JPH1034825A - Bonding structure with low thermal strain of navigating body in space - Google Patents

Bonding structure with low thermal strain of navigating body in space

Info

Publication number
JPH1034825A
JPH1034825A JP19889396A JP19889396A JPH1034825A JP H1034825 A JPH1034825 A JP H1034825A JP 19889396 A JP19889396 A JP 19889396A JP 19889396 A JP19889396 A JP 19889396A JP H1034825 A JPH1034825 A JP H1034825A
Authority
JP
Japan
Prior art keywords
thermal strain
truss
metal layer
linear expansion
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19889396A
Other languages
Japanese (ja)
Other versions
JP2978769B2 (en
Inventor
Shinko Umesato
眞弘 梅里
Koji Sekine
功治 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8198893A priority Critical patent/JP2978769B2/en
Publication of JPH1034825A publication Critical patent/JPH1034825A/en
Application granted granted Critical
Publication of JP2978769B2 publication Critical patent/JP2978769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a bonding structure with low thermal strain of a navigating body in space with enough small error and deviation of a sensor orientation axis by arranging a metal layer with a plus linear expansion coefficient and a CFRP laminated collar with a minus linear expansion coefficient on the outside and the inside of a zero thermal strain truss. SOLUTION: The outermost layer of a bonded part is a metal layer 1 and a zero thermal strain truss 3 being a part to be bonded is bonded on the inside of the metal layer. In addition, a CFRP laminated collar 2 is bonded on the inside of the zero thermal strain truss 3. The zero thermal strain truss 3 is a main part constituting a truss structure and the truss part can be realized by a zero thermal strain CFRP laminated constitution. As the bonded part is an integral bonded structure, the metal layer 1 with a plus linear expansion coefficient and the CFRP laminated collar 2 with a minus linear expansion coefficient cancel each other their deformations to temp. change.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は地球観測衛星等の宇
宙航行体の低熱歪接合構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low thermal strain bonding structure for a space vehicle such as an earth observation satellite.

【0002】[0002]

【従来の技術】地球観測衛星構体や精密観測センサ構造
物は、軌道上でセンサ指向軸誤差を最小限に抑制するた
め、炭素繊維強化プラスチック(CFRP)等の低熱歪
材料で多くのものは製作されている。このような低熱歪
材料間の接合部は、Al合金又はTi合金で製作されて
いる。
2. Description of the Related Art Many earth observation satellite structures and precision observation sensor structures are made of low heat distortion materials such as carbon fiber reinforced plastic (CFRP) in order to minimize the sensor pointing axis error in orbit. Have been. The joint between such low heat strain materials is made of an Al alloy or a Ti alloy.

【0003】図3は、従来の接合部を示す図で、プラス
線膨張係数を有する金属接合部5とマイナス線膨張係数
を有するCFRP材料6を直列に接合することで、全体
として低熱歪化を目指していた。
FIG. 3 is a view showing a conventional joint, in which a metal joint 5 having a positive linear expansion coefficient and a CFRP material 6 having a negative linear expansion coefficient are joined in series to reduce heat distortion as a whole. I was aiming.

【0004】[0004]

【発明が解決しようとする課題】従来の技術の第1の問
題点は、低熱歪化に限界があることである。その理由
は、宇宙航行体各部の温度は、均一に上下するわけでは
なく、日陰、日照、内部発熱等により温度分布が不均一
となるからである。
A first problem of the prior art is that there is a limit to the reduction in thermal strain. The reason is that the temperature of each part of the spacecraft does not fluctuate uniformly, but the temperature distribution becomes non-uniform due to shade, sunshine, internal heat generation and the like.

【0005】地球観測衛星や精密観測センサは、近年ま
すます高性能化(高分解能)が進み、センサ指向軸誤差
を極力抑制する必要性が高まってきている。一方人工衛
星も大型化、大電力化が進んでおり、熱歪によるセンサ
指向軸変動が大きくなる傾向にある。しかしながら、図
3に示す従来技術では、センサ指向軸誤差やセンサ指向
軸変動を充分に抑制することができないものであった。
[0005] In recent years, the performance of earth observation satellites and precision observation sensors has been further enhanced (high resolution), and the need to minimize sensor pointing axis errors has increased. On the other hand, artificial satellites have also been increasing in size and power, and there has been a tendency for sensor pointing axis fluctuations due to thermal strain to increase. However, in the related art shown in FIG. 3, the sensor pointing axis error and the sensor pointing axis fluctuation cannot be sufficiently suppressed.

