of the apparatus and damage to the film quality.

【0008】本発明は上記従来の問題点を解決し、揮発
性が高く、気化安定性に優れ、安定かつ効率的な成膜を
行えるMOCVD法による薄膜形成用タンタル化合物を
提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a tantalum compound for forming a thin film by a MOCVD method which has high volatility, excellent vaporization stability, and enables stable and efficient film formation. I do.

【0009】[0009]

【課題を解決するための手段】本発明のタンタル化合物
は、下記一般式[I] で示されるものである。
Means for Solving the Problems The tantalum compound of the present invention is represented by the following general formula [I].

【0010】[0010]

【化3】 Embedded image

【0011】(ただし、上記[I] 式中、Aは−C(CH
3 3 又は−(CH2 3 CH3 を示し、Rは−C(C
3 3 又は−CH3 を示す。) 本発明に係るタンタル化合物は、従来のβ−ジケトネー
トタンタル金属錯体の配位子よりも嵩高いt−ブトキシ
基又はn−ブトキシ基を配位させることにより、空気中
の水分等の分子的なアタックを回避することが可能とな
り、また、従来の化合物に比べて固体結晶性が良好とな
る。このため、本発明のタンタル化合物は、単量体構造
において、高い揮発性と気化安定性を示し、MOCVD
法により良好な組成制御のもとに、高い成膜速度で効率
的な成膜を行える。
(However, in the above formula [I], A is -C (CH
3 ) 3 or — (CH 2 ) 3 CH 3 , wherein R is —C (C
H 3) 3 or an -CH 3. The tantalum compound according to the present invention is capable of coordinating a t-butoxy group or an n-butoxy group which is bulkier than a ligand of a conventional β-diketonate tantalum metal complex, thereby forming molecules such as moisture in the air. It is possible to avoid a general attack, and the solid crystallinity is improved as compared with a conventional compound. For this reason, the tantalum compound of the present invention shows high volatility and vaporization stability in the monomer structure,
The method enables efficient film formation at a high film formation rate under good composition control.

【0012】[0012]

【発明の実施の形態】以下に本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0013】本発明のタンタル化合物は、次の構造式
[i] 〜[iv]で示されるものである。
The tantalum compound of the present invention has the following structural formula
[i] to [iv].

【0014】[0014]

【化4】 Embedded image

【0015】[0015]

【化5】 Embedded image

【0016】[0016]

【化6】 Embedded image

【0017】[0017]

【化7】 Embedded image

【0018】このような本発明のタンタル化合物は、後
掲の実施例に示されるように、タンタルペンタクロリド
と、t−ブタノール又はn−ブタノールと、ジピバロイ
ルメタン又はアセチルアセトンとを反応させることによ
り合成することができる。
The tantalum compound of the present invention can be obtained by reacting tantalum pentachloride, t-butanol or n-butanol with dipivaloylmethane or acetylacetone, as will be described in Examples below. Can be synthesized by

【0019】このような本発明のタンタル化合物は、従
来のタンタル化合物と同様の操作で熱分解型MOCVD
法等のMOCVD法によるタンタル又はタンタル酸化物
薄膜の蒸着原料として用いることができる。
The tantalum compound of the present invention can be prepared by the same operation as that of a conventional tantalum compound.
It can be used as a raw material for vapor deposition of a tantalum or tantalum oxide thin film by MOCVD such as CVD.

【0020】[0020]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0021】実施例1 [タンタル化合物の合成]不活性気流下、タンタルペンタ
クロリド355g(1.0mol)を脱水精製したトル
エン500mlに溶解した。次いで、この溶液にn−ブ
タノールをタンタル量に対して4当量添加し、激しく撹
拌した。更に、この反応液にジピバロイルメタン(HD
PM)をタンタル量に対して1.5当量ゆっくり添加し
た後、48時間加熱還流した。この反応液を減圧蒸留
(120℃、2Torr)して、白色残渣を得た。この
残渣をトルエンで再結晶することにより、前記構造式
[i] で表される本発明のタンタル化合物Ta(n−Bu
O)4 (DPM)を320g得た。得られたタンタル化
合物の同定はICP−MSによる元素分析と、IR,N
MR及びMSにより行った。
Example 1 [Synthesis of Tantalum Compound] Under an inert gas stream, 355 g (1.0 mol) of tantalum pentachloride was dissolved in 500 ml of dehydrated and purified toluene. Next, 4 equivalents of n-butanol based on the amount of tantalum were added to this solution, and the mixture was vigorously stirred. Further, dipivaloyl methane (HD
After slowly adding 1.5 equivalents of PM) to the amount of tantalum, the mixture was refluxed for 48 hours. The reaction solution was distilled under reduced pressure (120 ° C., 2 Torr) to obtain a white residue. By recrystallizing this residue with toluene, the structural formula
The tantalum compound Ta (n-Bu) of the present invention represented by [i]
O) 4 (DPM) was obtained in an amount of 320 g. The obtained tantalum compound was identified by elemental analysis by ICP-MS and IR, N
Performed by MR and MS.

【0022】元素分析; 実測値(%):C=49.8,H=8.40,O=14.
8,Ta=27.7 計算値(%):C=49.4,H=8.38,O=14.
6,Ta=27.6 IR(cm-1);3400,3000,2980,29
00,2300,1600,1470,1460,13
80,1360,1300,1250,1240,12
20,1200,1130,1020,920,88
0,800,7501 H−NMR;δ(ppm)6.2(C−H),1.3
(C(CH3 3 ),1.1(C(CH3 3 ) MS;m/e660 [気化特性の評価]得られたタンタル化合物の気化特性を
評価する目的で熱重量曲線(昇温速度10℃/min,
乾燥アルゴン雰囲気)を求め結果を図2に示した。
Elemental analysis; actual values (%): C = 49.8, H = 8.40, O = 14.
8, Ta = 27.7 Calculated value (%): C = 49.4, H = 8.38, O = 14.
6, Ta = 27.6 IR (cm -1 ); 3400, 3000, 2980, 29
00, 2300, 1600, 1470, 1460, 13
80, 1360, 1300, 1250, 1240, 12
20, 1200, 1130, 1020, 920, 88
0,800,750 1 H-NMR; δ (ppm) 6.2 (CH), 1.3
(C (CH 3 ) 3 ), 1.1 (C (CH 3 ) 3 ) MS; m / e660 [Evaluation of vaporization characteristics] A thermogravimetric curve (temperature rise) was used to evaluate the vaporization characteristics of the obtained tantalum compound. Speed 10 ° C / min,
(Dry argon atmosphere) was obtained and the results are shown in FIG.

【0023】[タンタル酸化物薄膜の成膜試験]得られた
タンタル化合物を用いて、図1に示す装置により、熱分
解型MOCVD法に従って、下記条件にて酸化タンタル
薄膜の作製を行い、20分毎の膜厚を測定した。膜厚
は、膜の断面SEM像から測定した。この測定結果を表
1に示した。
[Thin film formation test of tantalum oxide thin film] Using the obtained tantalum compound, a tantalum oxide thin film was formed by the apparatus shown in FIG. The thickness of each film was measured. The film thickness was measured from a cross-sectional SEM image of the film. The measurement results are shown in Table 1.