【0006】したがって、本発明の目的は熱歪を従来に
比べて大幅に抑えることができ、その結果、センサ指向
軸誤差やセンサ指向軸変動を充分に小さくできる宇宙航
行体の低熱歪接合構造を提供することである。
Accordingly, an object of the present invention is to provide a low-heat-strain joint structure for a spacecraft in which thermal distortion can be greatly suppressed as compared with the conventional art, and as a result, sensor pointing axis error and sensor pointing axis fluctuation can be sufficiently reduced. To provide.

【0007】[0007]

【課題を解決するための手段】本発明によれば、プラス
線膨張係数を有する金属層とマイナス線膨張係数を有す
るCFRP積層カラーを零熱歪トラスの外側と内側とに
それぞれ配置した宇宙航行体の低熱歪接合構造が得られ
る。
According to the present invention, there is provided a space vehicle in which a metal layer having a positive linear expansion coefficient and a CFRP laminated collar having a negative linear expansion coefficient are arranged on the outside and inside of a zero thermal strain truss, respectively. Is obtained.

【0008】本発明の低熱歪接合構造によれば、金属層
とCFRP積層カラーとは、温度変化に対して、お互い
に変形をキャンセルするため、低熱歪の接合構造が得ら
れる。
According to the low thermal strain bonding structure of the present invention, since the metal layer and the CFRP laminated collar cancel each other in response to a temperature change, a low thermal strain bonding structure can be obtained.

【0009】[0009]

【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。図1は本発明の低熱歪接合構造を採用した
観測衛星構体を示し、トラス構造接合の一例である。ま
た図2は、接合部の部分詳細図である。
Next, an embodiment of the present invention will be described. FIG. 1 shows an observation satellite structure employing the low thermal strain bonding structure of the present invention, and is an example of a truss structure bonding. FIG. 2 is a partially detailed view of the joint.

【0010】図1の構体は零熱歪トラス3と、トラス接
合部4より構成されている。トラス接合部4は、零熱歪
トラス3間を接合するパーツであり、図2に示すように
金属層1とCFRP積層カラー2とから構成される。
The structure shown in FIG. 1 includes a zero-heat-strain truss 3 and a truss joint 4. The truss joint 4 is a part for joining the zero-heat-strain truss 3 and includes a metal layer 1 and a CFRP laminated collar 2 as shown in FIG.

【0011】接合部最外層は金属層1であり、本金属層
内側に被接合部である零熱歪トラス3が接着されてい
る。さらに零熱歪トラス3の内側にCFRP積層カラー
2が接着されている(図2参照)。零熱歪トラス3は、
図1のトラス構造を構成する主要部品であり、トラス部
は、零熱歪CFRP積層構成で実現することができる。
The outermost layer of the joining portion is a metal layer 1, and a zero-heat-strain truss 3, which is a portion to be joined, is adhered to the inside of the metal layer. Further, the CFRP laminated collar 2 is adhered to the inside of the zero heat strain truss 3 (see FIG. 2). Zero heat strain truss 3
The truss part is a main component of the truss structure shown in FIG.

【0012】本接合部は、一体接着構造となっているた
め、プラス線膨張係数を有する金属層1と、マイナス線
膨張係数を有するCFRP積層カラー2とはお互いに温
度変化に対して、変形をキャンセルし合う。
Since the main joint has an integral bonding structure, the metal layer 1 having a positive linear expansion coefficient and the CFRP laminated collar 2 having a negative linear expansion coefficient are deformed by a temperature change. Cancel each other.