【0024】基板;300nm Ptスパッタ膜/80
nm Tiスパッタ膜/500nmSiO2 熱酸化膜/
Si(100) 基板温度;600℃ 気化温度;200℃ 圧力;10Torr キャリアガスAr流量;200sccm 反応ガスO2 流量;1000sccm Ar:O2 比;体積比1:1 実施例2 実施例1において、n−ブタノールの代りにt−ブタノ
ールを用いたこと以外は同様に行って、前記構造式[ii]
で表される本発明のタンタル化合物Ta(t−BuO)
4 (DPM)を得た。このタンタル化合物の同定結果は
下記の通りである。また、実施例1と同様にして求めた
気化特性の評価結果及び成膜試験結果を図3及び表1に
示す。
Substrate: 300 nm Pt sputtered film / 80
nm Ti sputtered film / 500 nm SiO 2 thermal oxide film /
Si (100) Substrate temperature; 600 ° C. Vaporization temperature; 200 ° C. Pressure; 10 Torr Carrier gas Ar flow rate; 200 sccm Reactant gas O 2 flow rate; 1000 sccm Ar: O 2 ratio; volume ratio 1: 1 -The same procedure was repeated except that t-butanol was used in place of butanol to obtain the above-mentioned structural formula [ii].
The tantalum compound Ta (t-BuO) of the present invention represented by
4 (DPM) was obtained. The identification results of this tantalum compound are as follows. 3 and Table 1 show the evaluation results of the vaporization characteristics and the film formation test results obtained in the same manner as in Example 1.

【0025】元素分析; 実測値(%):C=48.9,H=8.35,O=14.
2,Ta=27.2 計算値(%):C=49.4,H=8.38,O=14.
6,Ta=27.6 IR(cm-1);3350,2960,2950,28
80,2360,2300,1600,1460,13
80,1360,1300,1250,1220,11
30,1070,1060,950,880,850,
800,750,7401 H−NMR;δ(ppm)6.1(C−H),1.1
5(CH3 ),1.5(CH3-CH2),2.3(C
2),3.8(CH2),1.1(C(CH3)3 ) MS;m/e660 実施例3 実施例1において、シビパロイルメタンの代りにアセチ
ルアセトン(Hacac)を用いたこと以外は同様に行
って、前記構造式[iii] で表される本発明のタンタル化
合物Ta(n−BuO)4 (acac)を得た。このタ
ンタル化合物の同定結果は下記の通りである。また、実
施例1と同様にして求めた気化特性の評価結果及び成膜
試験結果を図4及び表1に示す。
Elemental analysis; actual values (%): C = 48.9, H = 8.35, O = 14.
2, Ta = 27.2 Calculated value (%): C = 49.4, H = 8.38, O = 14.
6, Ta = 27.6 IR (cm -1 ); 3350, 2960, 2950, 28
80,2360,2300,1600,1460,13
80, 1360, 1300, 1250, 1220, 11
30, 1070, 1060, 950, 880, 850,
800, 750, 740 1 H-NMR; δ (ppm) 6.1 (CH), 1.1
5 (CH 3 ), 1.5 (CH 3 -CH 2) , 2.3 (C
H2 ) , 3.8 (CH2 ) , 1.1 (C (CH3 ) 3 ) MS; m / e 660 Example 3 In Example 1, acetylacetone (Hacac) was used in place of sibiparoylmethane. Except for the above, a tantalum compound Ta (n-BuO) 4 (acac) of the present invention represented by the structural formula [iii] was obtained. The identification results of this tantalum compound are as follows. 4 and Table 1 show the evaluation results of the vaporization characteristics and the film formation test results obtained in the same manner as in Example 1.

【0026】元素分析; 実測値(%):C=43.9,H=7.55,O=16.
5,Ta=31.3 計算値(%):C=44.1,H=7.52,O=16.
8,Ta=31.6 IR(cm-1);3350,3050,2950,29
40,2880,2370,2350,1700,16
30,1465,1460,1420,1380,13
60,1250,1160,1118,1070,10
40,1025,1000,990,950,920,
850,798,780,6401 H−NMR;δ(ppm)5.7(C−H),1.1
8(CH3 ),1.3(CH3-CH2),2.1(C
2),3.5(CH2),1.2(−CH3) MS;m/e577 実施例4 実施例3において、n−ブタノールの代りにt−ブタノ
ールを用いたこと以外は同様に行って、前記構造式[iv]
で表される本発明のタンタル化合物Ta(t−BuO)
4 (acac)を得た。このタンタル化合物の同定結果
は下記の通りである。また、実施例1と同様にして求め
た気化特性の評価結果及び成膜試験結果を図5及び表1
に示す。
Elemental analysis; actual values (%): C = 43.9, H = 7.55, O = 16.
5, Ta = 31.3 Calculated value (%): C = 44.1, H = 7.52, O = 16.
8, Ta = 31.6 IR (cm -1 ); 3350, 3050, 2950, 29
40, 2880, 2370, 2350, 1700, 16
30, 1465, 1460, 1420, 1380, 13
60, 1250, 1160, 1118, 1070, 10
40, 1025, 1000, 990, 950, 920,
850, 798, 780, 640 1 H-NMR; δ (ppm) 5.7 (CH), 1.1
8 (CH 3 ), 1.3 (CH 3 -CH 2) , 2.1 (C
H / ) 3.5 (CH2 ) , 1.2 (-CH3 ) MS; m / e577 Example 4 In Example 3, except that t-butanol was used instead of n-butanol. Performed, the structural formula [iv]
The tantalum compound Ta (t-BuO) of the present invention represented by
4 (acac) was obtained. The identification results of this tantalum compound are as follows. 5 and Table 1 show the evaluation results of the vaporization characteristics and the film formation test results obtained in the same manner as in Example 1.
Shown in

【0027】元素分析; 実測値(%):C=44.0,H=7.54,O=16.8
2,Ta=31.5 計算値(%):C=44.1,H=7.52,O=16.
8, Ta=31.6 IR(cm-1);3360,3050,2970,28
80,1700,1630,1470,1420,13
80,1365,1250,1240,1200,11
60,1023,1000,950,920,795,
780,750,6401 H−NMR;δ(ppm)5.9(C−H),1.4
(CH3 ),1.1(C(CH3)3) MS;m/e577 比較例1 実施例1において、n−ブタノールを用いず、ジビパロ
イルメタンをタンタル量に対して4当量加えたこと以外
は同様に行って、従来のタンタルTa(DPM4 )Cl
を得た。このタンタル化合物について、実施例1と同様
にして求めた気化特性の評価結果及び成膜試験結果を図
6及び表1に示す。
Elemental analysis; actual values (%): C = 44.0, H = 7.54, O = 16.8
2, Ta = 31.5 Calculated value (%): C = 44.1, H = 7.52, O = 16.
8, Ta = 31.6 IR (cm -1 ); 3360, 3050, 2970, 28
80, 1700, 1630, 1470, 1420, 13
80, 1365, 1250, 1240, 1200, 11
60,1023,1000,950,920,795
780, 750, 640 1 H-NMR; δ (ppm) 5.9 (CH), 1.4
(CH 3 ), 1.1 (C (CH 3) 3) MS; m / e577 Comparative Example 1 In Example 1, diviparoylmethane was added in an amount of 4 equivalents to the amount of tantalum without using n-butanol. Except for this, the same procedure is performed to obtain the conventional tantalum Ta (DPM 4 ) Cl.
I got With respect to this tantalum compound, the evaluation results of the vaporization characteristics and the film formation test results obtained in the same manner as in Example 1 are shown in FIG.

【0028】比較例2 実施例1において、n−ブタノールの代りにt−プロピ
ルアルコールを用いたこと以外は同様に行って、従来の
タンタルTa(i−PrO)4 (DPM)を得た。この
タンタル化合物について、実施例1と同様にして求めた
気化特性の評価結果及び成膜試験結果を図7及び表1に
示す。
Comparative Example 2 A conventional tantalum Ta (i-PrO) 4 (DPM) was obtained in the same manner as in Example 1 except that t-propyl alcohol was used instead of n-butanol. With respect to this tantalum compound, the evaluation results of the vaporization characteristics and the film formation test results obtained in the same manner as in Example 1 are shown in FIG.