【0013】今、金属層1の断面積をA1 、線膨張係数
をα1 、弾性係数をE1 、長さl、温度差Δtに対する
伸びをΔlとする。同様にCFRP積層カラー2の材料
特性をA2 ,α2 ,E2 とした場合、 Δl=Δtα1 l ・・・(1) Δl=Pl/EA1 ・・・(2) 式(1),(2)よりP=α1 E1 A1 Δtで、Pは、
温度差Δtにより金属層1に生じる熱歪力であり、本熱
歪力PとCFRP積層カラー2のそれと釣合わせるた
め、 α1 E1 A1 =α2 E2 A2 ・・・(3) となるように諸元を設定する。
Assume that the cross-sectional area of the metal layer 1 is A1, the linear expansion coefficient is α1, the elastic coefficient is E1, the length is l, and the elongation with respect to the temperature difference Δt is Δl. Similarly, when the material properties of the CFRP laminated color 2 are A2, α2, E2, Δl = Δtα1 l (1) Δl = Pl / EA1 (2) From equations (1) and (2), P = Α1 E1 A1 Δt, P is
This is the thermal strain force generated in the metal layer 1 due to the temperature difference Δt. In order to balance this thermal strain force P with that of the CFRP laminated collar 2, the specifications are such that α1 E1 A1 = α2 E2 A2 (3) Set.

【0014】(3)式で金属層1及びCFRP積層カラ
ー2のα,E,Aの各諸元を設定し、具体例として接合
部線膨張係数αを試算すれば、 Al合金の場合、α1 =22×10−6/℃ から α
=1×10−7/℃ Ti合金の場合、α1 =7×10−6/℃ から α=
1×10−7/℃ 程度が実現可能である。
If the parameters of α, E, and A of the metal layer 1 and the CFRP laminated collar 2 are set by the formula (3), and the coefficient of linear expansion α of the joint is calculated as a specific example, in the case of an Al alloy, α1 = 22 × 10-6 / ℃ to α
= 1 × 10−7 / ℃ In the case of Ti alloy, α1 = 7 × 10−6 / ℃
About 1 × 10 −7 / ° C. is feasible.

【0015】このような構成により、いかなる温度に対
しても長さ方向零熱歪の構造が可能となり、衛星構体全
体の零熱歪構造が実現できる。
With such a configuration, a structure with zero thermal strain in the length direction at any temperature can be realized, and a zero thermal strain structure of the entire satellite structure can be realized.

【0016】本発明の実施の形態において、トラス構
造、金属材料とCFRP積層を例に説明したが、フレー
ム構造その他、宇宙航行体の構造物は、すべて、本発明
が利用できることは明白であり、本発明の範囲内であ
る。
In the embodiment of the present invention, a truss structure, a metal material and a CFRP laminate have been described as examples, but it is clear that the present invention can be applied to all frame structures and other structures of a spacecraft. It is within the scope of the present invention.

【0017】また、異種材料で線膨張係数の異なる物同
志を接合(例えばセラミックとCFRP等)して全体線
膨張係数をコントロールする場合も、当然本発明が利用
できることは明白であり、本発明の範囲内である。
It is also obvious that the present invention can be applied to the case where different materials having different linear expansion coefficients are joined (for example, ceramic and CFRP) to control the overall linear expansion coefficient. Within range.

【0018】[0018]

【発明の効果】本発明の第1の効果は、零熱歪が精度良
く実現できることである。その理由は、全体線膨張係数
算出ロジックは明白で、効果も自明である。
A first effect of the present invention is that zero thermal strain can be accurately realized. The reason is that the whole linear expansion coefficient calculation logic is obvious and the effect is obvious.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の観測衛星構体を示す図。FIG. 1 is a diagram showing an observation satellite structure according to an embodiment of the present invention.

【図2】図1の接合部の部分詳細図。FIG. 2 is a partial detailed view of a joining portion in FIG. 1;

【図3】従来の構成を示す図。FIG. 3 is a diagram showing a conventional configuration.