【0029】[0029]

【表1】 [Table 1]

【0030】図2〜7に示される結果から次のことが明
らかである。即ち、本発明のタンタル化合物は室温から
約430℃までの温度で完全に気化させることが可能で
あるが、一方、従来のタンタル化合物は気化終了の際、
約5%程の残留物が生成している。このことから、本発
明のタンタル化合物は、気化安定性に優れることが明ら
かである。
The following is clear from the results shown in FIGS. That is, the tantalum compound of the present invention can be completely vaporized at a temperature from room temperature to about 430 ° C., whereas the conventional tantalum compound has a
About 5% of the residue is formed. From this, it is clear that the tantalum compound of the present invention has excellent vaporization stability.

【0031】また、表1より、次のことが明らかであ
る。即ち、本発明のタンタル化合物は、成膜時間に対し
ほぼ一定の割合で膜厚が増加し、かつ、その成膜速度も
従来のタンタル化合物に比べて速いのに対し、従来のタ
ンタル化合物の場合は、膜厚の増加割合が一定ではな
く、しかも、成膜量も少ない。
The following is evident from Table 1. That is, in the tantalum compound of the present invention, the film thickness increases at a substantially constant rate with respect to the film formation time, and the film formation rate is higher than that of the conventional tantalum compound, whereas the case of the conventional tantalum compound is In the method, the rate of increase in the film thickness is not constant, and the film formation amount is small.

【0032】[0032]

【発明の効果】以上詳述した通り、本発明のタンタル化
合物は、優れた揮発性と安定した気化速度を示すことか
ら、本発明のタンタル化合物によれば、MOCVD法に
よるタンタル酸化物系セラミック薄膜等の成膜に当り、
良好な組成制御のもとに、高い成膜速度で効率的な成膜
を行える。
As described in detail above, the tantalum compound of the present invention exhibits excellent volatility and a stable vaporization rate. Therefore, according to the tantalum compound of the present invention, the tantalum oxide-based ceramic thin film obtained by MOCVD is used. In film formation such as
Under good composition control, efficient film formation can be performed at a high film formation rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱分解型MOCVD法を説明する装置の概略断
面図である。
FIG. 1 is a schematic sectional view of an apparatus for explaining a thermal decomposition type MOCVD method.

【図2】本発明のタンタル化合物:Ta(n−BuO)
4 (DPM)の熱重量曲線を示すグラフである。
FIG. 2 shows a tantalum compound of the present invention: Ta (n-BuO).
4 is a graph showing a thermogravimetric curve of (DPM).

【図3】本発明のタンタル化合物:Ta(t−BuO)
4 (DPM)の熱重量曲線を示すグラフである。
FIG. 3 shows a tantalum compound of the present invention: Ta (t-BuO).
4 is a graph showing a thermogravimetric curve of (DPM).

【図4】本発明のタンタル化合物:Ta(n−BuO)
4 (acac)の熱重量曲線を示すグラフである。
FIG. 4 is a tantalum compound of the present invention: Ta (n-BuO).
4 is a graph showing a thermogravimetric curve of (acac).

【図5】本発明のタンタル化合物:Ta(t−BuO)
4 (acac)の熱重量曲線を示すグラフである。
FIG. 5: Tantalum compound of the present invention: Ta (t-BuO)
4 is a graph showing a thermogravimetric curve of (acac).

【図6】従来のタンタル化合物:Ta(DPM)4 Cl
の熱重量曲線を示すグラフである。
FIG. 6: Conventional tantalum compound: Ta (DPM) 4 Cl
3 is a graph showing a thermogravimetric curve of the sample.

【図7】従来のタンタル化合物:Ta(i−PrO)4
(DPM)の熱重量曲線を示すグラフである。
FIG. 7: Conventional tantalum compound: Ta (i-PrO) 4
It is a graph which shows a thermogravimetric curve of (DPM).

【符号の説明】[Explanation of symbols]

1 蒸着原料 2 気化容器 3 加熱炉 4 キャリアガス導入配管 5 反応ガス導入配管 6 基板 7 ヒーター 8 反応炉 9 真空引配管 DESCRIPTION OF SYMBOLS 1 Deposition raw material 2 Vaporization container 3 Heating furnace 4 Carrier gas introduction pipe 5 Reaction gas introduction pipe 6 Substrate 7 Heater 8 Reaction furnace 9 Vacuum piping

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式[I] で示されるタンタル化合
物。 【化1】 (ただし、上記[I] 式中、Aは−C(CH3 3 又は−
(CH2 3 CH3 を示し、Rは−C(CH3 3 又は
−CH3 を示す。)
1. A tantalum compound represented by the following general formula [I]. Embedded image (However, in the above formula [I], A is -C (CH 3 ) 3 or-
(CH 2) shows a 3 CH 3, R represents a -C (CH 3) 3 or -CH 3. )
【請求項2】 請求項1において、有機金属化学蒸着に
よる薄膜形成のための蒸着原料であることを特徴とする
タンタル化合物。
2. The tantalum compound according to claim 1, which is a deposition material for forming a thin film by metal organic chemical vapor deposition.
JP19653296A 1996-07-25 1996-07-25 Tantalum compound Expired - Fee Related JP3223800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19653296A JP3223800B2 (en) 1996-07-25 1996-07-25 Tantalum compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19653296A JP3223800B2 (en) 1996-07-25 1996-07-25 Tantalum compound

Publications (2)

Publication Number Publication Date
JPH1036379A true JPH1036379A (en) 1998-02-10
JP3223800B2 JP3223800B2 (en) 2001-10-29

Family

ID=16359312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19653296A Expired - Fee Related JP3223800B2 (en) 1996-07-25 1996-07-25 Tantalum compound

Country Status (1)

Country Link
JP (1) JP3223800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032608A1 (en) * 1998-11-26 2000-06-08 Infineon Technologies Ag Complex compound of an element of sub-group iv

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032608A1 (en) * 1998-11-26 2000-06-08 Infineon Technologies Ag Complex compound of an element of sub-group iv

Also Published As

Publication number Publication date
JP3223800B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
KR101498732B1 (en) Process for forming the strontium-containing thin film
JP3224450B2 (en) Ruthenium oxide film forming method
KR101437663B1 (en) Metallic alkoxide compound, thin film-forming material and method for forming thin film
JP5260148B2 (en) Method for forming strontium-containing thin film
US6689427B2 (en) Group IV metal precursors and a method of chemical vapor deposition using the same
KR102634502B1 (en) Ruthenium compounds, raw materials for forming thin films, and methods for producing thin films
JP2005209766A (en) Method for manufacturing oxide film containing hafnium
US11161867B2 (en) Compound, raw material for forming thin film, method for manufacturing thin film, and amidine compound
JP3223800B2 (en) Tantalum compound
JP3511228B2 (en) Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same
JP5732772B2 (en) Ruthenium complex mixture, production method thereof, film-forming composition, ruthenium-containing film and production method thereof
JPH0940683A (en) Highly pure titanium complex, its production and liquid composition for forming bst membrane
KR101151462B1 (en) Methods for deposition of group 4 metal containing films
JPH1036380A (en) Tantalum compound
JP4225607B2 (en) Method for producing bismuth-containing composite metal oxide film
JP3106898B2 (en) Method for forming bismuth-containing film
JP3379315B2 (en) Raw materials for forming platinum thin films by metal organic chemical vapor deposition
US11999756B2 (en) Method for producing organometallic compound and thin film fabricated using organometallic compound obtained thereby
CN114539295B (en) Rare earth precursor, method of preparing the same, and method of forming thin film using the same
TWI838641B (en) Group 4 metal element-containing compound, precursor composition containing same, and method for forming thin film using same
JP2747442B2 (en) Lead-based organometallic precursor and method for producing the same
JP3119128B2 (en) High purity Ti complex, method for producing the same, and liquid composition for forming BST film
JP2001181840A (en) Copper raw material for chemical vapor growth and method for producing thin film using the same
JPH10195086A (en) Organic lead compound and raw material solution for metalorganic chemical vapor deposition
JP2001181288A (en) Metal alkoxide compound for chemical vapor deposition and compound metal oxide thin film using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010724

LAPS Cancellation because of no payment of annual fees