【符号の説明】[Explanation of symbols]

1 金属層 2 CFRPカラー 3 零熱歪トラス 4 接合部 DESCRIPTION OF SYMBOLS 1 Metal layer 2 CFRP color 3 Zero heat strain truss 4 Joint

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属層とCFRP積層の層間接合構造で
あり、プラス線膨張係数を有する金属層とマイナス線膨
張係数を有するCFRP層とが互いの伸び縮みをキャン
セルし合うことを特徴とする宇宙航行体の低熱歪接合構
造。
1. A space having an interlayer bonding structure of a metal layer and a CFRP laminate, wherein a metal layer having a positive linear expansion coefficient and a CFRP layer having a negative linear expansion coefficient cancel each other's expansion and contraction. Low thermal strain joint structure of the navigation body.
【請求項2】 宇宙航行体を構成する構成要素を接合す
る接合構造において、外側に金属層を、内側にCFRP
層を配置したことを特徴とする宇宙航行体の低熱歪接合
構造。
2. A joining structure for joining components constituting a space vehicle, wherein a metal layer is provided on the outside and a CFRP is provided on the inside.
A low thermal strain bonding structure for a spacecraft, wherein layers are arranged.
【請求項3】 宇宙航行体を構成する構成要素が零熱歪
トラスであることを特徴とする請求項2の宇宙航行体の
低熱歪接合構造。
3. The low thermal strain bonding structure for a spacecraft according to claim 2, wherein the constituent elements of the spacecraft are zero heat strain trusses.
JP8198893A 1996-07-29 1996-07-29 Low thermal strain joint structure of space vehicle Expired - Lifetime JP2978769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8198893A JP2978769B2 (en) 1996-07-29 1996-07-29 Low thermal strain joint structure of space vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8198893A JP2978769B2 (en) 1996-07-29 1996-07-29 Low thermal strain joint structure of space vehicle

Publications (2)

Publication Number Publication Date
JPH1034825A true JPH1034825A (en) 1998-02-10
JP2978769B2 JP2978769B2 (en) 1999-11-15

Family

ID=16398695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8198893A Expired - Lifetime JP2978769B2 (en) 1996-07-29 1996-07-29 Low thermal strain joint structure of space vehicle

Country Status (1)

Country Link
JP (1) JP2978769B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7004622B2 (en) * 2002-11-22 2006-02-28 General Electric Company Systems and methods for determining conditions of articles and methods of making such systems
CN102806931A (en) * 2011-05-31 2012-12-05 南通顺吉复合材料有限公司 Sensor grid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7004622B2 (en) * 2002-11-22 2006-02-28 General Electric Company Systems and methods for determining conditions of articles and methods of making such systems
CN102806931A (en) * 2011-05-31 2012-12-05 南通顺吉复合材料有限公司 Sensor grid

Also Published As

Publication number Publication date
JP2978769B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
US5044579A (en) Inflatable foldable structure and method of manufacturing foldable structures
JPS6065603A (en) Reflector for electromagnetic radiation beam
US20090140497A1 (en) Flexible seal for gas turbine engine system
US20100177414A1 (en) Device for Correcting Optical Defects of a Telescope Mirror
CN108594396A (en) A kind of quasi- zero thermal expansion space optical remote sensor support construction and method
EP2077942A1 (en) Stiffened casing for an aircraft or spacecraft with a laminate stringer of high rigidity and corresponding laminate stringer
US6042055A (en) Structural joint to accomodate large thermally-induced displacements
US6419189B1 (en) Hot ruddervator apparatus and method for an aerospacecraft
US6241184B1 (en) Vehicle having a ceramic radome joined thereto by an actively brazed compliant metallic transition element
JP2978769B2 (en) Low thermal strain joint structure of space vehicle
US6633108B1 (en) Piezo-actuator comprising a temperature compensator
JP3540747B2 (en) Vehicle with ceramic radome attached by compliant metal "T" flexible element
US6951397B1 (en) Composite ultra-light weight active mirror for space applications
US20090159749A1 (en) Connector element for connecting two component parts
US4214406A (en) Dimensionally stable support structure
US6097553A (en) Window structure with non-radial mounting support having graded thermal expansion
EP1568103B1 (en) Form factored compliant metallic transition element for attaching a ceramic element to a metallic element
JPH09292026A (en) Very high pressure light tank
JPH0284329A (en) Fiber reinforced composite material
Kuo Optical tests of an intelligently deformable mirror for space telescope technology
Antebi et al. A deformable subreflector for the Haystack radio telescope
JPH11245899A (en) Size stabilizing structure
Ozaki et al. Composite materials for extremely large mirrors and optical structures
JPH10290114A (en) Antenna reflection mirror for space
Jessen et al. Carbon fibre reinforced plastic structures for instruments for very large and extremely large telescopes

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981110

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term